Polynomial **OP**timization

Lasserre's moment-SOS hierarchy Sparsity

Igor Klep, University of Ljubljana

Gaspard Monge Visiting Professor

21 February 2025

Outline

Polynomial optimization problems

Optimization problems (OP) Polynomial optimization problems (POP) Motivation Challenges

Moments and sums of squares

Linear programming (LP) Linearize POP

POP: Theory

Quadratic modules and semialgebraic sets Putinar's Positivstellensatz A proof

POP: Practice

Lasserre's hierarchy Software Example in Julia Cutting edge results

Variants to SOS via SDP

LP based SOCP based

Exploiting structure

Sparsity

Outro

Optimization Problems (OPs)

A minimization problem is of the form:

 $\begin{array}{ll} \min & f(x) \\ \text{s.t.} & x \in S \end{array}$

where:

- S is the feasible region
- $f: S \to \mathbb{R}$ is the objective function

Usually S is also described using functions:

$$S = \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, i = 1, \dots, m, h_j(x) = 0, j = 1, \dots, p\}$$

Optimization Problems (OPs)

A minimization problem is of the form:

min
$$f(x)$$

s. t. $g_i(x) \ge 0, i = 1, ..., m$ (OP)
 $h_j(x) = 0, j = 1, ..., p$

Each $x \in \mathbb{R}^n$ satisfying the constraints is called feasible

Usually we are also interested in minimizers that solve (OP), i.e., all feasible $x^* \in \mathbb{R}^n$ that minimize f(x)

Polynomial Optimization Problems (POPs)

A minimization problem is of the form:

$$\begin{array}{ll} \min & f(x) \\ {\rm s. t.} & g_i(x) \geq 0, \ i = 1, \dots, m \\ & h_j(x) = 0, \ j = 1, \dots, p \end{array} \tag{POP}$$

where f, g_i, h_j are polynomials

The feasible region

$$S = \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, i = 1, \dots, m, h_j(x) = 0, j = 1, \dots, p\}$$

is called a (basic closed) semialgebraic set

Bruce Hunt A Gallery of Algebraic Surfaces

Why do we care, I

Combinatorial optimization

Assign to each vertex i a value $x_i \in \{-1, 1\}$ in such a way as to maximize

$$\sum_{(i,j)\in E(G)}w_{ij}\frac{1-x_ix_j}{2}$$

People care about max cut?

- easy to state
- it's NP-hard
- many hard optimization problems that arise in practice reduce to max cut

Why do we care, I

Combinatorial optimization

Assign to each vertex i a value $x_i \in \{-1, 1\}$ in such a way as to maximize

$$\sum_{(i,j)\in E(G)}w_{ij}\frac{1-x_ix_j}{2}.$$

People care about max cut?

- easy to state
- it's NP-hard
- many hard optimization problems that arise in practice reduce to max cut
- correlation clustering ~>> machine learning for unsupervised clustering, computer vision, bioinformatics (clustering genes based on expression data)

Why do we care, I and II

Combinatorial optimization and Physics

Assign to each vertex i a value $x_i \in \{-1, 1\}$ in such a way as to maximize

$$\sum_{(i,j)\in E(G)}w_{ij}\frac{1-x_ix_j}{2}$$

People care about max cut?

- easy to state
- it's NP-hard
- Finding the ground state of an Ising spin system is equivalent to solving a max cut problem.

1	1	+	1	↑	↑
1	1	↑	→	↑	↑
4	→	↓	1	↔	↓
↓	↑	↓	↓	↑	↓
↓	↑	↑	1	↓	↓
1	↓	↓	↓	↓	↓

Why do we care, III

Control theory - stability of dynamical systems

- Given a system of ODEs $\dot{x}(t) = f(x(t)), \quad x(0) = x_0$
- Want to prove stability, i.e., that solutions converge to the origin for all initial conditions
- To prove this we need an energy-like Lyapunov function V satisfying

$$V(x)geq0,$$

$$\dot{V}(x) = \left(\frac{\partial V}{\partial x}\right)^T f(x) \ge 0$$

• For linear systems $\dot{x} = Ax$, can use quadratic Lyapunov functions:

$$V(x) = x^T P x$$

where

$$P \succ 0, \quad A^T P + P A \prec 0$$

• In general, looking for a polynomial Lyapunov function V is a POP

Challenges in POP

Source: Wikipedia

- Non-convexity & too many local minima
- Complexity: NP-hard
- Solving large-scale problems
- Exploiting structure (symmetries, sparsity, ...)
- Numerical stability

Linear programming

Linear Optimization Problem is one of the form

$$\begin{array}{ll} \min & f(x) \\ \text{s. t.} & g_i(x) \ge 0, \ i = 1, \dots, m \\ & h_j(x) = 0, \ j = 1, \dots, p \end{array} \tag{LP}$$

where the f, g_i, h_j are linear polynomials.

The feasible region S is a convex polyhedron.

Khachiyan (1979) showed that LPs can be solved quickly (in polynomial time).

In practice, one can today solve LPs with $n \approx m \approx ? \cdot 10^{6}.$

https://tikz.net/dodecahedron/

$$\begin{array}{ll} \min & x_1^2 x_2^2 + x_1 x_2 + x_2^2 - 2 x_2 + 2 \\ \text{s. t.} & 1 - x_2^2 - x_1^2 x_2^2 \geq 0 \end{array}$$

$$\begin{array}{ll} \min & x_1^2 x_2^2 + x_1 x_2 + x_2^2 - 2 x_2 + 2 \\ \text{s. t.} & 1 - x_2^2 - x_1^2 x_2^2 \geq 0 \end{array}$$

$$\begin{array}{ll} \min & x_1^2 x_2^2 + y_{12} + x_2^2 - 2 x_2 + 2 \\ \text{s.t.} & 1 - x_2^2 - x_1^2 x_2^2 \geq 0 \end{array}$$

$$\begin{array}{ll} \min & x_1^2 x_2^2 + y_{12} + x_2^2 - 2 x_2 + 2 \\ \text{s. t.} & 1 - x_2^2 - x_1^2 x_2^2 \geq 0 \end{array}$$

$$\begin{array}{ll} \min & x_1^2 x_2^2 + y_{12} + y_{22} - 2 x_2 + 2 \\ \text{s. t.} & 1 - y_{22} - x_1^2 x_2^2 \geq 0 \end{array}$$

min
$$x_1^2 x_2^2 + y_{12} + y_{22} - 2x_2 + 2$$

s.t. $1 - y_{22} - x_1^2 x_2^2 \ge 0$

$$\begin{array}{ll} \min & y_{1122} + y_{12} + y_{22} - 2x_2 + 2 \\ \text{s. t.} & 1 - y_{22} - y_{1122} \geq 0 \end{array}$$

$$\begin{array}{ll} \min & y_{1122}+y_{12}+y_{22}-2x_2+2 \\ \text{s. t.} & 1-y_{22}-y_{1122} \geq 0 \end{array}$$

Slightly less naively

$$\begin{array}{ll} \min & y_{1122} + y_{12} + y_{22} - 2x_2 + 2 \\ \text{s. t.} & 1 - y_{22} - y_{1122} \geq 0 \end{array}$$

$$(a_0 + a_1x_1 + a_2x_2 + a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2)^2 \ge 0$$

$$\begin{pmatrix} a_0 & a_1 & a_2 & a_{11} & a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix} \begin{pmatrix} 1 & x_1 & x_2 & x_1^2 & x_1 x_2 & x_2^2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_{11} \\ a_{12} \\ a_{22} \end{pmatrix} \ge 0$$

Slightly less naively

$$\begin{array}{ll} \min & y_{1122} + y_{12} + y_{22} - 2x_2 + 2 \\ \text{s. t.} & 1 - y_{22} - y_{1122} \geq 0 \end{array}$$

$$(a_0 + a_1x_1 + a_2x_2 + a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2)^2 \ge 0$$

$$\begin{pmatrix} a_0 & a_1 & a_2 & a_{11} & a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 \\ x_1 & x_1^2 & x_1x_2 & x_1^2 & x_1^2x_2 & x_1x_2^2 \\ x_2 & x_1x_2 & x_2^2 & x_1^2x_2 & x_1x_2^2 & x_1^3 \\ x_1^2 & x_1^3 & x_1^2x_2 & x_1^4 & x_1^3x_2 & x_1^2x_2^2 \\ x_1x_2 & x_1^2x_2 & x_1x_2^2 & x_1^3x_2 & x_1^2x_2^2 & x_1x_2^3 \\ x_2^2 & x_1x_2^2 & x_2^3 & x_1^2x_2^2 & x_1x_2^3 & x_2^4 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_2 \end{pmatrix} \ge 0$$

Slightly less naively

$$\begin{array}{ll} \min & y_{1122}+y_{12}+y_{22}-2x_2+2 \\ \text{s. t.} & 1-y_{22}-y_{1122} \geq 0 \end{array}$$

$$\begin{pmatrix} 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 \\ x_1 & x_1^2 & x_1x_2 & x_1^3 & x_1^2x_2 & x_1x_2^2 \\ x_2 & x_1x_2 & x_2^2 & x_1^2x_2 & x_1x_2^2 & x_3^3 \\ x_1^2 & x_1^3 & x_1^2x_2 & x_1^4 & x_1^3x_2 & x_1^2x_2^2 \\ x_1x_2 & x_1^2x_2 & x_1x_2^2 & x_1^3x_2 & x_1^2x_2^2 & x_1x_3^2 \\ x_2^2 & x_1x_2^2 & x_2^3 & x_1^2x_2^2 & x_1x_3^2 & x_2^4 \end{pmatrix} \succeq 0$$

Slightly less naively

$$\begin{array}{ll} \min & y_{1122}+y_{12}+y_{22}-2x_2+2 \\ \text{s. t.} & 1-y_{22}-y_{1122} \geq 0 \end{array}$$

Add redundant obvious constraints and linearize

$\begin{pmatrix} 1 \end{pmatrix}$	x_1	<i>x</i> ₂	<i>y</i> ₁₁	<i>y</i> ₁₂	<i>y</i> 22	
<i>x</i> ₁	<i>y</i> ₁₁	<i>y</i> ₁₂	<i>y</i> ₁₁₁	<i>y</i> ₁₁₂	<i>y</i> ₁₂₂	
<i>x</i> ₂	<i>y</i> ₁₂	y ₂₂	<i>y</i> ₁₁₂	<i>y</i> ₁₂₂	y 222	ا∠
y 11	Y 111	Y 112	Y 1111	Y 1112	Y 1122	<u> </u>
<i>y</i> ₁₂	<i>Y</i> 112	<i>Y</i> ₁₂₂	<i>Y</i> 1112	<i>Y</i> 1122	<i>Y</i> 1222	
y_{22}	<i>Y</i> 122	Y 222	y 1122	y 1222	y2222/	

Slightly less naively

$$\begin{array}{ll} \min & y_{1122} + y_{12} + y_{22} - 2x_2 + 2 \\ \text{s. t.} & 1 - y_{22} - y_{1122} \geq 0 \end{array}$$

$$(a_0 + a_1x_1 + a_2x_2)^2(1 - x_2^2 - x_1^2x_2^2) \ge 0$$

Slightly less naively

$$\begin{array}{ll} \min & y_{1122} + y_{12} + y_{22} - 2x_2 + 2 \\ \text{s. t.} & 1 - y_{22} - y_{1122} \geq 0 \end{array}$$

$$\begin{pmatrix} \mathsf{a}_0 & \mathsf{a}_1 & \mathsf{a}_2 \end{pmatrix} \begin{pmatrix} 1 - x_2^2 - x_1^2 x_2^2 \end{pmatrix} \begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} 1 & x_1 & x_2 \end{pmatrix} \begin{pmatrix} \mathsf{a}_0 \\ \mathsf{a}_1 \\ \mathsf{a}_2 \end{pmatrix} \geq 0$$

Slightly less naively

$$\begin{array}{ll} \min & y_{1122} + y_{12} + y_{22} - 2x_2 + 2 \\ \text{s. t.} & 1 - y_{22} - y_{1122} \geq 0 \end{array}$$

$$\begin{pmatrix} a_0 & a_1 & a_2 \end{pmatrix} \begin{pmatrix} 1 - x_2^2 - x_1^2 x_2^2 \end{pmatrix} \begin{pmatrix} 1 & x_1 & x_2 \\ x_1 & x_1^2 & x_1 x_2 \\ x_2 & x_1 x_2 & x_2^2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \ge 0$$

Slightly less naively

$$\begin{array}{ll} \min & y_{1122} + y_{12} + y_{22} - 2x_2 + 2 \\ \text{s. t.} & 1 - y_{22} - y_{1122} \geq 0 \end{array}$$

$$\begin{pmatrix} a_0 & a_1 & a_2 \end{pmatrix} \begin{pmatrix} 1 - x_1^2 x_2^2 - x_2^2 & -x_2^2 x_1^3 - x_2^2 x_1 + x_1 & -x_1^2 x_2^3 - x_2^3 + x_2 \\ -x_2^2 x_1^3 - x_2^2 x_1 + x_1 & -x_2^2 x_1^4 - x_2^2 x_1^2 + x_1^2 & -x_1^3 x_2^3 - x_1 x_2^3 + x_1 x_2 \\ -x_1^2 x_2^3 - x_2^3 + x_2 & -x_1^3 x_2^3 - x_1 x_2^3 + x_1 x_2 & -x_1^2 x_2^4 - x_2^4 + x_2^2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \ge 0$$

Slightly less naively

$$\begin{array}{ll} \min & y_{1122} + y_{12} + y_{22} - 2x_2 + 2 \\ \text{s. t.} & 1 - y_{22} - y_{1122} \geq 0 \end{array}$$

$$\begin{pmatrix} 1 - x_1^2 x_2^2 - x_2^2 & -x_2^2 x_1^3 - x_2^2 x_1 + x_1 & -x_1^2 x_2^3 - x_2^3 + x_2 \\ -x_2^2 x_1^3 - x_2^2 x_1 + x_1 & -x_2^2 x_1^4 - x_2^2 x_1^2 + x_1^2 & -x_1^3 x_2^3 - x_1 x_2^3 + x_1 x_2 \\ -x_1^2 x_2^3 - x_2^3 + x_2 & -x_1^3 x_2^3 - x_1 x_2^3 + x_1 x_2 & -x_1^2 x_2^4 - x_2^4 + x_2^2 \end{pmatrix} \succeq \mathbf{0}$$

Slightly less naively

$$\begin{array}{ll} \min & y_{1122} + y_{12} + y_{22} - 2x_2 + 2 \\ \text{s. t.} & 1 - y_{22} - y_{1122} \geq 0 \end{array}$$

Add redundant obvious constraints and linearize

$$\begin{pmatrix} 1 - y_{22} - y_{1122} & x_1 - y_{122} - y_{11122} & x_2 - y_{222} - y_{11222} \\ x_1 - y_{122} - y_{11122} & y_{11} - y_{1122} - y_{111122} & y_{12} - y_{1222} - y_{111222} \\ x_2 - y_{222} - y_{11222} & y_{12} - y_{1222} - y_{111222} & y_{22} - y_{2222} - y_{112222} \end{pmatrix} \succeq 0$$

Lasserre's hierarchy (an example)

 $\begin{array}{ll} \min & y_{1122}+y_{12}+y_{22}-2x_2+2 \\ \text{s. t.} & 1-y_{22}-y_{1122} \geq 0 \end{array}$

$$\begin{pmatrix} 1 & x_1 & x_2 & y_{11} & y_{12} & y_{22} \\ x_1 & y_{11} & y_{12} & y_{111} & y_{112} & y_{122} \\ x_2 & y_{12} & y_{22} & y_{112} & y_{122} & y_{222} \\ y_{11} & y_{111} & y_{112} & y_{1111} & y_{1112} & y_{1122} \\ y_{12} & y_{112} & y_{122} & y_{1122} & y_{1222} \\ y_{22} & y_{122} & y_{222} & y_{1122} & y_{1222} \\ x_1 - y_{122} - y_{1122} & x_1 - y_{122} - y_{11122} & x_2 - y_{222} - y_{11222} \\ x_1 - y_{122} - y_{1122} & y_{11} - y_{1122} - y_{11122} & y_{12} - y_{1222} - y_{11222} \\ x_2 - y_{222} - y_{1122} & y_{12} - y_{1222} - y_{11222} & y_{12} - y_{12222} - y_{11222} \end{pmatrix} \succeq 0$$

This is a semidefinite program (SDP), a far-reaching extension of LP

POP

Some theory

• Positivstellensatz of Krivine (1964):

to each *infeasible POP*, using the (less naive) linearization procedure, one can always add finitely many "redundant" inequalities such that the resulting *SDP* is *infeasible*.

• Schmüdgen's (1991) and Putinar's (1993) Positivstellensatz: for POP with *compact* feasible region, *optimal values* of the POP and of the resulting "infinite" SDP *coincide*.

Notation

- $x = (x_1, \ldots, x_n)$ commutative variables
- products of the x_j are monomials
- $[x]_k$ will denote (a vector of) monomials of degree $\leq k$ If n = k = 2, then $[x]_2 = \begin{pmatrix} 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 \end{pmatrix}^T$
- $\mathbb{R}[x] =$ all polynomials
- $\Sigma^2 = \left\{ \sum h_j^2 \mid h_j \in \mathbb{R}[x] \right\}$ convex cone of sums of squares (SOS)

• Given
$$g = (g_1, \dots, g_m) \in \mathbb{R}[x]^m$$
 the feasible set

$$S(g) = \{x \in \mathbb{R}^n \mid g_1(x) \ge 0, \ldots, g_m(x) \ge 0\}$$

is a (basic closed) semialgebraic set

• $QM(g) = \Sigma^2 + \Sigma^2 g_1 + \dots + \Sigma^2 g_m$ is the quadratic module (weighted SOS) generated by $g = (g_1, \dots, g_m)$

Observe: $f \in QM(g) \Rightarrow f \ge 0$ on S(g)

Putinar's Positivstellensatz

Theorem (Putinar (1993))

Assume

- S(g) is bounded
- g contains a ball constraint $R \sum x_i^2 \ge 0$ for some $R \in \mathbb{R}$

If f > 0 on S(g), then $f \in QM(g)$

```
f \ge 0 \text{ on } S(g) \text{ does not imply } f \in QM(g)
```

Positivstellensätze

You are only as strong as your Positivstellensatz

• Artin's (1926) solution to Hilbert's 17th problem (1900)

 $f \ge 0 \text{ on } \mathbb{R}^n \iff f \in \Sigma^2 \mathbb{R}(x) \iff \exists 0 \ne q \in \mathbb{R}[x] : q^2 p \in \Sigma^2$

• Krivine Positivstellensatz (1964)

$$f > 0 ext{ on } S(g) \iff \exists q_1, q_2 \in \mathsf{QM}(\prod g): \ q_1p = 1 + q_2$$

• Schmüdgen Positivstellensatz (1991) Assume S(g) is compact. Then f > 0 on S(g) implies $f \in QM(\prod g)$

• Many further variants

Putinar's Positivstellensatz

Proof

f > 0 on S(g); assume $f \notin QM(g)$.

•
$$L: \mathbb{R}[x] \to \mathbb{R}, L(\mathsf{QM}(g)) \subseteq [0,\infty), L(f) \leq 0$$

- inner product $\langle a, b \rangle = L(ab)$ on $\mathbb{R}[x]$
- define $\hat{X}_j : \mathbb{R}[x] \to \mathbb{R}[x]$, $p \mapsto x_j p$
- by compactness, X̂_j are bounded, so extend to the Hilbert space completion H of ℝ[x]
- for $p \in \mathbb{R}[x]$ we have $L(p) = \langle p, 1 \rangle = \langle p(\hat{X})1, 1 \rangle$
- by the spectral theorem (for a tuple of commuting self-adjoint operators X̂), there exists measure μ supported on S(g) s.t.

$$L(p) = \int p \, \mathrm{d} \mu$$
 for all p

• finally,
$$0 \ge L(f) = \int f \, \mathrm{d}\mu > 0$$
 4

Sums of Squares (SOS)

Key lemma

Lemma

 $f \in \mathbb{R}[x]_{2k}$ is a sum of squares iff there is $G \succeq 0$ s.t. $f = [x]_k^T G[x]_k$.

Proof.

- If $f = \sum_i g_i^2 \in \Sigma^2$, then deg $g_i \leq k$ for all i
- write $g_i = G_i^T[x]_k$, where G_i^T is for row vector of the coefficients of g_i
- then $g_i^2 = [x]_k^T G_i G_i^T [x]_k$
- setting $G := \sum_i G_i G_i^T$, we have $f = [x]_k^T G[x]_k$
- For the converse, every PsD matrix G admits a Cholesky factorization $G = \sum_{i=1}^{r} G_i G_i^T$ for row vectors G_i
- letting $g_i := G_i^T[x]_k$, we get $f = \sum g_i^2$

SOS An example

•

$$f = 4x_1^4 + 4x_2x_1^3 - 4x_1^3 + x_2^2x_1^2 - 2x_2x_1^2 + x_1^2 + x_2^2 - 2x_2 + 1$$

Write $f = [x]_2^T G[x]_2$ for a symmetric matrix G

۲

An example

$$f = 4x_1^4 + 4x_2x_1^3 - 4x_1^3 + x_2^2x_1^2 - 2x_2x_1^2 + x_1^2 + x_2^2 - 2x_2 + 1$$

• Write $f = [x]_2^T G[x]_2$ for a symmetric matrix G

 $G = \begin{pmatrix} 1 & 0 & -1 & g_{14} & g_{15} & g_{16} \\ 0 & 1 - 2g_{14} & -g_{15} & -2 & g_{25} & g_{26} \\ -1 & -g_{15} & 1 - 2g_{16} & -g_{25} - 1 & -g_{26} & 0 \\ g_{14} & -2 & -g_{25} - 1 & 4 & 2 & g_{46} \\ g_{15} & g_{25} & -g_{26} & 2 & 1 - 2g_{46} & 0 \\ g_{16} & g_{26} & 0 & g_{46} & 0 & 0 \end{pmatrix}$

۲

An example

$$f = 4x_1^4 + 4x_2x_1^3 - 4x_1^3 + x_2^2x_1^2 - 2x_2x_1^2 + x_1^2 + x_2^2 - 2x_2 + 1$$

• Write $f = [x]_2^T G[x]_2$ for a symmetric matrix G

$$G = \begin{pmatrix} 1 & 0 & -1 & g_{14} & g_{15} & g_{16} \\ 0 & 1 - 2g_{14} & -g_{15} & -2 & g_{25} & g_{26} \\ -1 & -g_{15} & 1 - 2g_{16} & -g_{25} - 1 & -g_{26} & 0 \\ g_{14} & -2 & -g_{25} - 1 & 4 & 2 & g_{46} \\ g_{15} & g_{25} & -g_{26} & 2 & 1 - 2g_{46} & 0 \\ g_{16} & g_{26} & 0 & g_{46} & 0 & 0 \end{pmatrix}$$

٢

An example

$$f = 4x_1^4 + 4x_2x_1^3 - 4x_1^3 + x_2^2x_1^2 - 2x_2x_1^2 + x_1^2 + x_2^2 - 2x_2 + 1$$

• Write $f = [x]_2^T G[x]_2$ for a symmetric matrix G

$$G = \begin{pmatrix} 1 & 0 & -1 & g_{14} & g_{15} & 0 \\ 0 & 1 - 2g_{14} & -g_{15} & -2 & g_{25} & 0 \\ -1 & -g_{15} & 1 & -g_{25} - 1 & 0 & 0 \\ g_{14} & -2 & -g_{25} - 1 & 4 & 2 & 0 \\ g_{15} & g_{25} & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

۲

An example

$$f = 4x_1^4 + 4x_2x_1^3 - 4x_1^3 + x_2^2x_1^2 - 2x_2x_1^2 + x_1^2 + x_2^2 - 2x_2 + 1$$

• Write $f = [x]_2^T G[x]_2$ for a symmetric matrix G

$$G = \begin{pmatrix} 1 & 0 & -1 & g_{14} & g_{15} & 0 \\ 0 & 1 - 2g_{14} & -g_{15} & -2 & g_{25} & 0 \\ -1 & -g_{15} & 1 & -g_{25} - 1 & 0 & 0 \\ g_{14} & -2 & -g_{25} - 1 & 4 & 2 & 0 \\ g_{15} & g_{25} & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$(0 \quad 0 \quad 0 \quad 1 \quad -2 \quad 0) \cdot G = 0$$
leads to

$$g_{15}=rac{1}{2}g_{14}, \quad g_{25}=-1$$

An example

$$f = 4x_1^4 + 4x_2x_1^3 - 4x_1^3 + x_2^2x_1^2 - 2x_2x_1^2 + x_1^2 + x_2^2 - 2x_2 + 1$$

• Write $f = [x]_2^T G[x]_2$ for a symmetric matrix G

$$G = \begin{pmatrix} 1 & 0 & -1 & g_{14} & \frac{g_{14}}{2} & 0 \\ 0 & 1 - 2g_{14} & -\frac{g_{14}}{2} & -2 & -1 & 0 \\ -1 & -\frac{g_{14}}{2} & 1 & 0 & 0 & 0 \\ g_{14} & -2 & 0 & 4 & 2 & 0 \\ \frac{g_{14}}{2} & -1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

An example

$$f = 4x_1^4 + 4x_2x_1^3 - 4x_1^3 + x_2^2x_1^2 - 2x_2x_1^2 + x_1^2 + x_2^2 - 2x_2 + 1$$

• Write $f = [x]_2^T G[x]_2$ for a symmetric matrix G

$$G = \begin{pmatrix} 1 & 0 & -1 & g_{14} & \frac{g_{14}}{2} & 0 \\ 0 & 1 - 2g_{14} & -\frac{g_{14}}{2} & -2 & -1 & 0 \\ -1 & -\frac{g_{14}}{2} & 1 & 0 & 0 & 0 \\ g_{14} & -2 & 0 & 4 & 2 & 0 \\ \frac{g_{14}}{2} & -1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$(1 & 0 & 1 & 0 & 0) \cdot G = 0$$

leads to

$$g_{14} = 0$$

SOS An example

$$f = 4x_1^4 + 4x_2x_1^3 - 4x_1^3 + x_2^2x_1^2 - 2x_2x_1^2 + x_1^2 + x_2^2 - 2x_2 + 1$$

• Write $f = [x]_2^T G[x]_2$ for a symmetric matrix G

$$G = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 & -1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 4 & 2 & 0 \\ 0 & -1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

An example

$$f = 4x_1^4 + 4x_2x_1^3 - 4x_1^3 + x_2^2x_1^2 - 2x_2x_1^2 + x_1^2 + x_2^2 - 2x_2 + 1$$

• Write $f = [x]_2^T G[x]_2$ for a symmetric matrix G

$$G = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 & -1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 4 & 2 & 0 \\ 0 & -1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \\ 0 & 1 \\ 2 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ -1 & 0 \\ 0 & 1 \\ 2 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}^{T} \succeq 0$$

Hence

$$f = (-x_1 + 2x_1^2 + x_1x_2)^2 + (-1 + x_2)^2 \in \Sigma^2$$

QM

... meet SDP?

Checking whether a polynomial $f \in \mathbb{R}[x]_{2k}$ is SOS is a feasibility SDP:

$$f \in \Sigma^2 \iff \exists G \succeq 0 : f = [x]_k^T G[x]_k$$

Checking whether a polynomial $f \in \mathbb{R}[x]_{2k}$ is in QM(g) is not an SDP:

$$f \in \mathsf{QM}(g) \iff \exists k_0, \dots, k_m \in \mathbb{N} \exists G_0, \dots, G_m \succeq 0:$$

$$f = [x]_{k_0}^T G_0[x]_{k_0} + [x]_{k_1}^T G_1[x]_{k_1} \cdot g_1 + \dots + [x]_{k_m}^T G_m[x]_{k_m} \cdot g_m$$

(!) there is no control on the degrees k_j

QM

$\ldots \text{ meet SDP}$

Let $\delta_j = \deg(g_j)$.

We define the k-th truncation of QM(g) as follows

$$\begin{aligned} \mathsf{QM}(g)_k &= \Sigma_k^2 + \Sigma_{k-\lfloor \frac{1}{2}\delta_1 \rfloor}^2 \cdot g_1 + \dots + \Sigma_{k-\lfloor \frac{1}{2}\delta_m \rfloor}^2 \cdot g_m \\ &= \left\{ [x]_k^T G_0[x]_k + [x]_{k-\lfloor \frac{1}{2}\delta_1 \rfloor}^T G_1[x]_{k-\lfloor \frac{1}{2}\delta_1 \rfloor} g_1 + \dots \right. \\ &+ [x]_{k-\lfloor \frac{1}{2}\delta_m \rfloor}^T G_m[x]_{k-\lfloor \frac{1}{2}\delta_m \rfloor} g_m \mid G_1, \dots, G_m \succeq 0 \right\} \subseteq \mathbb{R}[x]_{2k} \end{aligned}$$

Then

$$\mathsf{QM}(g) = \bigcup_{k \in \mathbb{N}} \mathsf{QM}(g)_k$$

Testing membership in $QM(g)_k$ is an SDP

Beware,
$$QM(g) \cap \mathbb{R}[x]_{2k} \supseteq QM(g)_k$$

To each POP

$$\begin{array}{ll} \min & f(x) \\ \text{s. t.} & g_i(x) \geq 0, \ i = 1, \dots, m \end{array}$$

we assign the sequence of SDP

max
$$\lambda$$

s. t. $f-\lambda\in \mathsf{QM}(g)_k$ (Lass $_k$)

with optimal values λ_k

Theorem (Lasserre (2001)) Assume S(g) is compact and g contains a ball constraint. Then

 $\lambda_k \nearrow \min_{S(g)} f$

Moment-SOS hierarchy

Using standard Lagrange duality from convex optimization, we can obtain the dual SDP to $(Lass_k)$

$$\begin{array}{ll} \min & L(f) \\ \text{s. t.} & L: \mathbb{R}[x]_{2k} \to \mathbb{R} \text{ linear} \\ & L(\mathsf{QM}(g)_k) \subseteq \mathbb{R}_{\geq 0}, \ L(1) = 1 \end{array}$$
 (Lass'_k)

with optimal values \mathcal{K}_k

Values $y_{\alpha} = L(x^{\alpha})$ are called pseudomoments, and we build a Hankel matrix H(L) indexed by monomials of degree $\leq k$,

$$H(L)_{\alpha,\beta} = L(x^{\alpha+\beta}) = y_{\alpha+\beta}$$

To each constraint g_j we also build the localizing Hankel matrix,

$$H(g_j L)_{\alpha,\beta} = L(x^{\alpha+\beta}g_j)$$

Lemma

 $L \text{ is feasible for } (\mathsf{Lass}'_k) \text{ iff } H(L) \succeq 0, \ H(g_1L) \succeq 0, \ \dots, \ H(g_mL) \succeq 0.$

Moment-SOS hierarchy

Using standard Lagrange duality from convex optimization, we can obtain the dual SDP to $(Lass_k)$

$$\begin{array}{ll} \min & \mathcal{L}(f) \\ \text{s. t.} & \mathcal{L}: \mathbb{R}[x]_{2k} \to \mathbb{R} \text{ linear} \\ & \mathcal{L}(\mathsf{QM}(g)_k) \subseteq \mathbb{R}_{\geq 0}, \ \mathcal{L}(1) = 1 \end{array}$$
 (Lass'_k)

with optimal values \mathcal{K}_k

Lemma

L is feasible for $(Lass'_k)$ iff $H(L) \succeq 0$, $H(g_1L) \succeq 0$, ..., $H(g_mL) \succeq 0$.

We can now rewrite $(Lass'_k)$ to make it look like an SDP:

$$\begin{array}{ll} \min & \operatorname{Tr}(H(L) \ G_f) \\ \text{s. t.} & H(L)_{0,0} = 1 \\ & H(L) \succeq 0, \ H(g_1 L) \succeq 0, \ \dots, \ H(g_m L) \succeq 0 \end{array}$$
 (Lass'_k)

Moment-SOS hierarchy

Using standard Lagrange duality from convex optimization, we can obtain the dual SDP to $(Lass_k)$

$$\begin{array}{ll} \min & \mathcal{L}(f) \\ \text{s. t.} & \mathcal{L}: \mathbb{R}[x]_{2k} \to \mathbb{R} \text{ linear} \\ & \mathcal{L}(\mathsf{QM}(g)_k) \subseteq \mathbb{R}_{\geq 0}, \ \mathcal{L}(1) = 1 \end{array}$$
 (Lass'_k)

with optimal values \mathcal{K}_k

Theorem

The primal-dual pair (Lass_k) and (Lass'_k) satisfy strong duality: $k_k = \lambda_k$ and

 $\mathcal{K}_k \nearrow \min_{S(g)} f$

Extracting optimizers

$$\begin{array}{ll} \min & \operatorname{Tr}(H(L) \ G_f) \\ \text{s. t.} & H(L)_{0,0} = 1 \\ & H(L) \succeq 0, \ H(g_1L) \succeq 0, \ \dots, \ H(g_mL) \succeq 0 \end{array}$$
 (Lass'_k)

Let $\delta = \max \delta_j$, where $\delta_j = \deg(g_j)$.

Theorem (Curto-Fialkow (1991), Henrion-Lasserre (2003)) Assume H(L) is δ -flat (aka rank loop condition), i.e.,

rank $H(L)_k = \operatorname{rank} H(L)_{k-\lceil \frac{1}{2}\delta \rceil}$

Then

- $\lambda_k = \min_{S(g)} f$
- Gelfand-Naimark-Segal (GNS) construction + matrix diagonalization extracts a minimizer x^{*} ∈ S(g) for f

Extracting optimizers

$$\operatorname{rank} H(L)_k = \operatorname{rank} \begin{pmatrix} H(L)_{k-\lceil \frac{1}{2}\delta \rceil} & B \\ B^* & C \end{pmatrix} = \operatorname{rank} H(L)_{k-\lceil \frac{1}{2}\delta \rceil}$$

Let E be the range = column space of H(L)_{k-[¹/₂δ]}. Index columns of H(L)_{k-[¹/₂δ]} by monomials x^α of degree |α| ≤ k - [¹/₂δ].
H(L) induces a (semi-)inner product on E: ⟨α, β⟩ = L(x^{α+β}) = H(L)_{α,β}

• x_i act on E to produce a linear map $X_i : E \to E$.

 X_i : E → E are pairwise commuting symmetric matrices, so can be simultaneously diagonalized,

$$X_{1} = \begin{pmatrix} d_{11}^{1} & & \\ & \ddots & \\ & & d_{ss}^{1} \end{pmatrix}, \qquad \dots, \qquad X_{n} = \begin{pmatrix} d_{11}^{n} & & \\ & \ddots & \\ & & d_{ss}^{n} \end{pmatrix}$$

• Then $x^* = (d_{ii}^1, \dots, d_{ii}^n)$ is a minimizer.

Uses that L was a optimal solution of a step in the Lasserre hierarchy.

Software

Plethora of available software options

- YALMIP (Löfberg) https://yalmip.github.io/
- GloptiPoly 3 (Henrion, Lasserre, Löfberg) https://homepages.laas.fr/henrion/software/gloptipoly3/
- SOSTOOLS (Papachristodoulou, Anderson, Valmorbida, Prajna, Seiler, Parrilo, Peet, Jagt) https://github.com/oxfordcontrol/SOSTOOLS

• Julia

https://julialang.org/

All of these will require a separate SDP solver, such as MOSEK, SeDuMi, COSMO, SDPA, SDPT3, CSDP, SDPNAL+, DSDP, ...

Lasserre hierarchy - Example in Julia

We solve the following POP using Lasserre moment-SOS hierarchy

$$\min x^2y^2 + xy + y^2 - 2y + 2 \quad \text{s. t.} \quad 1 - y^2 - x^2y^2 \ge 0$$

```
using SumOfSquares
using DynamicPolynomials #Enables symbolic variables
using MosekTools
                  #Mosek SDP solver
# Create an SOS optimization model
model = SOSModel(Mosek.Optimizer)
# Define polynomial variables x and y
Qpolvvar x v
# Define a decision variable t
@variable(model, t)
# Define the constraint set
S = @set 1 - y^2 - x^2 * y^2 >= 0
# Add the SOS relaxation constraint:
@constraint(model, x^2 * y^2 + x * y + y^2 - 2 * y + 2 >= t,
          domain = S. maxdegree = 8) #maxdegree controls relaxation
# Set the objective to maximize t (tightest lower bound)
@objective(model, Max, t)
# Solve the SDP relaxation and Print the optimal solution
optimize!(model)
println("Solution:__$(value(t))")
```

Some up-to-date results

- Tightened Lasserre relaxations (Nie, 2013) Lagrangian or Jacobian form
- Finite convergence of Lasserre hierarchy holds generically (Nie, 2012)
- Unless P=NP there does not exist a poly-time algorithm to decide whether the Lasserre hierarchy has finite convergence (Vargas, 2024)

۲	S(g) (compact)	error	certificate	reference
	w/ ball constraint	$O(1/\log(r)^c)$	QM(g)	Nie, Schweighofer 2007
	w/ ball constraint	$O(1/r^c)$	QM(g)	Baldi, Mourrain, Parusinski 2022, 2023
	General	$O(1/r^c)$	$QM(\prod g)$	Schweighofer 2004
	$[-1,1]^n$	O(1/r)	QM(g)	Baldi, Slot 2024
	S^{n-1}	$O(1/r^2)$	QM(g)	Fang, Fawzi 2021
	B^n	$O(1/r^2)$	QM(g)	Slot 2022
	Δ^n	$O(1/r^2)$	QM(∏g)	Slot 2022
	$[-1, 1]^n$	$O(1/r^2)$	QM(∏g)	Laurent, Slot 2023

Table: Asymptotic error of Lasserre's hierarchies

Some up-to-date results

- The opposite Lasserre hierarchy (Lasserre, 2011):
 - a sequence of upper bounds λ^r converging to the minimum

S(g) (compact)	error	measure μ	reference
Geometric assumption	$O(1/\sqrt{r})$	Lebesgue	de Klerk, Laurent, Sun 2017
Convex body	O(1/r)	Lebesgue	de Klerk, Laurent 2018
Semialgebraic	$O(\log^2(r)/r^2)$	Lebesgue	Slot, Laurent 2021
with dense interior,			
convex body			
S^{n-1}	O(1/r)	uniform	Doherty, Wehner 2013
S^{n-1}	$O(1/r^2)$	uniform	de Klerk, Laurent 2022
$[-1, 1]^n$	$O(1/r^2)$	$\prod_i (1-x_i)^{\lambda} dx$	de Klerk, Laurent, Slot 2020, 2022
'Round' convex body	$O(1/r^2)$	Lebesgue	Slot, Laurent 2022
B^n			
Δ^n			

Table: Asymptotic error of Lasserre's hierarchy of upper bounds

Relaxing SOS

LP based

• We say $p \in \mathbb{R}[x]$ is diagonally-dominant-SOS (ddSOS) if

$$p(x) = \sum_{i} \alpha_{i} m_{i}^{2}(x) + \sum_{i,j} \beta_{ij}^{+} (m_{i}(x) + m_{j}(x))^{2} + \sum_{i,j} \beta_{ij}^{-} (m_{i}(x) - m_{j}(x))^{2},$$

for some monomials $m_i(x), m_j(x) \in [x]$ and some $\alpha_i, \beta_{ij}^+, \beta_{ij}^- \in \mathbb{R}_{\geq 0}$.

- $ddSOS_{2d} = polynomials$ of degree $\leq 2d$ that are ddSOS
- A symmetric matrix $A = (a_{ij})$ is diagonally dominant (dd) if

$$a_{ii} \ge \sum_{j \ne i} |a_{ij}|$$
 for all i .

- We denote the set of $n \times n$ dd matrices with DD_n .
- Gershgorin's circle theorem) dd matrices are PsD

Relaxing SOS

LP based

Theorem (Ahmadi–Majumdar (2017)) $p \in \mathbb{R}[x]_{2d}$ is ddSOS iff it admits a representation

 $p(x) = [x]_d^T Q[x]_d$

for a dd matrix Q.

♀ Can test for ddSOS using LP

Indeed, that Q be dd can be imposed, e.g., by a set of linear inequalities

$$egin{aligned} Q_{ii} \geq \sum_{j
eq i} z_{ij}, orall i, \ -z_{ij} \leq Q_{ij} \leq z_{ij}, orall i, j, i
eq j \end{aligned}$$

in variables Q_{ij} and z_{ij} .

Relaxing SOS SOCP based

• We say $p \in \mathbb{R}[x]$ is scaled diagonally-dominant-SOS (sddSOS) if

$$p(x) = \sum_{i} \alpha_{i} m_{i}^{2}(x) + \sum_{i,j} (\hat{\beta}_{ij}^{+} m_{i}(x) + \tilde{\beta}_{ij}^{+} m_{j}(x))^{2} + \sum_{i,j} (\hat{\beta}_{ij}^{-} m_{i}(x) - \tilde{\beta}_{ij}^{-} m_{j}(x))^{2}$$

for some monomials $m_i(x), m_j(x) \in [x]$ and some scalars $\alpha_i, \hat{\beta}^+_{ij}, \tilde{\beta}^+_{ij}, \hat{\beta}^-_{ij}, \tilde{\beta}^-_{ij}$ with $\alpha_i \ge 0$.

- $sddSOS_{2d} = polynomials$ of degree $\leq 2d$ that are sddSOS
- A symmetric matrix A is scaled diagonally dominant (sdd) if there exists a diagonal matrix D, with positive diagonal entries, such that DAD is dd.
- We denote the set of $n \times n$ sdd matrices with SDD_n .
- **Q** Gershgorin's circle theorem implies that sdd matrices are PsD

Relaxing SOS SOCP based

Theorem (Ahmadi–Majumdar (2017)) $p \in \mathbb{R}[x]_{2d}$ is sddSOS iff it admits a representation

 $p(x) = [x]_d^T Q[x]_d$

for an sdd matrix Q.

♀ Can test for ddSOS using SOCP

A section of the cone of 5×5 dd, sdd, PsD matrices. Optimization over these sets can respectively be done by LP, SOCP, and SDP.

Source: Ahmadi-Majumdar

Correlative sparsity

Consider a sparse POP

 $\begin{array}{ll} \min & f(x) \\ \text{s. t.} & g_i(x) \geq 0, \ i=1,\ldots,m \end{array} \tag{sparsePOP}$

Here sparse means few links between the variables.

• e.g.
$$f = x_2x_5 + x_3x_6 - x_2x_3 - x_5x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

• Assign to f the correlative sparsity pattern (csp) graph

- vertices = {1,..., n} corresponding to the *n* variables
- $(i,j) \in$ edges iff $x_i x_j$ appears in f

Intermezzo – chordal graphs

- chord = edge between two nonconsecutive vertices in a cycle
- chordal graph = all cycles of length \geq 4 have at least one chord
- ${f \Im}$ any non-chordal graph can be extended to a chordal one by adding edges
- chordal extension is not unique

maximal

minimal

Intermezzo – chordal graphs

- chord = edge between two nonconsecutive vertices in a cycle
- chordal graph = all cycles of length \geq 4 have at least one chord
- ${f \Im}$ any non-chordal graph can be extended to a chordal one by adding edges
- chordal extension is not unique
- Gavril (1972), Vandenberghe–Andersen (2015))
 The maximal cliques of a chordal graph can be enumerated in linear time in the number of vertices and edges.

Intermezzo - chordal graphs (cont'd)

Theorem (Running intersection Property (RiP) for chordal graphs (Blair–Peyton (1993)) For a chordal graph with maximal cliques I_1, \ldots, I_p :

 $\forall k < p: \quad I_{k+1} \cap (I_1 \cup \cdots \cup I_k) \subseteq I_\ell \quad \text{ for some } \ell \leq k$

possibly after reordering

Sparse SDP matrices

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph *G* with *n* vertices & maximal cliques I_1 , I_2 $Q_G \ge 0$ with nonzero entries corresponding to edges of *G* $\implies Q_G = P_1^T Q_1 P_1 + P_2^T Q_2 P_2$ with $Q_k \ge 0$ indexed by I_k

Victor Magron

Exploiting sparsity in polynomial optimization

Sparse Putinar

Consider (sparsePOP), where

- each g_j depends only on $x(I_k)$ for some k
- $f = \sum_{k} f_{k}$, where f_{k} depends only on $x(I_{k})$
- RiP holds for *I_k*s
- ball constraint holds for each $x(I_k)$

Theorem (Sparse Putinar Positivstellnsatz (Lasserre, 2006)) If f > 0 on S(g), then

$$f = \sum_{k} \sigma_{0k} + \sum_{j \in I_k} \sigma_{jk} g_j,$$

where σ_{jk} is SOS in $x(I_k)$.

Sparse Putinar - the proof

Let $S(g) = \{x \mid g_j(x) \ge 0\}$ be compact and $f = \sum_k f_k$, with f_k depending on $x(I_k)$, and f > 0 on X.

 $S_k = \{x(I_k) \mid g_j(x) \ge 0 \ \forall j \in I_k\}$ = the subset of S(g) which only "sees" variables indexed by I_k

Lemma (Grimm et al., 2007]) If RiP holds for (I_k) , then:

$$f = \sum_k h_k$$

with h_k depending on $x(I_k)$, and $h_k > 0$ on S_k .

- Lemma is proved by induction on the number of subsets I_k
- Sparse Putinar is obtained by applying original Putinar to each h_k

Beare: sparse SOS \neq SOS sparse

$$f = (x_1 + x_2 + x_3)^2$$

= $\underbrace{\frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + 2x_1x_2}_{f_1 \in \mathbb{R}[x_1, x_2]} + \underbrace{\frac{1}{2}x_1^2 + \frac{1}{2}x_3^2 + 2x_1x_3}_{f_2 \in \mathbb{R}[x_1, x_3]} + \underbrace{\frac{1}{2}x_2^2 + \frac{1}{2}x_3^2 + 2x_2x_3}_{f_3 \in \mathbb{R}[x_2, x_3]}$

But

$$f \neq \sigma_1^2 + \sigma_2^2 + \sigma_3^2$$

for $\sigma_1 \in \mathbb{R}[x_1, x_2]$, $\sigma_2 \in \mathbb{R}[x_1, x_3]$, $\sigma_3 \in \mathbb{R}[x_2, x_3]$.

 $(1,2), \{1,3\}, \{2,3\}$ do not satisfy RiP

Beare: sparse SOS \neq SOS sparse

 $x_1^2 - 2x_1x_2 - 2x_1^2x_2 + 3x_2^2 + 2x_1^2x_2^2 - 2x_2x_3 + 18x_2^2x_3 + 6x_3^2 - 54x_2x_3^2 + 142x_2^2x_3^2 + 142x_2^2 + 142x_2^2 + 142x_2^2 + 142x_2^2 + 142x_2^2 + 142$

- is sparse w.r.t. {1,2}, {2,3}
- is not $SOS(x_1, x_2) + SOS(x_2, x_3)$

Outro Take away messages

- Polynomial Optimization (POP) is a powerful framework for solving non-convex problems
- Challenges in POP: Non-convexity, NP-hardness, scalability, and numerical stability
- Lasserre's Hierarchy: A systematic way to approximate POP using Semidefinite Programming (SDP)
- Applications: Used in combinatorial optimization, control theory, quantum information, machine learning, and statistics & finance
- **Software Tools:** Popular options include YALMIP, GloptiPoly, SOSTOOLS, and Julia-based SumOfSquares.jl
- Key Takeaway: Lasserre's SDP-based moment-SOS relaxations provide a tractable way to solve hard polynomial problems.