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About the course

> Aims oflectures: theory and algorithms

won’t repeat much of MAP557

» Aims of TD: modelling abilities in practice
with AMPL, Python and perhaps Julia

» Warning:

‘ some disconnection between lectures and TD is normal ‘

» Exam:1 prefer project (max 2 people) or oral exam
issue with timeslot: I am not free the week 190318-

http://www.lix.polytechnique.fr/“liberti/
teaching/dix/inf580-19
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What is Mathematical Optimization?

Mathematics of solving optimization problems
Formal language: Mathematical Programming (MP)
Sentences: descriptions of optimization problems
Interpreted by solution algorithms (“solvers”)

As expressive as any imperative language

vvVvyVvyyvVyy

Shifts focus from algorithmics to modelling
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MP Formulations

Given functions f,g1,...,9, : Q" > Qand Z C {1,...,n

min  f(z)
Vi<m g(x)
VJ S €y

[P]

m IN

0
7
» More general than it looks:

> () =0 & (¢(x) <OA—¢(x)<0)
> L<z<U <& (L-z<0Axz-U<0)

> f,gi represented by expression DAGs

_— Ly @/’%x
ERELY O

@

Class of all formulations P: MP
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Semantics of MP formulations

» [P] = optimum (or optima) of P
» Given P € MP, there are three possibilities:
[P] exists, P is unbounded, P is infeasible

> Pis feasible iff [ P] exists or is unbounded
otherwise it is infeasible

» P has an optimum iff [ P] exists
otherwise it is infeasible or unbounded
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Example

P = min{x; + 2x2 — log(z1x2) | Jill‘% >1AN0<z; <1Azy €N}

2 4 6 8 10

[P] = (opt(P),val(P)) opt(P) = (1,1) val(P) =3
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Are feasibility and optimality really
different?

» Feasibility prob. g(x) < 0:
can be written as MP min{0 | g(x) < 0}

» Bounded MP min{f(z) | g(x) < 0}:
bisectionon fyin f(z) < fy A g(xz) <0

» Unbounded MP: not equivalent to feasibility
in general, cannot prove unboundedness
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Bisection algorithm

» P=min{f(z) |Vie [ g(x) <0ANz € X}
> Assume global optimum of P is between given
lower/upper bounds

> Reformulate P to a parametrized feasibility problem
Q(fo) ={r e X | f(z) < foAVielg(z) <0}
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Bisection algorithm

1: while lower and upper bounds differ by > ¢ do
2:  let f; be midway between bounds
3:  if Q(fo) is feasible then

4 update upper bound to f,

5:  else

6 update lower bound to f;

7. endif

8:

end while
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Bisection algorithm for MP

I: initialize candidate global optimum %
2: while lower and upper bounds differ by > ¢ do
3: let fy be midway between bounds

4:  if Q(fy) is feasible then
5: find a feasible point 2’
6: if 2/ improves Z then
7: update & to 2
8: update upper bound to f(2)
9: end if
10: else
11: update lower bound to f
12:  endif

13: end while
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Bisection algorithm for MP (formal)

Given:
» global optimal value approximation tolerance ¢ > 0
» lower bound f, upper bound f

» an algorithm .4 which
finds an element in a set or certifies emptyness
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Bisection algorithm for MP (formal)

1: let (gi,f) = (uninitialized, f)
2: while f — [ > cdo

3. letfo=(f+ f)/2

4:  if Q(fy) # @ then

5 (@ f) = AQ)

6: if /' < f then

7: update (i, f) < (2/, f')
8: update f « f

9: end if
10: else

11: update f < fo

12: endif

13: end while
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Subsection 1

MP language

15/392



Entities of a MP formulation

» Sets of indices

» Parameters
problem input, or instance

» Decision variables
will encode the solution after solver execution

» Objective function

» Constraints
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Example

Linear Program (LP) in standard form

» [ ={1,...,n}: rowindices
J={1,...,n}: col.indices

» ccR"bec R"™ Aanm X n matrix

> r cR"

» min, c'z

> Az =b AN x>0
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MP language implementations

v

Humans model with quantifiers (v, >"....)
eg.Viecl Z,je] a;jr; < b

Solvers accept lists of explicit constraints

e.g.4ry + 1.529 + we < 2

Translation from structured to f1at formulation

MP language implementations
AMPL, GAMS, Matlab+YALMIP,
Python+PyOMO/cvx, JuliatJuMP, ...
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AMPL

» AMPL = A Mathematical Programming Language
> Syntax similar to human notation
> Implementation sometimes somewhat buggy
» Commercial & closed-source
» extremely rapid prototyping
> we get free licenses for this course
» free open-source AMPL sub-dialect in GLPK glpsol

» Can also use Python+PyOMO, or Julia+JuMP
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Subsection 2

Solvers
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Solvers

» Solver:
a solution algorithm for a whole subclass of MP

» Take formulation P as input
» Output [P] and possibly other information
» Trade-off between generality and efficiency

21/392



Some subclasses of MP

(i) LiINeAR PROGRAMMING (L.P)
f,g;linear, Z = &

(i1) Mixep-INTEGER LP (MILP)
f,g;linear, Z #+ @

(i11) NoNLINEAR ProGrRaMMING (NLP)
some nonlinearityin f, g;, Z = @
f, gi convex: convex NLP (cNLP)

(iv) Mixep-INTEGER NLP (MINLP)
some nonlinearity in f, g;, Z # @

f, gi convex: convex MINLP (cMINLP)
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And their solvers

(1) LINEAR PROGRAMMING (L.P)
simplex algorithm, interior point method (IPM)
Implementations: CPLEX, GLPK, CLP
(i) Mixep-INTEGER LP (MILP)
cutting plane alg., Branch-and-Bound (BB)
Implementations: CPLEX, GuRoBi
(111)) NoNLINEAR PROGRAMMING (NLP)
IPM, gradient descent (cNLP), spatial BB (sBB)
Implementations: [POPT (cNLP), Baron, Couenne
(iv) Mixep-INTEGER NLP (MINLP)
outer approximation (cMINLP), sBB

Implementations: Bonmin (cMINLP), Baron, Couenne
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Subsection 3

MP systematics

24./392



Types of MP

Continuous variables:

» LP (linear functions)

vV v vV v vV VvV VY

QP (quadratic obj. over affine sets)

QCP (linear obj. over quadratically def’d sets)
QCQP (quadr. obj. over quadr. sets)

cNLP (convex sets, convex obj. fun.)

SOCP (LP over 2nd ord. cone)

SDP (LLP over PSD cone)

COP (LP over copositive cone)

NLP (nonlinear functions)
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Types of MP

Mixed-integer variables:
> IP (integer programming), MIP (mixed-integer programming)
» cxtensions: MILP, MIQ, MIQCP, MIQCQP, cMINLP, MINLP
» BLP (LP over {0,1}")
> BQP (QP over {0,1}")

Some more “exotic” classes:
» MOP (multiple objective functions)
> BLevP (optimization constraints)

» SIP (semi-infinite programming)
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Subsection 4

Some applications
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Some application fields

» Production industry

planning, scheduling, allocation, ...
> Transportation & logistics

facility location, routing, rostering, ...
> Service industry

pricing, strategy, product placement, ...
> Energyindustry

power flow optimization, monitoring smart grids,...
» Machine Learning & Artificial Intelligence

clustering, approximation error minimization
» Biochemistry & medicine

protein structure, blending, tomography, ...
» Mathematics

Kissing number, packing of geometrical objects....
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Easy example

Abankneeds to invest C gazillion dollars, and focuses
on two types of investments: one, imaginatively called
(a), guarantees a 15% return, while the other, riskier
and called, surprise surprise, (b), is set to a 25%. At
least one fourth of the budget C' must be invested in
(a), and the quantity invested in (b) cannot be more
than double the quantity invested in (a). How do we
choose how much to invest in (a) and (b) so that rev-
enue is maximized?
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Easy example

» Parameters:

» budget C

» return on investment on (a): 15%, on (b): 25%
» Decision variables:

» 1, =budget invested in (a)

» 13, = budget invested in (b)
» Objective function: 1.15z, + 1.25
» Constraints:

>z, +x,=C

> z,>C/4

> xp < 2,
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Easy example: remarks

» Missing trivial constraints:
verify that x, = C' + 1, z, = —1 satisfies constraints
forgotz >0

» No numbers in formulations:
replace numbers by parameter symbols

max Calq + CpITp

Ta,T6>0
To+axpy = C
zq > pC
drg —xp, > 0
» Formulation generality:
extend to n investments:
Yx = C
Jj<n
I pC

Vv IV
o

d.’l?l — X9
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Example: monitoring an electrical grid

An electricity distribution company wants to monitor certain
quantities at the lines of its grid by placing measuring devices at
the buses. There are three types of buses: consumer, generator,
and repeater. There are five types of devices:

> A:installed at any bus, and monitors all incident lines

(cost: 0.9MEUR)

» B:installed at consumer and repeater buses, and monitors
at most two incident lines (cost: 0.5MEUR)

» C:installed at generator buses only, and monitors at most

one incident line (cost: 0.3MEUR)

» D:installed at repeater buses only, and monitors at most
one incident line (cost: 0.2MEUR)

» E:installed at consumer buses only, and monitors at most

one incident line (cost: 0.3MEUR).

Provide aleast-cost installation plan for the devices at the buses,
so that all lines are monitored by at least one device.
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Example: the electrical grid
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Example: formulation

» Index sets:

> V:setof busesv

» E:setoflines {u,v}

> A:set of directedlines (u, v)

» VYu € Vlet N, =buses adjacent to u
» D:set of device types

» Dyy: device types covering > 1 line
» Di=D~ Dy

v

Vv eV b, =bustype
» Vde D c¢4=device cost
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Example: formulation

» Decision variables
> VYdeDveV x4 =1
iff device type d installed at bus v
> Vde D, (u,v) €A Ygup =1
iff device type d installed at bus u measures line {u, v}
» allvariables are binary

» Objective function

min E Cq E Lo
z7y

deD veV
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Example: formulation

» Constraints
> device types:

YveV b, =gen
YvoeV b, € {con,rep}
Yo eV b, € {gen,con}
YvoeV b, € {gen,rep}

5
o
o
o

> at most one device type at each bus

YveV Zxdvgl

deD

TBy

TCy

TDvy

Tg, =0
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Example: formulation

» Constraints
> A:every line incident to installed device is monitored

Vue Vv e N, YAauw = TAu

» B:two monitored lines incident to installed device

YueV Z YBuv = 2XBy
VEN,

» C,D,E: one monitored line incident to installed device

VdGDl,UGV Z Yduv = Ldu
vENy

» line is monitored

V{U,U} S Z Yduv + Z Yevu > 1

deD eeD
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Example: solution

all lines monitored, no redundancy, cost 9.2MEUR
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Can we solve MPs?

> “Solve MPs”: is there an algorithm D s.t.:

unbounded P is unbounded
[P] otherwise

infeasible P isinfeasible
VP eMP D(P)=

> Le. does there exist a single, all-powerful solver?
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Subsection 1

Formal systems
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Formal systems (F'S)

> A formal system consists of:

» an alphabet

» aformal grammar
allowing the determination of formulce and sentences

> aset A of axioms (given sentences)

> aset R of inference rules
allowing the derivation of new sentences from old
ones

» A theory T is the smallest set of sentences that is
obtained by recursively applying R to A

[Smullyan, Th. of Formal Systems, 1961]
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Example: PA1

» Theory: 1st order provable sentences about N

» Alphabet: 4+, x, A, V,—,V,3, -, =, 5(-) and variable names

» Peano’s Axioms:

1.

N N

vV (0 # S(z))
Y,y (S(r) = S(y) = 2 =)
Vo (x40 =x)
Va (z x 0=0)

Vo,y (x + S(y) = S(x +v))
Va,y (x x S(y) =z x y+ )

axiom schema over all (k 4 1)-ary ¢: Vy = (y1,. ..

(0(0,y) ANVzo(z,y) = ¢(S(2),y)) = Yzd(z,y)

,yk)

» Inference: see
https://en.wikipedia.org/wiki/List_of_rules_of_inference

e.g. modus ponens (P A\ (P — Q)) — Q

>

e.g.dx € N" Vi (p;(z) < 0) (polynomial MINLP feasibility)
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Example: Reals

» Theory: st order provable sentences about R

> Alphabet: +, x, A, V,V,3,=, <, <,0, 1,variable names
» Axioms: field and order

» Inference: see

https://en.wikipedia.org/wiki/List_of_rules_of_inference
e.g. modus ponens (P N\ (P — Q)) = Q

>
e.g.dz € R" Vi (p;(z) < 0) (polynomial NLP feasibility)
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Relevance of FSs to MP

Givena FS F:

>

>

>

A decision problem is a set P of sentences
Decide if a given sentence f belongs to P

Decidability in formal systems:
P = provable sentences
Proofof f: finite sequence of sentences ending with f; sentences
either axioms or derived from predecessors by inference rules
PA1: decide if sentence f about N has a proof
PA1 contains Jx € Z" Vi p;(x) <0 (polyp)
Reals: decide if sentence f about R has a proof
Reals contains 3z € R™ Vi p;(z) <0  (poly p)
Formal study of MINLP/NLP feasibility
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Decidability, computability, solvability

» Decidability: applies to decision problems
» Computability: applies to function evaluation

» Isthe function f, mapping i to the i-th prime integer,
computable?

» Is the function g, mapping Cantor’s CH to 1 if provable in
ZFC axiom system and to O otherwise, computable?

> Solvability: applies to other problems

E.g. to optimization problems
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Completeness and decidability

» Complete IS F:
for any f € F,either f or —f is provable
otherwise F is incomplete

> :
Jalgorithm D s.t.

D(f) =1 iff f is provable
Vfe ‘7:{ D(f) =0 iff fisnot provable

otherwise F is undecidable
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Example: PA1

» Godel’s Ist incompleteness theorem:
PAlisincomplete

» Turing’s theorem: PAl is undecidable
» = PAlisincomplete and undecidable
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Subsection 2

Godel
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Godel’s 1st incompleteness theorem
> F:any I'S extending PA1

» Thm.| F complete iff inconsistent

> ¢: sentence “¢ not provable in 7~
denoted F \/ ¢; it can be constructed in F; hard part of thm.
» |:“is provable” in PAL; I-: in meta-language
» Assume F is complete: either Fi-¢ or F-—¢
» If 7+ ¢ then F-(F I/ ¢)i.e. F I/ ¢, contradiction
» If Fi-—¢ then F-—(F t/ ¢) i.e. FH(F + ¢)
this implies Fi-¢, i.e. F-(¢ A =¢), F inconsistent
» Assume F is inconsistent: any sentence is provable,
i.e. 7 complete
details: P A =P, hence P and =P, so for any Q we have PV Q,
whence Q (since =P and P V Q), implying PA-P—=Q
> If we want PA1l to be consistent, it must be incomplete
» Warning: 7t/ ¢ = ~(Fr¢) # Fr—¢

50/392



Godel’s encoding

v

Fory € PAL,"¢y" € N
integer which encodes the proof

let me sweep the details under the carpet

M- is an injective map

Inverse: ("¢7) = ¢

¢ is the sentence corresponding to Godel’s number "¢

Encode/decode in N any sentence of a formal system
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Godel’s self-referential sentence ¢

>

>

For integers z, y proof(x,y) :

holds if (x) is a proof in PA1 for the sentence (y)

For integers m, n, p m sost(m, n,p) =

encoding in N of the sentence obtained by replacing in (m) the
(typographical sign of the) free variable symbol (n) with the
integer p

let y be the encoding of the (typographical sign of the)
variable symbol ‘)’ (remark: y = """ € N)

Y(y) = =3z € N proof (z, sost(y, y, y)):

there is no proof in PA1 for the sentence obtained from
replacing, in the sentence (y), every free variable symbol *y’
with the integer y

let g = "(y)", replace y with ¢ in y(y), get o = 7(q)
so ¢ = =3z € N proof(z, sost(q,y, q))
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Godel’s self-referential sentence ¢

¢ = -3z € N proof(z, sost(q, y, q))

> Let = sost(q,y,q)
¢ states: “there is no proof in PA1 for the sentence ¢/”
v defined by replacing the free variable symbol %y’ in (q) with q
» How did we obtain ¢?
¢ obtained by replacing the free variable y in~(y) with q,
re. o =v(q)
> Recall: ¢ = "y(y) ", ie. (q) =7(y)
Soy=¢
> Hence ¢ states “¢ is not provable in PA1”

v
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Subsection 3

Turing
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Turing machines

» Turing Machine (TM): computation model

4
>
4
| 4
>

infinite tape with cells storing finite alphabet letters
head reads/writes/skips i-th cell, moves left/right
states=pr0gram (e.g. if s write 0, move left, change to state ¢)
initial tape content: input, final tape content: output
final state _: termination; & nonterm

» Juniversal TM (UTM) U s.t.

>
>

given the “program” of a TM T" and an input =
U “simulates” T running on

» = The basis of the modern computer

» HALTING PROBLEM (HP) does a given M terminate on input x?

Given TM M & input z,is M (z) = L7

> Turing’s theorem: HP is undecidable
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Turing’s proof (informal)

v

Suppose 3TM “halt” s.t.

halt(7,z) = 1if T'(z) terminates, 0 othw

Then construct function G(z) as follows:

if halt(G,z) = 1 then loop forever else stop

If G(x) terminates then halt(G, z) = 0, contradiction
If G(z) loops forever then halt(G, z) = 1, contradiction
= TM halt cannot exist
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Turing’s proof (formal)

» Enumerate all TMs: (M | i € N)
1 ifM;(0) =L
0 ifM;(0)=02
» Show halt # F for any total computable F'(i, ():
» let G(i) = 0if F(i,i) = 0 or undefined (&) othw
G is partial computable because F'is computable
» let M; be the TM computing G
forany i, M;(i) = Liff G(i) =0
» consider halt(j, j):
> halt(j7j) =1 —>Mj(j) :J_—>G(j) :0—>F(j,j) =0
> halt(j,j) =0 — M;(j) =@ = G(j) =2 = F(j,j) #0
» sohalt(j,j) # F(j,7) forall j
» haltis uncomputable

» Halting function halt(i, () = {

57/392



Turing and Godel

» TM provable with input o € PAL:
while(1) i=0; if "' == i return YES; else i=i+1

provable(a) = Liff PA1 F a
> termination of provable < decidability in PA1
» Godel’s ¢ is not provable = PAl is undecidable

PAl incomplete and undecidable
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Subsection 4

Tarski
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Example: Reals

» Tarski’s theorem: Reals is decidable

> Algorithm:
constructs solution sets (YES) or derives contradictions(NO)
= provides proofs or contradictions for all sentences

» = Realsis complete and also decidable
since every complete theory is decidable (why?)
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Tarski’s theorem

» Algorithm based on quantifier elimination

» Feasible sets of polynomial systems p(z) < 0
have ﬁnitely many connected components

» Each connected component recursively built of
cylinders over points or intervals

extremities: pts., £00, algebraic curves at previous recursion levels

» Insome sense, generalization of Realsin R!
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Dense linear orders
Given a sentence ¢ in DLO
» Reduce to DNF w/clauses 3z; ¢;(x) with ¢; = A ¢;
» Each ¢;; has form s = t or s < t (s, t vars or consts)

» s.tboth constants:

s < t,s = t verified and replaced by 1 or 0
» s, tthe same variable z;:

s < treplaced by 0, s = t replaced by 1
» if sisz; and tisnot:

s = t means “replace x; by t” (eliminate ;)
> remaining case:

gi conj.of s < x;and z; < t:

replace by s < t (eliminate x;)

> ¢;no longer depends on z;, rewrite Jz; ¢; as ¢;
P Repeat over vars. z;, obtain real intervals or contradictions

Quantifier elimination!
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Subsection 5

Completeness and incompleteness
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Decidability and completeness

» PAlisincomplete and undecidable

> Realsis complete and decidable
» Are there FS F that are:

» incomplete and decidable?
» complete and undecidable?
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Incomplete and decidable (trivial)

» Nolnference:
Any FS with <oo axiom schemata and no inference rules

» Only possible proofs: sequences of axioms
» Only provable sentences: axioms
» For any other sentence f: no proof of f or - f

» Trivial decision algorithm:
given f, output YES if f is a finite axiom sequence,
NO otherwise

» Nolnference is incomplete and decidable
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Incomplete and decidable (nontrivial)

>

>
>

ACF: Algebraically Closed Fields (e.g. C)
field axioms + “every polynomial splits” schema
ACF decidable by quantifier elimination
ACF,: ACFUC, =[>_ 1 = 0] (with p prime)
J<p
Vp (prime) C, independent of ACF =
= decidability as in ACF
3 fields of every prime characteristic p
= each ACF,, satisfies C, and negates C, for q # p
In ACF, no proof of C, nor ~C, possible
Decision alg. D(v)) for ACF:
» if ¢ = C), or =C), for some prime p, return NO
» else run quantifier elimination on ¢

ACF is incomplete and decidable
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Complete and undecidable (impossible)

> IS F complete:
Vi € F 3 proof of ) or ¢
» Recall proofs are finite sequences of sentences
> Algorithm D(v):
1. iteratively generate all (countably many) proofs
combine axioms w/inference rules and repeat

2. for each proof, is last sentence = ¢) or = —¢)?
Return 1 or 0 and break; else continue

» D terminates because F is complete
> If FSis complete, then it is decidable
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The two meanings of completeness

» WARNING!!!
“complete” is used in two different ways in logic
1. Godel’s Ist incompleteness theorem

FS F complete if ¢ or —¢ provable V¢

2. Godel’s completeness theorem

> A:set of sentences in F

> M amodel of 7 (domain of var symbols)
> If3M s.t. AM is true, then A consistent
> If A consistent, then IM s.t. AM is true

» Pay attention when reading literature/websites
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Subsection 6

MP solvability
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Polynomial equations in integers

> Consider the feasibility-only MP

min{0 | Vi <m gi(x) =0Az € Z"}

with g;(z) composed by arithmetical expressions (+, —, x, <)

» Rewrite as a Diophantine equation (DE):

JreZ" > (gi(x))* =0

i<m

» Can restrict to Nwlog, i.e. Eq. (1) € PA1
write z; = z; — x; where z;,z; € N"

» Formula of PA1 are generally undecidable
but is the subclass (1) of PA1 decidable or not?

1y
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Hilbert’s 10th problem

» Hilbert:

Given a Diophantine equation with any number of unknowns and

with rational integer coefficients: devise a process which could de-
termine by a finite number of operations whether the equation is

solvable in rational integers

» Davis & Putnam: conjecture DEs are undecidable
> consider set RE of recursively enumerable (r.e.) sets
» R C NisinREif 3TMlisting all and only elements in R
> some RE sets are undecidable, e.g. R = {"¢ | PALF ¢}
r.e.: list all proofs; undecidable: by Godel’s thm
» for each R € RE show 3 polynomial p(r, z) s.t.
reR+< dxeN"p(r,z) =0
» if can prove it, Jundecidable DEs
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Proof strategy

> Strategy: model recursive functions using
polynomial systems

> universal quantifiers removed, but
eqn system involves exponentials

» Matiyasevich: exploits exponential growth of Pell’s
equation solutions to remove exponentials

» = DPRM theorem, implying DE undecidable
Negative answer to Hilbert’s 10th problem
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Structure of the DPRM theorem

» Godel’s proof of his Ist incompleteness thm.
re. sets = DEs with < oo 3 and bounded ¥V quantifiers
» Davis’ normal form
one bounded quantifier suffices: IxoVa < xo3x p(a,z) =0
» (2bnd qnt = 1bnd gnt on pairs) and induction
» Robinson’s idea
get rid of universal quantifier by using exponent vars

» idea: [3zoVa < o3z pa,z) = 0]“ —= 7 [Hx [T pla,z) = O:|

a<zg
> precise encoding needs variables in exponents

» Matyiasevic’s contribution
express c = b® using polynomials
P use Pell’s equationz? — dy? =1
» solutions (2, yn) satisfy xp, + ynVd = (z1 +y1 \/3)”

> L yn grow exponentially with n
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MP is unsolvable

» Consider list of all TMs (M | i € N)

if M;(z) = L at ¢-th execution step, write M} (z) = L
> Yields all sets in RE = (R; | i € N) by dovetailing
at k-th round, perform k-th step of M; (1), (k — 1)-st of M;(2), ..., I-st of M; (k)
=VkeNand/ < kif M{(k—(+1) = |

let R; + R, U{k— ¢+ 1}

Ri={k—0+1]|3keN,e<k(M(k—0+1)=1)}
DPRM theorem: VR € RE, R represented by poly eqn
» Let R; € REs.t. M;isa UTM

= J Universal DE (UDE), say U(r,z) =0
» min{0 | U(r,x) =0A (r,z) € N*T'}:

undecidable (feasibility) MP
> meigl(U (r, z))?: unsolvable (optimization) MP

zENT

v
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Common misconception

“Since Nis contained in R, how is it possible that Reals is
decidable but DE (= Reals N N) is not?”

After all, if a problem contains a hard subproblem, it’s hard
by inclusion, right?
» Can you express DE p(z) = 0 A z € Nin Reals?
» p(z) = 0 belongs to both DE and Reals, OK
» “z € N”in Reals?
<« find poly ¢(z) s.t. Jx q(x) = 0iff x € N
» q(x) =x(x—1)--- (z — a) only good for {0,1,...,a}
q(x) = ] (x — 1) is ccly long, invalid

1Ew

» IMPOSSIBLE!
if it were possible, DE would be decidable, contradiction
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MIQCP is undecidable

» [Jeroslow 1973]: MIQCP:

T

min c'z
Vi<m 2'Qr+a;'x+b > 0 (1)
r € 7"

is undecidable
Proof:
» LetU(r,z) = 0be an UDE
» P(r)=min{u | (1—uw)U(r,z) =0Au € {0,1} Az € Z"}
P(r) describes an undecidable problem
» Linearize every product x;z; by y;; and add y;; = x;z;
until only degree 1 and 2 lefi
» Obtain MIQCP (})
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Some MIQCQPs are decidable

> Ifeach Q; is diagonal PSD, decidable [Witzgall 1963]

» If z are bounded in [z7, 2| N Z", decidable
canexpressz € {[z1], [2F] + 1,..., Y]} by polynomial

vi<m ] (@-i)=0

zfgigw?

turninto poly system in R (in Reals, decidable)
> = (vars) easier than unbounded (for Z)

» [MIQP decision vers.] is decidable
2 Qr+cle < v

Ax > b (in NP |Del Pia et al. 2014])
VieZ z; € Z

A
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NLP is undecidable

We can’t represent unbounded subsets of N by polynomials
But we can if we allow some transcendental functions
r€Z <— sin(mr)=0
» Constrained NLP is undecidable:
min{0 | U(a,z) = 0AVj < n sin(rz;) =0}
» Even with just one nonlinear constraint:
min{0, | (U 2+ Z sin(mz;))* = 0}
ji<n

» Unconstrained NLP is undecidable:

min(U(a, z))? + Z(Sin(mﬁj))2

j<n
» Box-constrained NLP is undecidable

min{(U(a,tanzy,. .., tan xn))2+Z(sin(7r tanx;))? | —

jsn

|
IN
S
IN
|
——
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Some NL.Ps are decidable

> All polynomial NLPs are decidable
by decidability of Reals

» QUADRATIC PROGRAMMING (QP) is decidable over Q

min z'Qr + c'x (P)
Ax > b
» Bricks of the proof
> if QisPSD, [P] € Q
1. removeinaciive constr., active are eqn, use to replace vars

2. work out KKT conditions, they are linear in rational coefficients
3. = solution is rational

» I polytime IPM for solving P [Renegar&Shub 1992]
» unbounded case treated in [Vavasis 1990]
» = [QP decision version] is in NP
= QP is decidable over Q
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Rationals

» [Robinson 1949]:
RT (Ist ord. theory over Q) is undecidable

» [Pheidas 2000]: existential theory of O (ERT) is open
can we decide wether p(z) = 0 has solutions in Q7 Boh!

> [Matyiasevich 1993]:
» equivalence between DEH and ERT

» DEH = [DE restricted to homogeneous [)()I}n()miallﬂ

» but we don’t know whether DEH is decidable

Note that Diophantus solved DE in positive rationals
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Outline

Efficiency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations
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Worst-case algorithmic complexity

» Computational complexity theory:
worst-case time/space taken by an algorithm to complete
> Algorithm A
» e.g.to determine whether a graph G = (V, E) is
connected or not
» input: G; size of input: v = |V| + |E|
» How does the CPU time 7(.A) used by A vary with 7
> 7(A) = O(") for fixed k: polytime
» 7(A) = O(2"): exponential
> polytime + efficient
> exponential < inefficient
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The “O(-)” calculus

Vi,g: N=>N f<pg << dneNVYv>n(f(v)<g())

ViNoN Of) = {¢g:N=N|[3ICeN(g<oCf)}

Vf,g:N=N O(f)<O(g) < fe€O(g) N g¢gO(f)
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Polytime algorithms are “efficient”

» Why are polynomials special?
» Many different variants of Turing Machines (TM)
» Polytime is invariant to all definitions of TM

e.g. TM with coly many tapes: simulate with a single tape running
along diagonals, similarly to dovetailing

» Inpractice, O(v)-O(v?) is an acceptable range
covering most practically useful efficient algorithms

» Many exponential algorithms are also usable in
practice for limited sizes
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Instances and problems

>
>

>

An input to an algorithm A: instance
Collection of all inputs for A: problem

consistent with “set of sentences” from decidability

Remarks
» There are problems which no algorithm can solve
» A problem can be solved by different algorithms

Given prob. P find complexity of best alg. solving P

n<11n{T(A) | Asolves P}

We (generally) don’t know how to search over all algs for P
when we do, we find lower bounds for complexity (usually hard)
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Complexity classes: P, NP

vy

v

Focus on decision problems

If 3 polytime algorithm for P, then P € P

If there is a polytime checkable certificate for all YES
instances of P, then P €¢ NP

No-one knows whether P = NP (we think not)

NP includes problems for which we don’t think a
polytime algorithm exists

€.g. k-CLIQUE, SUBSET-SUM, KNAPSACK, HAMILTONIAN
CYCLE, SAT, ...
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Equivalent definition of NP

» |NP: problems solved by nondeterministic polytime TM

> (=) Assume J polysized certificate for every YES
instance. Nondeterministic polytime algorithm:
concurrently explore all possible polysized
certificates, call verification oracle for each,
determine YES/NO.

» (<) Run nondeterministic polytime algorithm: trace
will look like a tree (branchings at tests, loops
unrolled) with polytime depth. If YES there will be a
terminating polysized sequence of steps from start
to termination, serving as a polysized certificate
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Subsection 1

Some combinatorial problems in NP
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k-CLIQUE

» Instance: (G = (V, E), k)
» Problem: determine whether G has a clique of size k

@ 3

» 1-cLiue? YES (every graph is YES)
2-cLIQUE? YES (every non-empty graph is YES)
» 3-cLiQuEe? YES (triangle {1,2,4} isa certiﬁcate)
certificate can be checked in O(k*) < O(n?) (k fixed)
» 4-cLiQuE? NO
no polytime certificate unless P = NP

\4

89/392



MP formulations for cLIQUE
Variables? Objective? Constraints?
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MP formulations for cLIQUE
Variables? Objective? Constraints?

1 j € k-clique

» Decisionvariables:Vj € V' z; = { 0 otherwise
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MP formulations for cLIQUE
Variables? Objective? Constraints?

1 j € k-clique

» Decisionvariables:Vj € V' z; = { 0 otherwise

> no objective (pure feasibility MP)
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MP formulations for cLIQUE
Variables? Objective? Constraints?
. . . o [ 1 j&k-clique
» Decisionvariables:Vj € V' z; = { 0 otherwise
> no objective (pure feasibility MP)
» Constraints: “if z; = z; = 1, then {7, j} € E”
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MP formulations for cLIQUE
Variables? Objective? Constraints?

1 j € k-clique

» Decisionvariables:Vj € V' z; = { 0 otherwise

> no objective (pure feasibility MP)
» Constraints: “if z; = z; = 1, then {7, j} € E”

1 {i,j}eE

VigjeV mizj= { 0 otherwise

» Issue: nonlinear term in equality constr = nonconvex
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MP formulations for cLIQUE
Variables? Objective? Constraints?

| 2

>
>

v

. . . o [ 1 jé€k-clique
Decision variables:Vj € V' z; = { 0 otherwise
no objective (pure feasibility MP)

Constraints: “if ; = z; = 1, then {4, j} € E”

1 {i,j}eE

VigjeV mizj= { 0 otherwise

Issue: nonlinear term in equality constr = nonconvex
Prop.: C clique in G < C'stable in G
Use constraints for k-stable in G instead:

“if {i,j} € E(G),then z; = 1 or z; = 1 or neither but not both”
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MP formulations for cLIQUE
Variables? Objective? Constraints?

| 2

>
>

v

. . . o [ 1 jé€k-clique
Decision variables:Vj € V' z; = { 0 otherwise
no objective (pure feasibility MP)

Constraints: “if ; = z; = 1, then {4, j} € E”

1 {i,j}eE

VigjeV mizj= { 0 otherwise

Issue: nonlinear term in equality constr = nonconvex
Prop.: C clique in G < C'stable in G
Use constraints for k-stable in G instead:

“if {i,j} € E(G),then z; = 1 or z; = 1 or neither but not both”
YVi#£je VWlth{Z,j} ¢ F i +x; <1

Any other constraint?
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MP formulations for cLIQUE

» Pure feasibility problem:

> T =
eV
xZ

m

{0, 13"
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MP formulations for cLIQUE

» Pure feasibility problem:

Wi, jy ¢ E xi+x; <
> T =
eV

r €
» Max CLIQUE:
max Y. ¥
eV

Vi, j} ¢ E z+x; <

xr €

{0, 13"

1
{0, 13"

91/392



AMPL code for Max CLIQUE

File clique.mod

# clique.mod

param n integer, > 0;

set V := 1..n;

set E within {V,V};

var x{V} binary;

maximize clique_card: sum{j in V} x[j];

subject to notstable{i in V, j in V : i<j and (i,j) not in E}:
x[i] + x[j] <= 1;

File clique.dat
# clique.dat

param n := 5;
set E := (1,2) (1,4) (2,4) (2’5) (3)5);
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AMPL code for Max CLIQUE

File clique.run:

# clique.run

model clique.mod;

data clique.dat;

option solver cplex;

solve;

printf "C =";

for {j in V : x[j]1 > 0} {
printf " %d", j;

}

printf "\n";

Run with “ampl clique.run” on command line

CPLEX 12.8.0.0: optimal integer solution; objective 3
0 MIP simplex iterations

0 branch-and-bound nodes

c=124
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SUBSET-SUM

» Instance: lista = (ay,...,a,) € N*andb e N

» Problem:isthere J C {1,...,n} suchthat }_ a; = 0?
jeJ

> a=(1,1,1,4,5),b =3 YESwith J = {1,2,3}
allb € {0, ..., 12} yield YES instances

> a=(3,6,9,12),b = 20: NO
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MP formulations for SUBSET-suMm

Variables? Objective? Constraints?
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MP formulations for SUBSET-suMm

Variables? Objective? Constraints?
» Pure feasibility problem:

Z ijj = b
ji<n
z € {0,1}"
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AMPL code for suBsET-sum

File subsetsum.mod

# subsetsum.mod

param n integer, > O;

set N := 1..n;

param a{N} integer, >= 0;

param b integer, >= 0;

var x{N} binary;

subject to subsetsum: sum{j in N} a[jl*x[j] = b;

File subsetsum.dat

# subsetsum.dat
param n := 5;
param a :=

1

s O WN
[ I S e N

param b := 3;

Code your own subsetsum. run!
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KNAPSACK

» Instance:c,w € N', K € N
» Problem: find J C {1,...,n}s.t.¢(J) < Kandw(J)is

maximum

> c=(56,7),w=(3,45),K =11

» ¢(J) < 11feasible for Jin @, {j}, {1, 2}
> w(@)=0,w({1,2})=3+4="7,w({j}) <5forj <n
= Jmax = {1,2}

» K = 4:infeasible

» natively expressed as an optimization problem

» notation: ¢(J) = Y c; (similarly for w(J))
JEJ
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MP formulation for KNAPSACK

Variables? Objective? Constraints?
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MP formulation for KNAPSACK

Variables? Objective? Constraints?

max Z’UJ]'.T]'
Jj<n
ey < K
Ji<n

z € {0,1}"
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AMPL. code for KNAPSACK
File knapsack.mod

# knapsack.mod

param n integer, > 0;

set N := 1..n;

param c{N} integer;

param w{N} integer;

param K integer, >= 0;

var x{N} binary;

maximize value: sum{j in N} w[jl*x[j];

subject to knapsack: sum{j in N} c[jl*x[j] <= K;

File knapsack.dat

# knapsack.dat
param n := 3;
param : c W :=
1 53

2 64

3 75 ;
param K := 11;

Code your own knapsack. run!
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HamiLTONIAN CYCLE

» Instance: G = (V, E)
» Problem: does G have a Hamiltonian cycle?

cycle covering everyv € V exactly once

NO YES(cert.la2~>5~>3H4~>1)

® : G) :
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MP formulation for HaAmiLToONIAN CYCLE

Variables? Objective? Constraints?
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MP formulation for HaAmiLToONIAN CYCLE

Variables? Objective? Constraints?

VieV Z Tij

JjEV
{i.j}eE

VieV Z Tij

i€V
{i.j}eE

i€S,jgs
{i,j}eE

WARNING: Eq. (4) is a second order statement!

quantiﬁed over sets

yields exponentially large set of constraints

Vv

2

3)
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AMPL code for HamiLToNIAN CYCLE

File hamiltonian.mod

# hamiltonian.mod

param n integer, > O;

set V default 1..n, ordered;

set E within {V,V};

set A := E union {i in V, j in V : (j,1i) in E};

# index set for nontrivial subsets of V

set PV := 1..2%xn-2;

# nontrivial subsets of V

set S{k in PV} := {i in V: (k div 2#*(ord(i)-1)) mod 2 = 1};

var x{A} binary;

subject to successor{i in V} :
sum{j in V : (i,j) in A} x[i,j] =

subject to predecessor{j in V} :
sum{i in V : (i,j) in A} x[i,j] = 1;

|
-

# breaking non-hamiltonian cycles
subject to breakcycles{k in PV}:
sum{i in S[k], j in V diff S[k]: (i,j) in A} x[i,j] >= 1;

Code your own .dat and . run files!
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SATISFIABILITY (SAT)

> Instance: boolean logic sentence f in CNF
A VG
i<m jeC;

where (; € {z;,z;} forj <n
» Problem: isthere ¢ : x — {0,1}" s.t. ¢(f) = 17

> f=(r1VI2Vas) A(TVa)
r1 = x2 = 1,23 = 0is a YES certificate
> fE (1’1\/xg)/\(3_71\/:7:2)/\(:2’1\/3:2)/\(3:1\/5:2)

¢ || z=(10,1 | 2=(0,0) | z=(1,0) | == (0,1)
false || Co C1 Cs Cy
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MP formulation for saT
Variables? Objective? Constraints?
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MP formulation for sart

Variables? Objective? Constraints?
Algorithm / to generate MP from A \/ ¢;:

i<m jeC;
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MP formulation for sart

Variables? Objective? Constraints?
Algorithm / to generate MP from A \/ ¢;:
i<m jeC;
» Literals ¢; € {z;,7;}: decision variablesin {0, 1}

i z; ifl; =uq;
p(gj) — { 1-— Zj lfgj = .f'j
> ClausesT'; = \/, ., {;: constraints
pry) Y pl) =1

JEC;

» Conjunction: feasibility-only ILP
(AT — Vi<m p(Iy)
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MP formulation for sat

» | Prop.: sarinstance ¢ is YES iff ILP instance p(q) is YES
» Proof: Let L = ({,,...,(,) be asolution of saT. Then

x* = (z1,...,7;) where 2 = 1iff {; = trueand 2 = 0

iff /; = false is a feasible solution of ILP (satisfies
each clause constraint by definition of ).

Conversely: if x solves ILP, then form solution L of
SAT by mapping z; = 1to true and x; = 0 to false,
result follows again by defn of /.
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AMPL code for sar?

Without a numeric encoding of saT instances, we can
only write AMPL code for single instances (i.e. “we are /")

Example: file sat . run (flat formulation) for instance
(1 V ZToVas) A (T V x2)

# sat.run

var x{1..3} binary;

subject to conl: x[1] + (1-x[2]) + x[3] >= 1;
subject to con2: (1-x[1])+ x[2] >= 1;

option solver cplex;

solve;

display x, solve_result;
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Subsection 2

NP-hardness
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NP-Hardness

» Do hard problems exist? Depends on P # NP
> Next best thing: define hardest problem in NP

» Prob. Pis if VQ € NP Jpolytime alg. py:
1. g€ Q— pg(q) € PwithqVYESiff pg(q) YES
2. runbest alg. for P on pg(q), get answer o € {YES,NO}
3. return « as answer for ¢
pq is called a polynomial reduction from Q to P
P hardest since othw, using pg, @ would be “easier than itself”!

» Reduction idea: “model” Q) using “language” of P
» Every problem in NP reduces to sat [Cook 1971]
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Cook’s theorem

Theorem 1:

S of strings is

accepted by some nondeterministic Turing
machine within polynomial time, then S
is P-reducible to {DNF tautologies}.

Boolean decision variables store TM dynamics

Proposition symbols:

i :
Ps,t’ for 1s+isg, 1s<s,t<T.

P; t is true iff tape square number s
B

at step t contains the symbol
i

Qe

true iff at step t the machine is in

state q;.

S for 1s<s,tsT is true iff at

s,t

time t square number s is scanned

by the tape head.

Definition of TM dynamics in CNF

B, asserts that at time t one and

only one square is scanned:

By = (S ¢ vSy,p v rer VSp ) &

§ s, vAs, )]
1<i< j<T it .t

for 1<isr, 1<t<T. Qt is

G:F.,' asserts
that if at time t the machine is in
state q; scanning symbol oj, then at
time t + 1 the machine is in state Qs
where ax is the state given by the

transition function for M.
t

Gy 5 = g (et vas, L vapd v oK)
i,j o= t s,t s,t t+1

1

Description of a dynamical system using a declarative program-
ming language (sat) —what MP is all about!




The MP version of Cook’s theorem

Thm.
Any problem in NP can be polynomially reduced to a MILP

Proof

(Sketch) Model the dynamics of a nondeterministic poly-
time TM using binary variables and constraints involving
sums and products; and then linearize the products of bi-
nary variables by means of Fortet’s inequalities
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Cook’s theorem: sets and params

v

Reduce nondeterministic polytime TM M to MILP
Tuple (Q, X, s, F, §):

states, alphabet, initial, final, transition

Transition relation 6: (Q \ F x £) x (Q x ¥ x {—1,1})
J: state £, symbol j — state ¢/, symbol j, direction d

M polytime: terminates in p(n)

n size of input, p(-) polynomial

Index sets:

states (), characters 3, tape cells I, steps K

K| = O(p(n)), 1] = 2/K|

Parameters:

initial tape string 7; = symbol j € ¥ in cell
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Cook’s theorem: decision vars

> Viel,jeX ke K

tijk = Lifftape cell i contains symbol j at step k

> Viel. ke K

hi, = 1iff head is at tape cell i at step k
> VeQ ke K

g = 1iff M isin state ( at step k
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Cook’s theorem: constraints (informal)

1. Initialization:

L1 initial string 7 on tape at step k = 0
1.2 M ininitial state s at step k = 0
1.3 head initial positiononcelli =0atk =0

2. Execution:

2.1 Vi, k: cell i has exactly one symbol j at step &

2.2 Vi, k: if cell i changes symbol between step k and
k + 1, head must be on cell i at step k&

2.3 Vk: M is in exactly one state

2.4 Vk,i,j € ¥: cell i and symbol j in state k lead to
possible cells, symbol and states as given by &

3.1 M reaches termination at some step k£ < p(n)
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Cook’s theorem: constraints

1. Initialization:

L1Vi =1

1.2 ds,0 = 1
1.3 h070 =1
2. Execution:
2.1 Vi, k Zj L =1
22 Vi, j# 5k <p(n) tijptiyn = hi
2.3 Vk ZZ hir =1
2.4 Vi, b, 5,k
06, ) hik g tije = Do higdht1 Qo1 tivd i v

((€,9),(¢,5",d))e€d
3. Termination:

3.1 Z qfk = 1
k,fer
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Cook’s theorem: conclusion

» MP in previous slide MINLP not MILP

» Fortet’s inequalities for products of binary vars:
Forz,y € {0,1} and z € [0, 1]
z=ayezlczNz<yANz>2rx+y—1

» MILP is feasibility only
» MILP has polynomial size
» = MILP is NP-hard

115/392



Reduction graph

After Cook’s theorem

To prove NP-hardness of a new problem P, pick a known NP-hard
problem @ that “looks similar enough” to P and find a polynomial
reduction pg from @ to P [Karp 1972]

Why it works: suppose P easier than Q, solve Q by calling Alg , o pq,
conclude Q as easy as P, contradiction

116/392



Example of polynomial reduction

» STABLE: given G = (V, E) and k € N, does it contain a stable
set of size k?

» We know /k-cLIQUE is NP-complete, reduce from it

» Given instance (G, k) of cLIQUE consider the complement
graph (computable in polytime)

» Prop.: G hasa clique of size k iff G has a stable set of size k
» p(G) = Gis a polynomial reduction from cLIQUE to
STABLE

» — sTABLE is NP-hard
» STABLE is also in NP

U C Vis astable set iff E(G[U]) = @ (polytime verification)
» = STABLE is NP-complete
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Subsection 3

Complexity of solving MP formulations
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LPisin P

» Khachian’s algorithm (Ellipsoid method)
» Karmarkar’s algorithm
» [PM with crossover

IPM: penalize = > 0 by —3 log(x), polysized sequence of subproblems
crossover: polytime number of simplex pivots get to opt

» No known pivot rule makes simplex alg. polytime!
greedy pivot has exponential complexity on Klee-Minty cube
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(Recall) MILP is NP-hard

» sat NP-hard by Cook’s theorem, reduce from sar

AV 4

i<m jeC;
where /; is either z; or 7; = —z;
» Polynomial reduction p

SAT ‘ Zj i‘j \ A

> E.g. pmaps (21 V 23) A (T2 V x3) to

min{0 | ;1 + 25 > 1 Awz — 20 > 0A 2 € {0,1}°}

» saris YES iff MILP is feasible
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Complexity of Quadratic Programming (QP)

min ' Qr + c'x
Ax > b

» Quadratic obj, linear consts, continuous vars

» Many applications (e.g. portfolio selection)

» If @ has at least one negative eigenvalue, NP-hard
» Decision problem: “is the min. obj. fun. value < 07”
» If @ PSD then objective is convex, problem is in P

KKT conditions become linear system, data in Q = soln in Q
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QP is NP-hard

> By reduction from sar, let o be an instance of sat

» j(o,z) > 1:linear constraints of sat — MILP reduction
» Consider QP subclass

min f(x) = <nx](1 ;)
plo, x) ]51 (1)
0<z<1

» Claim: o is YES iff val({)= opt. obj. fun.val. of (f) = 0
» Proof:
» assume o YES with soln. z*, then z* € {0,1}", hence
f(z*) =0, since f(z) > 0forall z,val(f) =0
» assume o NO, suppose val(t) = 0, then (}) feasible
with soln. 2/, since f(2') = 0then 2’ € {0, 1}, feasible
in saT hence o 1s YES, contradiction
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Box-constrained QP is NP-hard

min  z'Qr + c'z
zE€[zl,2V]

» Add surplus vars v to sar—~MILP constraints:
ployz)y—1—v=0
(denote by Vi < m (a x — b; — v; = 0))
» Consider special QP subclass
min Y (1 —2;)+ Y (a) © — by — v;)? }

i<n i<m
0<xz<1,v>0

» Issue: v not bounded above

> Reduce from 3sar, get < 3 literals per clause
= can consider 0 < v < 2
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cQKP is NP-hard

» CcONTINUOUS QUADRATIC KNAPSACK PROBLEM (CQKP)

min f(z)=2'Qx + c'x

2 ajry =

j<n
¢ e 1]
» Reduction from suBsET-sum
givenlista € Q™ and ~,isthere J C {1,...,n}st. > aj =~?
jeJ
reduce to special QP subclass with f(z) = 3=, z;(1 — z;)

» oisaYESinstance of SUBSET-sum
> Ietx; =1iffj € J, T} = 0 otherwise
P feasible by construction
P fisnon-negative on [0, 1]" and f(z*) = 0: optimum
» o isaNO instance of SUBSET-suM
P suppose opt(cQKP) = z* with f(z*) = 0
P thenz* € {0,1}" because f(z*) =0
P feasibility of z* — J = supp(z*) solves o, contradiction = f(z*) > 0
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QP ona s1mplex 1s NP-hard

min  f(z)=2"Qr + c'x
Z Tr; = 1
Jj<n

Vi<n z; > 0
» Reduce max cLIQUE to QP subclass f(z) = — > x5

{i,j}eE
Motzkin-Straus formulation (MSF):
max{ Z ;% | ij =1Az>0}

{i,j}eE JjeEV

» Theorem [Motzkin& Straus 1964]

Let C be the maximum clique of the instance G = (V, E) of MAX cLIQUE

Ja* € opt (MSF) with f* = f(a*) = 5 — 5505
'y
VieV x"f={ Laee

£
8

J 0 otherwise

> w(G): size of max clique in G
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Proof of the Motzkin-Straus theorem

x* = opt( max Z zixj) st |C = {j € V |z} > 0}] smallest (})
Z] aj=1"

1.|Cis a clique

» Suppose 1,2 € C'but {1,2} ¢ E, then ], z5 > 0, can perturb by
€ € [}, x5, get € = (x + €, 25 — ¢, .. .), feasible w.r.t. simplex

and bounds

» {1,2} ¢ E = x,2, does not appearin f(z) = f(z°) depends
linearly on €; by optimality of 2*, f achieves max for e = 0, in
interior of its range = f(¢) constant

P setting e = —z] or = 3 yields global optima with more zero
components than 2*, against assumption (i), hence
{1,2} € E[C], by relabeling C'is a clique
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Proof of the Motzkin-Straus theorem

r* = opt( max, Z zizj) st.|C = {j € V |z} > 0} smallest (f)
S "V ijer

2.[1C] = w(G)
> square simplex constraint 3 z; = 1, get
Zm?JrQ Z rirj; =1

jeV i<jEV
> by constructionz = Oforj ¢ C' =

Y= @242 3 el = S (@) 42/ =1

jeC i<jeC jec

P y(z) = 1forall feasible z, so f(z) achieves maximum when Zjec(:z:;‘-)2 is
minimum, i.ec. :pj = m forallj € C

> again by simplex constraint

1
2f(z*)=1— (w)2—1—|C\ <1—-—=
P o7 <1 oo
so f(z*) attains max 1 — ﬁ@when|0| =w(@G)=VjelCuz;= w(lG)
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Copositive programming

>

>

v

STQP:minz Qv : Y x5 =1Az >0
NP-hard by Motzkin-Straus

Linearize: X = za '

replace z;2; by X;; and add constraints X;; = z;x;
Deﬁne AeB = tr(ATB) = Zi,j AijBij

write StQP (linearized) objective as min Q e X

LetC ={X | X =z2" Az >0},C = conv(C)
DT = 1@(23'%‘)2 =PeleX=1
STIQP=minQeX :1e X =1AX €
linear obj. = optima attained at extrema of feas. set

= canreplace C by its convex hull C

Cisa completely positive cone
Dual=maxy: Q -yl € C* = {A| Vx>0 (T Az > 0)}
C*isa copositive cone

= Pair of NP-hard ¢cNLPs!
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Two exercises

» Prove that quartic polynomial optimization is
NP-hard; reduce from one of the combinatorial
problems given during the course, and make sure
that at least one monomial of degree four appears
with non-zero coefficient in the MP formulation.

> As above, but for cubic polynomial optimization.
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Portfolio optimization

You, a private investment banker, are seeing a customer.
She tells you “I have 3,450,000 I don’t need in the next three
years. Invest them in low-risk assets so I get at least 2.5% re-
turn per year.”

Model the problem of determining the required portfolio.
Missing data are part of the fun (and of real life).

[Hint: what are the decision variables, objective, constraints? What data are missing?
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Outline

Summary

Distance Geometry
The universal isometric embedding
Dimension reduction
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok’s Naive Algorithm
Isomap for the DGP
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A gemin Distance Geometry

» Heron’s theorem

» Heron lived
around year O

» Hangout at

Alexandria’s library

A= /s(s—a)(s—b)(s—c)

> A =area of triangle
> s=3s(a+b+c)

Useful to measure areas of agricultural land

132/392



Heron’S theorem: PrOOfIM.Edwards.high school student, 2007]
A2a+28+2v=2n=a+B+y=m

2o

r4+ix = wue
r+iy = ve
r+iz = we”

= (r4iz)(r+iy)(r+iz) = (uow)e(@+b+7) =
uvw e!™ = —uvw € R
= Im((r +iz)(r +iy)(r +iz)) =0

=iz tyte) =ayz == /15

B.s=31(a+b+c)=az+y+=

s—a = TH+Y+z—yY—z==
s—b = z4+y+z—zr—2z=y
s—c = xt+ytz—r—y==z
1 b
A=§(Ta+rb+rc)=r$:rs:\/s(s—a)(s—b)(s—c)
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Subsection 1

The universal isometric embedding
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Representing metric spaces n R"

> Given metric space (X, d) with dist. matrix D = (d,),
embed X in a Euclidean space with same dist. matrix

» Consideri-throwd; = (d;1,...,d;,) of D
» Embedi € X byvectord; € R"

» Thm.: (f(X), ) is ametric space with distance
matrix D

>

[Kuratowski 1935]
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Proof

» Consider i, j € X with distance d(i, j) = d;;
» Then

(i, 7)) = 110i=0;lec = max|dip—d;i| < max|di;| = dy

ineq. < above from triangular inequalities in metric space:

dip, <dij +djr N djp < diy A+ dig
= dig —dj, <dij N djk — dig < dij
= ‘dz’k — djk‘ < dl'j

If valid Vi, j then valid for max
» max |d;; — d;i| over k < nis achieved when

ked{i,jt= fdi,j))=di
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Subsection 2

Dimension reduction
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Schoenberg’s theorem

» [L Schoenberg, Remarks to Maurice Fréchet’s article “Sur
la définition axiomatique d’une classe d’espaces distanciés
vectoriellement applicable sur ’espace de Hilbert”,

Ann. Math., 1935]

> Question: Given n x n symmetric matrix D, what are
necessary and sufficient conditions s.t. Disa EDM!
corresponding to n points z1,...,x, € RE with K
minimum?

» Maintheorem:
m.

D = (d;;) is an EDM iff 1 (a2, + d%j - dgj |2 <i,j <n)is

PSD of rank K

> Gave rise to one of the most important results in data
science: Classic Multidimensional Scaling

LEuclidean Distance Matrix
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Gram in function of EDM

» o= (21,...,2,) C RE, written asn x K matrix

» matrix G = zz' = (; - z;) is the Gram matrix of x
Lemma: G = 0 and each M = 0 is a Gram matrix of some x

» Avariant of Schoenberg’s theorem
Relation between EDMs and Gram matrices:

G = —%JD%J (§)

» where D*> = (d7;) and

1 1 1

n n

_1t g _1

J=1,—111T = " " "
n .

1 1 1

n w L=
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Multidimensional scaling (MDS)

> Often get approximate EDMs D from raw data
(dissimilarities, discrepancies, differences)

> G = —3JD?J is an approximate Gram matrix
» Approximate Gram = spectral decomposition PAPT has A # 0

» Let A closest PSD diagonal matrix to A
zero the negative components of A

» r = Pv/Alisan “approximate realization” of D
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Classic MDS: Main result

1. Prove lemma: matrix is Gram iff it is PSD
2. Prove Schoenberg’s theorem: G = —%JDZJ
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Proof of lemma

» Gram C PSD

» zisann x K real matrix
» G =z its Gram matrix
» For each y € R™ we have

T)T

yGy =y(ax )y = (y2)(="y") = (y2)(yz) " = [ly=|3 >0

> = G*>0
» PSD C Gram

» LetG =0benxn
» Spectral decomposition: G = PAPT
(P orthogonal, A > 0 diagonal)
> A > 0= VA exists
> G =PAPT = (PVA)(VA PT) = (PVA)(PVA)
» Letz = Pv/A, then G is the Gram matrix of =
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Schoenberg’s theorem proof (1/2)

» Assume zero centroid WLOG (can translate x as needed)

v

Expand: d?j = |lzs — 25|32 = (w5 — ) (zs — 35) = T2 + Tj75 — 223im5 (%)
> Aim at “inverting” (x) to express z;x; in function of d?j

0 by zero centroid
> Sum (¥) overi: Y. d2, = > T +nwjT; — 2z

1 1g 7 L1
» Similarly for j and divide by n, get:
1 1
=D dy = =) mwitaz (1)
) n -
i<n i<n

1 1
. > di wiwi + Doz (3

j<n j<n

> Sum (}) over j, get:
lem o, 1
- g di]-:n; E T, T; + E T;T; =2 E T;T;
ij i J i

» Divide by n, get:

1 2
D d =23 mw ()
i

47
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Schoenberg’s theorem proof (2/2)

» Rearrange (x), (1), ({) as follows:

e — e e 2
2zix; = X +x5Ty d,L-_,/-
1 2 1
T = — dij—*§ TjTj
n “— n “—
J J
1 1
2
TiT; = = d‘,ﬂffi TiTq
77 n - 1] n -

> Replace LHS of Eq. (6)-(7) in RHS of Eq. (5), get
2:0':c-=lZd + — Zd2 —dQ—EZx:c
1&g n . n . kLEk

> By (xx) replace = Z x;x; with 2 nZ Z d?y get

2wy = iZ(d +a2, = Zd ®)

k

which expresses z;2; in function of D
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Principal Component Analysis (PCA)

» Given an approximate distance matrix D
» find z = MDS(D)

> However, you want 2 = P+v/Ain K dimensions
butrank(A) > K

» Only keep K largest components of A
zero the rest

> Getrealization in desired space
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Example 1/3

Mathematical genealogy skeleton

Kastrer
Euler
i Paff
Thibaut ) amae Laplamz
*ibius
Fourier Poissor

Guvermanm  Dirksen GawB-l

IR * o
WeierstraB Jacobi - Dirichlet

‘ Gerling

Pliag]

Gorban i i
Kovalevslcaya Lipschitz
Klein
Nocther

- T
Livbermars  Furtwiansgler

Hilbert Taussloy-Tooe
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Example 2/3

A partial view

| Euler Thibaut Pfaff  Lagrange Laplace Mobius Gudermann Dirksen Gauss

Kastner 0 T T 9 8 2 2 2 2
Euler 11 9 1 3 10 12 12 8
Thibaut 2 10 10 3 1 1 3
Pfaff 8 8 1 3 3 1
Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Mobius 4 4 2
Gudermann 2 4
Dirksen 4

0 10 1 1 9 8 2 2 2 2

10 0 11 9 1 3 10 12 12 8

1 11 0 2 10 10 3 1 1 3

1 9 2 0 8 8 1 3 3 1

D= 9 1 10 8 0 2 9 11 11 7

o 8 3 10 8 2 0 9 11 11 7

2 10 3 1 9 9 0 4 4 2

2 12 1 3 11 11 4 0 2 4

2 12 1 3 11 11 4 2 0 4

2 8 3 1 7 7 2 4 4 0
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Example 3/3

In2D

ccccc

Mossiu Lagrang®
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Subsection 3

Distance geometry problem
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The Distance Geometry Problem (DGP)

Given K € Nand G = (V,E,d) withd : E — R,
findz : V — RN st

V{i,j} € E |z — ;|5 = d

Given a weighted graph , draw it so edges are drawn as

segments with lengths = weights C\.\ \7 ‘\?
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Some applications

clock synchronization (K = 1)
sensor network localization (K = 2)
molecular structure from distance data (K = 3)

autonomous underwater vehicles (K = 3)

vvyyVvyvyy

distance matrix completion (whatever K)

> finding graph embeddings
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Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial
measurements of their time differences

> K =1

> V:timestamps

» {u,v} € Eif known time difference between u, v
» d: values of the time differences

Used in time synchronization of distributed networks
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Clock synchronization

5 [Atomic clock (S) }

16:27

A C S B

16:21 16:23 16:25 16:27 16:29 16:31

| | | | | | | | | | | |
[ I [ [ [ I I [ I [ I |

16:20 16:22 16:24 16:26 16:28 16:30

153/392



Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to
locate a set of geographically distributed objects using

measurements of the distances between some object pairs
> K =2
» V:(mobile) sensors

» {u,v} € Eiff distance between u, v is measured
» d: distance values

Used whenever GPS not viable (e.g. underwater)

dyv X battery consumption in P2P communication betw. u, v
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Sensor network localization

155/392



Molecular structure from distance data
From [Liberti et al., SIAM Rev., 2014]

> K=3
> V:atoms
» {u,v} € Fiff distance between u, v is known

» d: distance values

Used whenever X-ray crystallography does not apply (e.g. quuid)

Covalent bond lengths and angles known precisely

Distances < 5.5 measured approximately by NMR
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Graph embeddings

Relational knowledge best represented by graphs
We have fast algorithms for clustering vectors

Task: represent a graph in R”

vvyyvyy

“Graph embeddings” and “distance geometry™:
almost synonyms

v

Used in Natural Language Processing (NLP)

obtain “word vectors” & “concept vectors”

» Project: create a graph-of-words from a sentence,
enrich it with semantic distances, then use MP
formulations for DG to embed the graphina
low-dimensional space
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Complexity

» DGP,withd: F — Q, isin NP

>

vVvy VYVYY

if instance YES J realization x € R™*!
if some component z; ¢ Q translate z so z; € Q
consider some other z;

let ¢ = |Sh pathp 11— ]| - Z du'u € Q
{u,v}ep
thenz; =2, £( — z; €Q

= verification of

Wi, jt € B oy — x5 = dyj

in polytime

» DGPj may not be in NP for K > 1

don’t know how to verify ||z; — 2|2 = d;; for z ¢ Q¥
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Hardness

ParTITION is NP-hard

Givena = (a1,...,a,) e N", ITC{1l,...;n}st. > a; => a;?
i€l igl

» Reduce PartITION to DGP;

» a — cycle C
V(C) = {1,....n}, B(C) = {{1,2},... . {n,1}}
» Fori < nlet di71'+1 = a;
dn,n—H =dp = ap

>
2 4 3
1 N
1 ) 4
3 e 3
5

[Saxe, 1979] 159/392



PaArTITION 1s YES = DGP; is YES

» Given: ] C {1,...,n}st.> a; =) qa

icl idl
» Construct: realization z of C' in R
1. r1 = 0 // start
2. induction step: suppose z; known
ifiel
let Tiv1 = T; + di,i-i-l // go right
else
let Tit1 = Tj — di,i—i—l // go left

> Correctness proof: by the same induction
but careful when i = n: have to show x,, ., = x,
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PaArTITION 1s YES = DGP; is YES

(D)= (@1 —w) = Y diir1=

il icl
SN W
i€l igl
=> diig1 = > (zi—mip1) = (2)
igl igl

1) =(2)= Z(%‘H —x;) = Z(ﬂfi —Tip1) = Z($i+1 —x;)

iel igl i<n

= (Tpg1 — ) + (T, — Tp—1) + -+ (X3 —22) + (T2 —21) =

= $n+1

T
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PARrTITION 1s NO = DGP;1s NO

>
>

By contradiction: suppose DGP; is YES, z realization of C'

F={{u,v} € BE(C)|zy <z},
E(C)NF ={{u,v} € E(C) | 2y > zy}

Trace x4, ..., z,: follow edges in F' (—) and in E(C) \ F (+)

Z (v — zu) = Z (zu — 2v)
Z4 1 s 3 T2 {u,v}eF {u,v}¢F
_ _ _ Z [Ty — o] = Z [y — 2]
3 2 1 0 1 2 3 {u,v}eF {u,v}¢F
dyy = > duw
{u,v}EF {u,v}gF

LetJ={i<n|{i,i+1} e FYU{n|{n 1} € F}
= Zai:Zai

So J solves Partition instance, contradiction
= DGP is NP-hard, DGP; is NP-complete
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Number of solutions

vV v v.v Yy

(G, K): DGP instance

X C RE™; et of solutions

Congruence: composition of translations, rotations, reflections
C = set of congruences in R¥

x ~ymeans dp € C (y = px):
distancesin x are preserved iny through p

=if | X| > 0,|X]| = 2%
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Number of solutions modulo congruences

» Congruence is an equivalence relation ~ on X
(reflexive, symmetric, transitive)

> Partitions X into equivalence classes
> X = X/~:sets of representatives of equivalence classes

» Focuson|X|ratherthan |X]|
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Rigidity, flexibility and | X|

» infeasible < | X| =0

» rigid graph < [ X| <X,

> globallyrigid graph < | X| =1

> flexible graph < | X | = 2%

> |X| = Ry: impossible by Milnor’s theorem

165/392



Milnor’s theorem implies | X | # R,

> System S of polynomial equations of degree 2
Vi<m pi(x1,...,2p5) =0

» Let X be the set of z € R™X satisfying S

» Number of connected components of X is O(3"K)

[Milnor 1964]

» Assume |X|is countable; then G cannot be flexible
= each incongruent rlz is in a separate component
= by Milnor’s theorem, there’s finitely many of them
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Examples

vi=1{1,2,3}

E' = {{u,v} | u < v}

dl=1

V2 =viu{4}

E? = E'U {{1,4},{2,4}}

&2 = 1/\d14=\/§

V3=V2

E3 = {{u,u+1}u <3}U{1,4}
dt=1

x1

x1

Za

T3

T3

x2

p congruence in R?2
= px valid realization
[X|=1

p reflects z4 wrt z1, 72
= pz valid realization
X]=2 (49

p rotates 723, T1za by 0
= pz valid realization
|X| is uncountable

U, L,7,2,..)
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Subsection 4

Distance geometry in MP

168/392



DGP formulations and methods

System of equations

Unconstrained global optimization (GO)
Constrained global optimization

SDP relaxations and their properties
Diagonal dominance

Concentration of measure in SDP

Isomap for DGP

vVvyVvyvVvyvYyYyvyy

169/392



System of quadratic equations

V{u,v} € E ||z — 2||* = d2, )

Computationally: useless
reformulate using slacks:

Hlln{ Z S,?w | V{U,U} S ||flfu_$v|l2 = div_}'suv} (9)

{u,v}eFE
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Unconstrained Global Optimization

min Y7 (o, — | - &) (10)

{uv}eFE

Globally optimal obj. fun. value of (10) is O iff z solves (8)

» GO solvers from 10 years ago
» randomly generated protein data: < 50 atoms

» cubic crystallographic grids: < 64 atoms
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Constrained global optimization

> min, Y. |||lzu — z,||* — d2,| exactly reformulates (8)
{uv}er

» Relax objective f to concave part, remove constant term,
rewrite min — f as max f

» Reformulate convex part of obj. fun. to convex constraints

» Exact reformulation

X u - Lo 2
ma. > o — ol } a

{uv}eE
V{u,0} € B ||wy — |]? < d2,

Theorem (Activity)

At a glob. opt. z* of a YES instance, all constraints of (11) are active
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Linearization

= Vi, j} € E a3 + llall; — 22 - ; = d

- \V/{Z,j}EE Xii—Fij—QXz‘j = dg]
X = z27
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Relaxation

X = zaf
= X—zz" = 0
(relax) = X—zz" = 0
- IK l’T
Schur(X,z) = ( X ) = 0

If = does not appear elsewhere = get rid of it (e.g. choose z = 0):

replace Schur(X,z) = 0by X > 0

174./392



SDP relaxation

min ' e X
V{Z,j} el X+ ij —2X;; = d?]
X =0

How do we choose F?

FeX =Tr(FTX)
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Some possible objective functions

» For protein conformation:
min Z (X” =+ ij — 2Xl)
{i,j}eE

With == changed to 2 iIl COIlStI‘aiIltS (or max and <)
“push-and-pull”the realization

» [Ye, 2003], application to wireless sensors localization
min Tr(X)

Tr(X) =Tr(P7IAP) = Tr(P7IPA) = Tr(A) = >, A
= hope to minimize rank

» How about “just random™?
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How do you choose?

Jfor want of some better criterion...

TEST!

> Download protein files from Protein Data Bank (PDB)

they contain atom realizations

» Mimick a Nuclear Magnetic Resonance experiment

Keep only pairwise distances < 5.5

» Tryand reconstruct the protein shape from those
Weighted graphs

» Quality evaluation of results:

> LDE(z) = {J.E}@?gE\ i — 25| — dij |
> MDE(z) = i X | lles — @l — dij |
{i,j}€FE
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Empirical choice

» Yevery fast but often imprecise

» Random g()()d but nondeterministic

» Push-and-Pull: can relax X;; + X;; — 2X;; = d; to
Xii + X5 —2X;; > d?j

easier to satisfy feasibility, useful later on

» leuristic: add +1Tr(X) to objective, withn <1

might help minimize solution rank

> min Y (Xyu+ Xj; —2X5) +nTr(X)

{i,7}€E
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Efﬁciency vs. mathematical rigor

» Today we wish to solve problems with very large sizes
» We need methods that work computationally

» But we’d also like methods that are mathematically sound
exactness, guumnteed approximation mtios, elc

» Unfortunately, there is no correlation beteween the efficiency
of amethodology and the ease of proving approximation
guarantees

» Inindustry: we care FIRST about the empirical efficiency, and
NEXT about the proofs

» Inacademia: often the opposite, but mostly both

» In practice, we use inductive/abductive inference in order to
guide us in looking for an efficient algorithm
sometimes these inferences can lead to approximation proofs in
probability
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Retrieving realizations in R%

» SDP relaxation yields n x n PSD matrix X*

» Weneedn x K realization matrix x*

» Recall PSD < Gram

> Apply PCA to X*, keep K largest comps, get 2’

» Thisyields solutions with errors

» Use 2’ as starting pt for local NLP solver
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When SDP solvers hit their size limit

» SDP solver: technological bottleneck

» Can we use an LP solver instead?

» Diagonally Dominant (DD) matrices are PSD

» Not vice versa: inner approximate PSD cone Y = 0

» Idea by AA. Ahmadi [Ahmadi & Hall 2015]
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Diagonally dominant matrices

n x nmatrix X is DD if

JF#i

1 0.1 —0.2 0 0.04 0

0.1 1 —-0.05 0.1 0 0

Eg —-0.2  —0.05 1 0.1 0.01 0
0 0.1 0.1 1 0.2 0.3
0.04 0 0.01 0.2 1 —0.3

0 0 0 0.3 -0.3 1
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DD Linearization

Vi<n Xi> ) |Xyl (%)
J#i
» linearize | - | by additional matrix var T
= write | X| asT
» = (x) becomes
Xii > ZTij
JFi

» add “sandwich” constraints -7 < X < T
» Can easily prove (x) by sandwich constraints:

Xy 2 ZTijZZXij
I A

Xy 2 ZTijZZ_Xij

J#i J#i
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DD Programming (DDP)

V{Z,j}EE Xii+ij_2Xij = d?]
X is DD

Vi<n T; < Xu
N < LTy <
J#
-T<X < T
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The issue with inner approximations

DDP could be infeasible!
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Exploit push-and-pull

» Enlarge the feasible region
» From

Vi, j} € B X+ Xj; —2X;; = d
» Use “push” objective min > X;; + X;; — 2X;;
ijeE

» Relaxto

V{i,j} € B Xi+ Xj; —2X;; > d};
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Hope to achieve LP feasibility
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DDP formulation for the DGP

{i,j}€E
V{Z,]} ck Xii‘i‘ij—ZXij >
Vi<n Z Tij <
&
-T<X <
T >

Solve, then retrieve solution in R with PCA
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Subsection 5

DGP cones
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Cones

» Set C'is a cone if:
VA, BeC,a,6>0 aA+pBeC
» If Cisacone,the dual coneis
C*={y|Veel (x,y) >0}

all vectors making acute angles with elements of C
» IfC C S, (setn x n symmetric matrices)

C*={Y |VX €C (Y o X >0)}

» An x nmatrix cone C is finitely generated by X C R" if
VX eCBeRY X = gaa”
zeX
» PSD (resp. DD) are cones of PSD (resp. DD) matrices: prove it
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Representations of DD

» Consider E;;, E; E;in§,

W5
Deﬁneé'g—{E”\z<n} 81—{E li<jhE=&EU&

» FE;; =diag(0,...,0,1;,0,...,0)
> E: has minor ( i” i” >, 0 elsewhere
ji g

Li —1ij

> B has minor < 1 1

) , 0 elsewhere

Jt Jj

> Thm. ID)ID) = cone gel’lel'ated by g |Barker & Carlson 1975]
Pf. Rays in £ are extreme, all DD matrices generated by £

» Cor. DD finitely gen. by
XDD:{el|i<n}U{(eliej)\j<€§n}
Pf. Verify E;; = eje; EjE (eitej)(e; £ ej)T, where ¢; is
the i-th std basis element of R™
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Finitely generated dual cone theorem
Thm. If C finitely gen. by X, then

C*={Y |Vr e X (Yexz' >0)}

> O) LetYst.Vee X (Yexz' >0)
> VX eC, X =3 6z (byfin. gen)
reX
» henceY o X :EZ(L, 6, Y exz’ >0 (by defn. of Y)
» whenceY e C* (by defn. of C*)
» (C)Suppose Z € C*~{Y |Vz € X (Y exz' >0)}
» then3X' C Xst.Vx € X' (Zexx' <0)

> consideranyY = ) Sgxx| € Cwithd >0
TEX!
» thenZeY = Y 6, Zexx' <0soZ g C*
reX’
» contradiction=C*={Y |Vz € X (Yezx' >0)}
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Dual cone constraints

Remark: X e vv" = v Xv
Use finitely generated dual cone theorem
Decision variable matrix X

vvyyvyy

Constraints:
YoeX v Xv>0

» Cor.DD* D PSD
Pf. X € PSDiff Vv € R™ vXv > 0, so certainly valid Vo € X

> If |X| polysized, get compact formulation

otherwise use column generation

> |App| = [E] = O(n?)
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Dual cone DDP formulation for DGP

{i.j}eE
V{i,j}EE Xii—f—ij—QXi-
Yv € App vl Xo

> v’ Xv > 0forv € App equivalent to:

V{i,j} ¢ £ Xu+ X;; —2X;;

Note we went back to equality “pull” constraints (why?)

AV

AVARAVARAYS

QuantifierV{i, j} & E shouldbeVi < j butwe already have those constraintsV{i,j} € E
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Properties

» SDP relaxation of original problem

» DualDDP relaxation of SDP

hence also of original problem
> Yields extremely tight obj fun bounds w.r.t. SDP

» Solutions may have large negative rank

in some applications, retrieving feasible solutions may be difficult
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Subsection 6

Barvinok’s Naive Algorithm
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Concentration of measure

From [Barvinok, 1997]

The value of a “well behaved” function at a random
point of a “big” probability space X is “very close”
to the mean value of the function.

and
In a sense, measure concentration can be consid-

ered as an extension of the law of large numbers.
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Concentration of measure

Given Lipschitz function f : X — Rs.t.

Ve,ye X |f(z) = f(y)| < Lz —yll

for some L > 0, there is concentration of measure if 3
constants ¢, C' s.t.

Ve >0 Pu(|f(z) —E(f)] >e) < ce /P

where E(-) is w.r.t. given Borel measure 1, over X

= “discrepancy from mean is unlikely”
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Barvinok’s theorem

» for each k < m, manifolds X, = {z € R" | 2T Q*x = a;}
where m < poly(n) )
» feasibility problem F = [, _,, Xk # 2]
» SDP relaxation Yk < m (Q* ¢ X = a;) A X = 0 withsoln. X
> Algorithm: T + factor(X); y~N"™(0,1); '+ Ty
Then:

» Jc > 0,n9 € NsuchthatVn > ng

Prob (Vk <m dist(z’, X)) < cy/ ||)_(|21nn> > 0.9.
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Algorithmic application

> 2’ is “close” to each &j;: try local descent from z'

» = Feasible QP solution from an SDP relaxation
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Elements of Barvinok’s formula

Prob <Vk <m dist(z, Xy) < ¢4/ HXHﬂnn) > 0.9.

» /|| X||2 arises from T (a factor of X)
» +/Inn ensures concentration of measure

» 0.9 follows by adjusting parameter values in “union bound”
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Application to the DGP

> Vi jte B Xy ={x]llzi -l = dij}
» DGP can be writtenas (] Xj;

{i,j}eE
soln. X

» Difference with Barvinok: v € RE", rk(X) < K
» IDEA: sample y ~ N™%(0, \/—%)

» Thm. Barvinok’s theorem works in rank K
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Proof structure

» Show that, on average, Vk < m (Ty) " Q*(Ty) = QK o X = qy,
» compute multivariate integrals

» bilinear terms disappear because y normally distributed
» decompose multivariate int. to a sum of univariate int.

» Exploit concentration of measure to show errors happen rarely

» acouple of technical lemmata yielding bounds
» = bound Gaussian measure 1 of e-neighbourhoods of

A7 ={y e RN | Q'(Ty) < Q"o X}
Af ={y eRV" | Q(Ty) > Q"o X}
Ai={y e RV | Q(Ty) = Q" e X}.
use “union bound” for measure of A; (¢) N A (¢)
show A; () N A (e) = Ai(e)
use “union bound” to measure intersections of 4;(¢)
appropriate values for some parameters = result

vvyyvy
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The heuristic

1. Solve SDP relaxation of DGP, get soln. X
use DDP+LP if SDP+IPM too slow

2. a. T = factor(X)

b. y ~ N™E(0, \/%)
c.o' =Ty
3. Use 2’ as starting point for alocal NLP solver on
formulation
. 2
min Y (o -y~ &)

{i,j}€E

and return improved solution x
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Subsection 7

Isomap for the DGP
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Isomap for DG

1. Let D’ be the (square) weighted adjacency matrix of G
2. Complete D' to approximate EDM D
3. Perform PCA on D given K dimensions

(@) Let B=—(1/2)JDJ,where J=1— (1/n)11"
(b) Find eigenvalivects A, P so B=PTAP
(c) Keep < K largest nonneg. eigenv. of A to get A

(d) Letz=PTVA

Vary Step 2 to generate Isomap heuristics
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Why it works

> G represented by weighted partial adj. matrix D’
» don’t know full EDM, approximate to D
> = get B, not generally Gram

» < K largest nonnegative eigenvalues
= “closest PSD matrix” B’ to B having rank < K

» Factor it to get & € RX"
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Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm on G

(classic Isomap)

B. Find a spanning tree (SPT) of G and compute a random
realization in 7 € R¥ use its sqtDM

C. Solve a push-and-pull SDP/DDP/DualDDP to find a realization
z € R", use its sqEkDM

Post-processing: Use & as starting point for local NLP solver
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Subsection 8

Summary
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Matrix reformulations

Quadratic nonconvex too difficult?
Solve SDP relaxation

SDP relaxation too large?

Solve DDP approximation

vvyyVvyyvYyy

Get n x n matrix solution, need K x n!
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Solution rank reduction methods

» Multidimensional Scaling (MDS)

» Principal Component Analysis (PCA)
» Barvinok’s naive algorithm (BNA)

> Isomap

All provide good starting points for local NLP descent

Can also use them for general dimensionality reduction
n vectors in R” — n vectors in R¥
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Outline

Random projections in LP
Random projection theory
Projecting feasibility
Projecting optimality
Solution retrieval
Application to quantile regression
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The gist of random projections

» Let Abe am x ndata matrix (columns in R, m > 1)
» T short & fat, normally sampled componentwise

~—_———
N———— TA
r A

» Then Vi < j ||Az - Aj”g ~ ||T‘z4Z - TAJHQ “Wahp”
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wahp

“wahp” = “with arbitrarily high probability”
the probability of £, (depending on some parameter /)
approaches 1 “exponentially fast” as k increases

P(E;) ~1—0(e™"
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Johnson-Lindenstrauss Lemma (JL.1.)

Thm.
Given A C R™ with |[A] = nande > Othereisk ~ O(% Inn)
and a k x m matrix T s.t.

Ve,ye A (I—¢)lz—yll < [[Tz—-Ty| < (1+e)llz—yl

If k x m matrix T"is sampled componentwise from N (0, ﬁ), then

P(A and T'A approximately congruent) > %

(nontrivial) — result follows by probabilistic method

Note that 1/~/k is the standard deviation, not the variance
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In practice

> P(Aand TA approximately congruent) > 1
> re-sampling sufficiently many times gives wahp

» Empirically, sample 7" few times (once will do)
Er(|Tz —Tyl) = [l — yl|
probability of error decreases wahp

Surprising fact:

ks independent of the 01‘iginal number of dimensions m
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Clustering Google images

L i

Example LabVIEW Bad Meme

seashETTICO0E

Ravou coe.

|L. & Lavor, 2017]

217/392



Clustering without random projections

VHimg = Map[Flatten[ImageDatal[#]] &, Himg];

04H={£ﬁi':;ﬁﬂ- ----- o sy, SN, JTHIT,

e

'.. - -

)

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

Too slow!
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Clustering with random projections

Get["Projection.m"];

VKimg = JohnsonLindenstrauss[VHimg, 0.1];

VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]
out[341= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

From 0.405s CPU time to 0.00232s
Same clustering
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Proj ecting formulations

> Given:
» F(p,x): MP formulation with params p & vars x
» sol(F): solution of F

» ¢:formulation class (e.g. LP, NLP, MILP, MINLP)
» Rrnd proj operator if R, F' commute:

RF(p,x) = F R(p, )
» “Thm.”:VF € € sol(F) ~ sol(RF) wahp

» Low distortion result holds for a formulation

> Today we see this for € = LP
» I'm working on QP
we have theoretical results (no tests) for SDP/SOCP
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Subsection 1

Random projection theory
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The shape of a set of points

> Lose dimensions butnottoo much accuracy
Given Ay,..., A, e R™find k < mand A,... Al € RFs.t.
Aand A’ “have almost the same shape”

» What is the shape of a set of points?
~00

congruence < same shape: || A; — Aj|| = || A; — Al

—>

» Approximate congruence = small distortion:
A, A’ have almost the same shape if

Vi<j<n (I-g)lldi—4;ll <[4 =45l < (1+e)llAi — 4

for some small e > 0

Assume norms are all Euclidean
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Losing dimensions = “projection”

In the plane, hopeless
] /// line 2
» o
linel ~T7-- .."*-—_-—__.‘.‘_"_».;d__/_/_
LA
"/../
In 3D: no better
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Recall the JLL

Thm.
Given A C R™ with |[A] = nande > 0 thereisk ~ O(% Inn)
and a k x m matrix T s.t.

Ve,ye A (1—¢)llz—yll < [[Tz-Ty|| < (1+e)llz—yl
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Sketch of a JLL proof by pictures

Thm

Let T be a k x m random projector

sampled from N (0, \/LE)’ andu € R™

st.|[ull = 1. Then E(||Tul|?) = [|u|?
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Surface area of a slice of hypersphere

2,n.m/2rm—1
[(m/2)

Lateral surface of infinitesimally high hypercylinder

Sm(r) = Sm = Sm(1)

S, (t) = Sp_1(1 — 7)™ dt
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Area of polar caps

1 1
APC = / dS,,(s) = QSm_l/ (1-— s%mT_st
t t

1

l+x<e"forallz and [ f(s)ds < jof(s)dsforf >0
t

o0 m—2 2 2 m— _2 2
:>Apc§25m_1/t e~ T s = \/fn__; gerfc( mn t) =0(e™)

» Polar capsarea
decreases wahp as
m — o0

» Concentration of
measure
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Rnd proj preserve norms on avg
Thm.

N(0, \/LE)’ and u € R™ s.t. [|ul| = 1. Then E(||Tu|]?) = 1

LetT be a k x mrectangular matrix with each component sampled from

Proof

> Vi < kletvi = Z T;‘ju]'
Jjsn

> E(vi) =E ( > Tij“j) = 2 E(Tij)u; =0

i<m i<m
> Var(v;) = 3 Var(Tyu;) = 3 Var(Tyui = 3 4 = gllul®
i<m j<m j<m

> 1 =Var(n;) = E@? — (E())?) = E(v? ~ 0) = E(?)

> E(|Tull?) =E(|lo]I*) =E (Z v?) =Y E@) =Y =1

i<k

Can we argue that the variance decreases wahp?
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An intuitive explanation
» Polar caps area ;(A}") = p({u € S™ | |un| > t})
decreases wahp
» Can we infer the same for

p(B) = p({u € S™ | || Tul® — 1] > })?
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Intermezzo: The union bound

» kvents Ey, ..., Epsuchthat P(E;) > 1 —tforeach: <k
» Whatis P(all E;)?

» P(all E;) =1 — P(atleast one —E;) =

P(NE) = 1-P(UeE) 2

21—ip(ﬂa) = 1-) (1—(1—t)=1—kt

=1

> SoP(allE;) > 1— kt
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Where the e 21nn comes from

» B =set of unit vectors; by “intuitive explanation”
=SVue B3 >0st.Pl—t<|Tul| <1+1t)>1—pe '™

» Fix! m and union bound: .
= Jvst.PVue Bl —t<|Tul|<1+t)>1—|Blpe "t

> Prob. € [0,1] = require 1 — |Blue ™" > 0:
= |Blue™" <1

> Lettzax/EQ:
= |Blue sk <1

> = k> ve 2In(|B]) + x, where y = 1;?‘2‘ is a fixed constant

> = HconstantCs.t.‘ k> Ce?In(|B)) ‘

! In this explanation, C = C(m); but C can be made independent of m
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Apply to vector differences

> Let ACR™, |Al=n

» Y,y € Awe have

I Ta=Ty|* = |T(z=y)|* = la—yll* HT HH lz =y *| Tull?
> E(|Tul?) = ul = 1 =[E(Tz - Ty|?) = = -yl
> LetB—{HI RER ye A}

|B| = O(n?) = k = Ce~21n(n) for some constant C

» By concentration of measure on 3,3 € (0,1) s.t.
A=)z -yl < Tz~ Tyl < 1 +e)llz —ylI* ()

holds with positive probability

» Probabilistic method: 3T such that () holds
This is the statement of the Johnson-Lindenstrauss Lemma

232/392



Randomized algorithm

» Distortion has low probability [Gupta 02]:

Ve,ye A P(|Tz =Tyl < (1 -e)llz —yl)

A
|

Ve,ye A P(|Tz =Tyl = (1+ &)z —yl)

A
|

» Probability 3 pair =,y € A distorting Euclidean distance:
union bound over ( 5 ) pairs

P(—(A and T'A have almost the same shape)) < <“> i !

P(A and T'A have almost the same shape) >

JLL follows by probabilistic method
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Subsection 2

Projecting feasibility
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Easy cases

Thm.
T : R™ — RF a JLL random projection, b, A;,..., A, € R™ aRLMx
instance. For any given vector € X, we have:

1) Ifo = Z x;A; then Th = Z x,TA;
=1l
by linearity of T
(i) Ifo # Z z;A; thenP(Tb # Z z;TA; > >1—2e ¢k
by JLL (1/)/)[1(([/0 |b— >, @ Aq| o
n
(1) Ifo £ > y;A;forally € X C R™, where | X| is finite, then
=1
P(Vy EXTh#YT", yiTAl-) >1-2|X|e ¢

for some constant C > 0 (independent of n, k)

by union bound

[Vu et al., Discr. Appl. Math. 2019]
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Separating hyperplanes

When | X| is large, project separating hyperplanes instead

» ConvexC C R™,z ¢ C:thenJhyperplane cseparating z, C
» Inparticular, true if C' = cone(4,,..., 4,) for A C R™

» Canshowz € C < T2 € TC with high probability
| 2

As above, if € C'then Tz € TC by linearity of T
Difficult partis proving the converse

v

Can also project point-to-cone distances
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Projection of separating hyperplanes

Thm.
Given ¢,b, A1,...,An € R™ of unit norm s.t. b ¢ cone{A1,..., A,} pointed, e > 0,
ceR™st.c'b< —e,¢c" A; > e (i < n),and T arandom projector:
P[Tb ¢ cone{TA1,..., TAn}] > 1 —4(n+ 1)e=C(e7 ="k
for some constant C.
Proof

Let o/ be the event that T" approximately preserves |[c — x||? and ||c + x||? for all x €
{b, A1, ..., An}.Since / consists of 2(n + 1) events, by the JLL (“squared variant™) and
the union bound, we get

P(o/) > 1 — 4(n + 1)e=C(* =)k
Now consider x = b

(Te,Th) = i(IIT(c +0)12 = IT(c ~ b)II*)

1 €
byJLL < 2(le+ blI* — fle — b)) + 7 Ule+ blI? + [le — b]1*)
=c’b+e<0
and similarly (T'c, TA;) > 0

[Vu et al., Math. OR, 2018]
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The feasibility projection theorem

Thm.
Given § > 0, 3 sufficiently large m < n such that:

for any LFP input A, b where Aism x n
we can sample arandom & x m matrix 7' with £ < m and

P(orig. LFP feasible <= proj. LF'P feasible) > 1 —§
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Subsection 3

Projecting optimality
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Notation

» P =min{cz | Az = bAx > 0} (original problem)
» TP =min{cx | TAx =Tb A x > 0} (projected problem)
> u(P) = optimal objective function value of P

» u(TP) = optimal objective function value of 7P
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The optimality projection theorem

» Assume feas(P) is bounded

> Assume all optima of P satisfy JETIS 0 for some
given 0 > 0
(prevents cones from being “too flat”)

Thm.

Given d > 0,

v(P) = <wu(TP) <wv(P) (%)

holds with arbitrarily high probability (w.a.h.p.)

more precisely, (+) holds with prob. 1 — 4ne—CE* =)k where
e =6/(2(0+ 1)n) and n = O(]|y[|2) where y is a dual optimal
solution of P having minimum norm
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The easy part

Show v(TP) < v(P):

>

>

>

Constraintsof P: Ax =b A 2 >0
Constraintsof TP: TAx =Tb N x>0
= constraints of 7P are lin. comb. of constraints of P

= any solution of P is feasible in 7P
(btw, the converse holds almost never)

P and T'P have the same objective function

= TP is arelaxation of P = v(T'P) < v(P)
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The hard part (sketch)

> Eq. (12) equivalent to P for 6 = 0

cx < w(P)—90
Ax = b 12)
x > 0

Note: for § > 0, Eq. (12) is infeasible
» By feasibility projection theorem,
cx < v(P)—9
TAx Th
x 0

AVANI

is infeasible w.a.h.p. for 6 > 0
» Restate: cx < v(P) — 6 ANTAx = Tb Az > 0 infeasible w.a.h.p.
» = cx > v(P) — ¢ holds w.a.h.p. for z € feas(7'P)
» = y(P)—-§ <v(TP)
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Subsection 4

Solution retrieval
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Projected solutions are infeasible in P

> Ax =0b = TAx = Tbbylinearity

» However,
Thm.
Forz > 0s.t. T Az = Tb, Az = bwith probability zero

ifnot, an x belonging to (n — k)-dim. subspace would belong to an
(n — m)-dim. subspace (with k < m) with positive probability

» Can’t get solution for original LF'P using projected
LFP!
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Solution retrieval by duality

» Primal min{c'z | Ax =bA x>0} =
dual max{b'y | ATy < c}

Let 2’ = sol(T'P) and 3y = sol(dual(T'P))

= (TA)'y = (ATTT)y = AT(TTy) <¢
=TTy isasolution of dual(P)

= we can compute an optimal basis J for P

Solve A;x; = b, get x;, obtain a solution 2* of P

vV v v v v VY

Won’t work in practice: errors in computing J
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Solution retrieval by pseudoinverse

> H:optimal basis of 7P
we can trust that — given by solver

> |H| =k = Agxism X k (tall and slim)

» Psecudoinverse: solve k x k system AEAHIH = AEb

» letz = (zy,0)
» Can prove small feasibility error wahp

» ISSUE: may be slightly infeasible
empirically: v # 0 but 2= = min(0,2) — 0ask — oo
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Subsection 5

Application to quantile regression
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Conditional random variables

» random variable B conditional on 4,,..., A4,
> assume B depends linearly on {4, | j < p}

» wanttofindz;,...,7z, € Rs.t.

B = ijAj

» use samples b, ai, ..., a, € R™ to find estimates

» o' =row,a; = column
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Sample statistics

> expectation:

fi = arg min Z(b,» — u)?

peR i<m

> conditional expectation (linear regression):

U = argmin Z(bl —va')?

VERP  i<m

» sample median:

§ = argmin Z |b; — €|

§ER i<m

= argmin Z <; max(b; — £,0) — %min(bi - f,O))

§ER i<m

» conditional sample median: similarly
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Quantile regression

» sample T-quantile:

§ = argmin Z (tmax(b; —&,0) — (1 — 7) min(b; — &,0))

£eR i<m
> conditional sample T-quantile (quantile regression):

B = arg min Z (Tmax(bi — Bd’, 0) — (1 —7)min(b; — Ba', 0))

BERP i<m
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Linear Programming formulation

Let A= (a; | j <n);then

~

f = argmin Tut 4+ (1 —7)u”
AB* =B ) tut —u = b
Bou > 0

» parameters: Aism x p,b € R”,7 € R

» decisionvariables: 57,3~ ¢ R, u™, v~ € R™

» LP constraint matrixis m x (2p + 2m)
density: p/(p + m) — can be high
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Large datasets

» Russia Longitudinal Monitoring Survey hh1995f

» m =3783,p =855

A =hf1995f,b = logavg(A)

18.5% dense

poorly scaled data, CPLEX yields infeasible (") after around 70s CPU
quantreg in R fails

| 4
4
| 4
4

» 14596 RGB photos on my HD, scaled to 90 x 90 pixels

> m = 14596, p = 24300

P eachrow of A is animage vector,b = > A

P 62.4% dense

» CPLEXKkilled by OS after ~30min (presumably for lack of RAM) on 16GB
| 2

could not load dataset in R

» Results = LP too large, projected LP can be solved
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Electricity prices
» Every hour over 365 days in 2015 (8760 rows)

» From 22 countries (columns) from the European zone

orig proj

1 5.82¢-01 5.69¢-01

2 9.46¢-02 0

3 0 0 > Permutation (18,2) (21,20) applied to proj
4 1.06-01 1.18e-01 gives same nonzero pattern and reduces
5 2.73e-04 6.92e-05 /5 error from 0.13 to 0.01

6 | -4.8le-06 -2.07e-05 > T  colution I found I could
7 1.32¢-01 1.36e-01 or every proj solution I found I cou

8 0 0 always find a permutation with this

190 8 8 property!!

» ...On closer inspection, many columns
11 | -346e-08 -2.45¢-05
reported equal data

12 0 0

13 | 5.66e-02 5.49¢-02 >

14 1 -2.50e-04  2.91e-03 » Approximate solutions respect Nonzero
15 | 2.86e-02 2.8le-02 pattern

16 0 0 ’

17 0 0 » LP too small for approximation to have
18 0 9.35e-02 an impact on CPU time

19 0 0
20 | 2.23e-09 0

21 0 -7.99¢-06
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Sparsity and £1 minimization
Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements




Subsection 1

Motivation
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Coding problem for costly channels

» Need to send a long sparse vector y € R" withn > 1
on a costly channel

1. Sample full rank m x n encoding matrix A withm < n
both parties know A

2. Encode b = Ay € R™
3. Send b

» Decode by finding sparsest z s.t. Az = b
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Coding problem for noisy channels

» Need to send a “word” w € R? on a noisy channel

> Encodingn x d matrix Q, withn > d,send z = Quw € R”
preliminary: both parties know Q

» (Low) prob. e of error: e n comp. of z sent wrong
they can be totally off

> Receive (wrong) vector z = z + x where x is sparse

» Can we recover z?
< » Choosem x nmatrix Ast.m=n—dand AQ =0

T P letb=Az=A(z+2) = AQu+z) = AQw + Ax = Az
» Suppose we can find sparsest x’ s.t. Az’ =b
ra-o » = wecanrecoverz =z — '

» Recoverw’ = (QTQ)™'Q"
Likelihood of getting small || w — w'||?
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Subsection 2

Basis pursuit
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Sparsest solution of a linear system

» Problem P°(A,b) = min{||z||o | Az = b} is NP-hard
Reduction from Exact Cover By 3-Sets [Garey&Johnson 1979, A6[MP5]|

» Relaxto P1(A,b) = min{||z||, | Az = b}

» Reformulate to LP:

min > s
i<n
Vi<n —s5;< x; <sj (t)
Ar = b

» Empirical observation: can often find optimum
Too often for this to be a coincidence

» Theoretical justification by Candés, Tao, Donoho

“Mathematics of sparsity”, “Compressed sensing”, “Compressive sampling”
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Phase transition in sparse recovery
Consider P'(A,b) where Aism x n

Ambient dimension » = 100 Ambient dimension » = 600
600

o
=]

75 450

50

300

25 150

m: Number of random measurements
: Number of random measurements

o
m

25 50 75 99 1 150 300 450 . 595
s: Number of nonzeros in x * s: Number of nonzeros in x

Probability that solution z* of randomly generated P has sparsity s
[Tropp et al., Information and Inference, 2014]
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Graphical intuition 1

Sparsest solution

Feasible set Ax = b

Norm-1 ball

High probability
of having this
property

» Wouldn’t work with /5, /., norms

Ar = bﬂat at poles — “zero probability of sparse solution”
Warning: this is not a proof. and there are cases not explained by this drawing [Candés 2014]
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Graphical intuition 2

/

» & such that Az = b approximates z in {, norms

> p = 1 only convex case zeroing some components
From ||)a\('n|mrl etal., 2012]; again, thisis not a pmnl'!
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Subsection 3

Theoretical results
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Main theorem and proof structure

» Thm. If:

» & € R" has ¢ nonzeros and n — ¢t near-zeros or zeros
» z closest approx of & with exactly ¢t nonzeros

> A~ N(0,1)™ with m < n but not too small

» b= Ai and z* is the unique min of P(A,b)

then z* is a good approximation of z
> Prop. If A has the null space property (NSP), result follows
> Prop. If A has restricted isometry property (RIP), NSP follows

> Prop. If A~ N(0,1)™", then A has RIP
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Some notation

» Consider Ar = bwhere Aism x nwithm < n

= iffeasible it has uncountably many solutions

> Letx € R"s.t. Az = b, Na = null(A), N§ = N4 ~ {0}
= Vy € Nawehave A(x +y) = Ar + Ay = Az +0=1>

» Forz e R"and S C N ={1,...,n}letS" =N~ S
define z[S] = ((z; iff j € S) xor 0 | j < n)

restriction of z to S

» Note thatVz € R™ we have z = z[S] + z[9]
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Null space property

» Defn. NSP,(A) =
VS C{1,....n} (IS| =5 = Yy e N3 |lylSTllh < [ly[9]l1)
A has the null space property of order s

» Choose solution z* of Az = bwith min /; norm
Let S = supp(z*) and suppose |S| =t

» Prop. Vz* € R" with [supp(z*)| = tand b = Az*
z* unique min of P'(A,b) iff NSP,(A)
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Proof of the proposition (=)

[V2* (z* uniq min of P'(A4, Az*))] = NSP,(A)
» Suppose z* unique soln of P*(A,b) with b = Az*

>

> Since [supp(y[S])| = ¢
y[S] unique min of P'(A, Ay[S]) by hypothesis

>
= A(—y[5]) = Ay[S] # 0

» Byuniqueness, || A(—y[S])||: > [[Ay[S]||: as claimed
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Proof of the proposition (<)

NSP,(A) = Va*, unique min P'(A, Az*)is 2*
» LetS =supp(z*)and |S| =1t

» Let Zsoln. of Ax = b,thenz = z* — ywithy € Ny

lz[s = [I(z" — Z[S]) + Z[S]|li < by triangle inequality]
< la* = Z[S]ly + |Z[S]llL = Isince s = supp(a)]
= [|z*[S] = Z[S]ls + |1Z[S]ly = lsincews — 2=l
= ly[S)ls + IZ[S]ll1 < by NSP(a)]
<Nyl + [Z[SNlr = Isincea =00y =" ~al
= | = Z[S'lL + 1Z[S]ly = tsince | —=lx = =llx A =[S] + 2[5 = =

= lzlh
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A variant of the null space property

> Motivation: “almost sparse solutions”
given & with supp(2) > t and b = Az, assume
Jde > 0s.t. 7 = max(0,x — 1¢) has supp(z) =t

Le. & “almost” has support size t
» Find closest approx z* of & with supp(z*) = ¢

> Adapt null space property: NSP/(A4) <
Fp e (0,1) VS C N (|S] =1t = [ly[ST]l < plly[S"T]l1)

» Prop. NSP/(A) = if 2* min of P'(A, Az) then
lz* — &y < 27%2]|7 — 2])s

Moreover, if supp(z) = tthenz* =& =17

Le. 2* is a good approximation of ¥ ‘

Pf. see Thm. 5.8 in [Damelin & Miller 2012]
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Restricted isometry property

» RIP)(A) < Va € R"s.t.supp(z) =t we have

A=a) =l < [lAzl} < (1+0)[l=[l3

o 20
> Prop.RIPS,(A) A p=Y2 <1 = NSP/(A)
Pf. see Thm. 5.12 in [Damelin & Miller 2012]

1 o
» [t suffices thatd < T N 0.4142
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RIP and eigenvalues

» Recall RIP)(A): Vz with S = supp(z) and | S| = 1

(1 =)zl < |Az]3 < (1 +9)l|l=/3
Let Ar = (A; | i € T'), where A; is the i-th col. of A
|Az||3 = (Az, Az) = (Asz(S], Asz[S]) = (A Asx[S], z[S])
Since Agism x t, BS = Al Agist x t and PSD

Moreover, )\min(BS)Ha:H% < (BSJJ,33> < )\max(BS)Hl'H%

vV v v v Vv

Let )\L = min )\min(BS), )\U = max /\max(BS)
|S|=t |S|=t

> =1 - < AN <NV <146
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RIP and PY(A, b)

» Recall P°(A,b) = min{||z||o | Az = b} is NP-hard

find solution to Az = b with smallest support size

» Thm. Let i: € R" with |supp(z)| =, < 1, A s.t. RIPY,(A),
r* = argP°(A, Az); thenz* = &

Pf. Suppose false, let y = z* — & # 0; by defn of 2* we have
lz*[lo < [|Z]lo <t hence ||ly|lo < 2t,s0 since A has RIP get

| Ay||3 € (14 9)||y||3, but Ay = Az* — A% = 0 while y # 0, and
6€(0,1) > 1+4d > 0,hence0 € («, 3) where o, 3 > 0,
contradiction

Thm. 23.6 [Shwartz & Ben-David, 2014]
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Construction of A s.t. RIP!(A)

>

>

>

Need ) ~ 1 for each eigenvalue \ of BS
=Need VSCN |[S|=t - AlAs~1I,
= Need

Q
o

Vi<j<n AlA
Vi<n AlAi=|Al

%
—

Sufficient condition: A sampled from N0,

Ely

Difference with JLL

RIP holds for uncountably many vectors z with [supp(z)| =t
JLL holds for given sets of finitely many vectors with any support

o
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Random matrices with orthogonal columns

1. Defn. Rnd vect A; € R™ is isotropic iff cov(A;) = I,,,
remark: (a) cov(X) = E(XX ); (b) if A; ~ N(0,1)™ then A; isotropic

2. Anisotropic rnd vect 4; iss.t. Vo € R™ E((4;,z)?) = ||z[]3
For two sq. symm. matrices B, C' we have B = C'iff Vz (2T Bz = =T Cz); hence
2 TE(A;A )z = 2T Iz LHS is E((A;, z)2), RHS is ||z||3

3. Anisotropic rnd vect 4; in R™ is s.t. E(|| X ||3) = m
E(IXII3) = E(XTX) = E@r(X T X)) = E(r(XXT)) = tr(E(X X)) =
tr(Im) =m

4. Indep isotr rnd vect A;, A; in R™ have E((4;, A;)?) =m
By conditional expectation E((A4;, A;)?) = Ea; (Ea, ((As, A;j)? | Aj)); by Item
2 inner expectation is || A;||2, by Item 3 outer is m

5. If A; ~ N(0,1)™, ||A;||2 ~ /m wahp
by Thm. 3.1.1in [Vershynin, 2018]

6. Independent rnd vectors are almost orthogonal
Results above = || A;][2. [| A |2, (4;, Aj) ~ /m, normalize 4;, Aj to 4;, A; to
get (A;, Aj) ~ 1/y/m = formlarge (A;, A;) = 0
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Construction of A s.t. RIP!(A)

» Thm. For A ~ N(0,1)"*"and § € (0,1) Jey,¢c2 >0
depending on ¢ s.t.

t
Vi <m ( In (%) < m — Prob(RIP?(A)) > 1 — e”m>

C1

Pf. see Thm. 5.17 in [Damelin & Miller, 2012]

Remark: extra /m factor in A comes from || - |2 < || - [[1 < vV/m| - |2

» In practice:

4
>
4
>
>
>

Prob(RIP?(A)) = 0 for m too small w.r.t. ¢ fixed

as m increases Prob(RIP(A4)) > 0

as mn increases even more Prob(RIP?(A4)) — 1 wahp
achieve logarithmic compression for large n and fixed ¢
A~ NO, )™ Am > 10tIn & = RIP,’L‘H) wahp, Lem. 5.5.2 [Moitra 2018]
works better than worst case bounds ensured by theory
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Some literature

AU A

Damelin & Miller, The mathematics of signal processing, CUP, 2012
Vershynin, High-dimensional probability, CUP, 2018
Moitra, Algorithmic aspects of machine learning, CUP, 2018
Shwartz & Ben-David, Understanding machine learning, CUP, 2014
Hand & Voroninski, arxiv.org/pdf/1611.03935v1 . pdf

Candés & Tao
statweb.stanford.edu/"candes/papers/DecodingLP.pdf

. Candés

statweb.stanford.edu/ candes/papers/ICM2014.pdf

8. I)E[V13III)()Tt et (lL, statweb.stanford.edu/ markad/publications/ddek-chapter1-2011.pdf

9. Lustig etal., people.eecs.berkeley.edu/ mlustig/CS/CSMRI.pdf

and many more (look for “compressed sensi ng”)
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Subsection 4

Application to noisy channel encoding
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Noisy channel encoding procedure

Algorithm:
1. message: character string s
2. w = string2bitlist(s) € {0,1}4
3. send z = Qw, receive z = z + 3,letb = Az
A =density of &, Qisn x d full rank withn > d
4. x* = arg PY(A, )
o. =z —1*
6. w* = cap(round((QTQ)~1QTz%),[0,1])
7. s* = bitlist2string(w*)
8. evaluate s, = ||s — s*||
Parameter choice [Matousek]:
> A =008
> n=4d
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Finding orthogonal A, Q)

» [Matousek, Gartner 2007]:
» sample A componentwise from N(0,1)

» then “find @ s.t. QA = 0"
» Gaussian elim. on underdet. system AQ) = 0

» Faster:

» sample n x nmatrix M from uniform distr
Sull rank with probability 1

» find eigenvector matrix of M/ T M (orthonormal basis)
random rotation of standard basis (used in original JLL proof)

» Concatenate d eigenvectors to make Q,and m =n — d
to make A
AQ =0by construction!
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Subsection 5

Improvements
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L.P size reduction

» Motivation

» Reduce CPU time spent on LP
» 1 = 4d redundancy for A = 0.08 error seems
excessive

> Size of basis pursuit LP

» Ax =bisanm x n system wherem =n —d
> Ifn > d,m “relatively close” ton
» Recall random projections for LP: use them!
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Computational results

d n A € a| 28 s& CPU°es  CPUPY
80 320 0.08 0.20 0.02 0 0 1.05 0.56
128 512 0 0 2.72 1.10
216 864 0 0 8.83 212
248 992 0 0 12.53 2.53
320 1280 0 0 23.70 3.35
408 1632 0 0 43.80 4.75
» d=|s|,n=4d,A =0.08,¢ =0.2
» o = Achlioptas density )
P(Ty; = —1) = P(Ty; =1) = § : /
P(T;;=0)=1-a . /
» ser = number of different / e
characters
. e
» CPU:seconds of elapsed time . W ‘

» Isamplingof A,Q,T
Sentence: Conticuere omnes intentique ora tenebant, inde toro |...]
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Reducing redundancy in n

vvyyvyy

v

How about takingn = (1 + A)d?
m =n —d =~ Adisvery small
Makes Az = bvery short and fat

Prevents compressed sensing from working correctly
not enough constraints

Would need both m and d to be ~ n and AQ = 0:
impossible

R™ too small to host m + d ~ 2n orthogonal vectors

Relax to AQ ~ 07
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Almost orthogonality by the JLL
Aimat AT, Q withm +d ~ 2nand AQ ~ 0

» JLL Corollary: 30(e") approx orthog vectors in R
Pf. Let T'be a k x prandom projector (RP), use conc. meas. on ||zH%
Prob( (1 — &) l2l13 < IIT=I13 < (1 +)l|z]3) > 1 —2e=C(=* ==k
given z,y € R™ apply to « 4 y, z — y and union bound:

T @+ = 1T = »I* = llz +yl* + llz - y]?|
T @+ I = lle +ylI?[ + T (@ = »I* —llz — y)1?|
Sl +yl? +llz = ylI*) = 5l2l® + llyll*)

‘<T'7‘,7Ty> - (x,y)\

IN A

with prob> 1 — 4e*C52k; apply to std basis mtx I, get
—e < (Te;,Tej) — (e;,ej) <€
= Jp almost orthogonal vectorsin R*, and k = O(% Inp) = p = O(e¥)

» Algorithm: k& = n,p = [¢"], get 2k columns from 7' I,

Also see [https://terrytao.wordpress.com/2013/07/18/
a-cheap-version-of-the-kabatjanskii-levenstein-bound-for-almost-orthogonal-vectors/|
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Almost orthogonality by the JLL

» Aimatm xn Aandn x mQ s.t. AQ ~ 0
withn = (14 A’)m and A’ “small” (say A’ < 1)

» Need 2m approx orthog vectorsin R with n < 2m
JLL errors too large for such “small” sizes

> Note we only need AQ = 0:
can accept non-orthogonality in rows of A & cols of Q
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Almost orthogonality by LP

» Sample @ and compute A using an LP
WLOG: we could sample A and compute Q
» max Y Uniform(—1,1)A;;

ji<n

> subjectto AQ =0and A € [-1,1]

» form = 328 and n = 590 (i.e. A’ = 0.8):
> error: Y A;Q7 = O(10710)
» rank: full (not really, bui | A| = O(e))
» CPU: 688s (meh)

» form = 328 and n = 492 (i.e. A’ = (.5): the same
» form = 328 and n = 426 (i.e. A’ = 0.3): CPU 470s
» Reduce CPU time by solving m LPs deciding A4; (for i < m)
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Computational results

m n A'| e spi CPU® CPUPY
328 426 03 [182 15 2.45 1.87
154 0 220 149

459 04| 0 1 447 245

5 17 286 146

492 05| 60 O 4.53 1.18

34 0 5.38 1.18

590 08| 14 O 830 141

107 4 6.76 1.43

» CPU for computing A, @ not counted:
precomputation is possible

>
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In summary

» If sis short, set A’ = A and use compressed sensing (CS)
> If sislonger, try increasing A" and use CS

» If sisverylong, use JLL-projected CS

» Can use approximately orthogonal A, () too

Conticuere omnes, intentique ora tenebant. m = 1896, n = 2465

Inde toro pater Aeneas sic orsus ab alto: A’ = 0.3: min s.t. CS is accurate
lnfa.ndum, regina, iubes renm')are dolorem. . . method ‘ error CPU
Troianas ut opes et lamentabile regnum eruerint Danai S 0 20.67s
Quaequae ipse miserrima vidi el quorum pars magna fui. JLL-CS 2 1713s

l\ ll;:ll /'1"’1(’id«, Cantus I” These results are consistent over 3 samplings

Technique applies to all sparse retrieval problems
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Outline

Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance resolution limit
MP formulations
Random projections again
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Job offers

Optimisation / Operations Senior Manager

vineids VINCI Airports IS&T Controller
ALSTOM

Rueil-Malmaison, lle-de-France, France Alstom
. PR PRI Saint-Ouen, FR
...for the delivery of the various optimization projects... to the success of each optimization
. The Railway industry today is. revie ftware depl
project...
running.. obsearch.alstom.com

Fares Specialist / Spécialiste Optimisation des Tarifs Aériens
Egencia, an Expedia company

.~ Pricing Data Scientist/Actuary - Price Optimization Specialist(H-F) Coubevaie- iR
=== AXAGlobal Direct EgenciaChaque année, Egencia des milliers de sociétés réparties dans plus de 60
n de Paris, France pays  mieux gérer | modernes et
ization. The senior pri i and Innovation team, and will be des services d'exception a des millions de voyageurs, de la planification 3 la inalisation de leur
part.. voyage. Nous répondons...
Growth Data scientist - Product Features Team Automotive HMI Software Experts or Software Engineers
Deezer Elektrobit (EB)
Paris, FR Paris Area, France
OverviewPress play on your next adventure! Music... to join the Product Performance & Elektrobit in Paris interesting.. d optimization area, and/or
Optimization team... www.deezer.com software...
Analystes et C - Banque -Optimisation des

> Accenture

Région de Paris, France o~  Deployment Engineer, Professional Services, Google Cloud
Nous recherchons des analystes jeunes diplémes et d I ésireux de travailler

Google
surdes : e I Gooe
opérationnels et des processus) en France et au Benelux. Les postes sont 3 pourvoir en CDI, sur
base ¢un rattachement..

Paris, France
Note: By applying to this position your... migration, network optimization, security best...

Electronic Health Record (EHR) Coordinator (Remote)

Aledade, Inc. - Bethesda, MD 4,694 reviews - Bethesda, MD 20817

Analyzes data and builds optimization,. Programming models and familiarity with

Must have previous i or optimizati ience with ambulatory EHRs and

practice software, p! bly with expertise in Greenway, ... optimization software (CPLEX, Gurobi)....

Operations Research Scientist Research Scientist - AWS New Artificial Intelligence Team

Ford Motor Company - 2,381 reviews - Dearborn, Ml /Research Scientist - AWS New Artificial Intelligence Team!»yicws - Palo Alto, CA

Strong knowledge of optimization techniques (e.g. Develop optimization frameworks to We are pioneers in areas such as recommendation engines, product search, eCommerce
support models related to mobility solution, routing problem, pricing and... fraud detection, and large-scale optimization of fulfillment center...
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An examBle

Under the responsibitity of the Commercial Director, the Optimisation / Operations Senior Manager

will have the responsibility to optimise and develop operational aspects for VINCI Airports current

and future portfolio of airports. They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering the objectives of the Technical
Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial
Director in the development and implementation of plans, strategies and reporting processes. As part

of the exercise of its function, the Optimisation Manager will undertake the following: Identification
and development of cross asset synergies with a specific focus on the operations and processing functions
of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives
of the various technical services agreements, the strategy of the individual airports and the Group.
This function will include: Participation in the definition of airport strategy. Definition of this
airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation
Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various
technical services agreements with our airports by developing specific technical competences from the
Head Office level. Oversee the management and definition of all optimisation projects. Identificationm,
overview and management of the project managers responsible for the delivery of the various optimization
projects at each asset. Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Development and implementation of the Group
optimisation plan. Definition of economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service
levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the
strategies, trends and best practices of the airport industry and other reference industries in terms of
the applicability to the optimization plan. Study of the needs and preferences of the passengers,
through a continuous process of marketing research at all of the airports within the VINCI Airports
portfolio. Development of benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Development and participation in the expansion or refurbishment projects
of the airports, to assure a correct configuration and positioning of the operational and commercial
area that can allow the optimization of the revenues and operational efficiency. Support the Director
Business Development through the analysis and opportunity assessment of areas of optimization for all
target assets in all bids and the preparation and implementation of the strategic plan once the

assets are acquired. Maintain up to date knowledge of market trends and key initiatives related

to the operational and commercial aspects of international airports [...]

...and blah blah blah: IS THIS APPROPRIATE FOR MY CV?
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Try Natural Language Processing

> Automated summary

» Relation Extraction

» Named Entity Recognition (NER)
» Keywords
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Automated summar
./summarize.py jobO1l.txt

They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering
the objectives of the Technical Services Agreements activities of VINCI
Airports. The Optimisation Manager will support the Commercial Director
in the development and implementation of plans, strategies and reporting
processes. Identification and development of cross asset synergies with
a specific focus on the operations and processing functions of the airport.
Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Definition of
economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of
processing efficiency, service levels, passenger convenience and
harmonization of the non-aeronautical activities. Development of
benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Maintain up to date knowledge of market
trends and key initiatives related to the operational and commercial
aspects of international airports. You have a diverse range of
experiences working at or with airports across various disciplines such
as operations, ground handling, commercial, etc. Demonstrated high

level conceptual thinking, creativity and analytical skills.

Does it help? hard to say
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Relation Extraction
./relextr-mitie.py jobOl.txt

======= RELATIONS =======

Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES_EVENT ] Head Office

Head Office [ INFLUENCED_BY ] Self

Head Office [ INTERRED_HERE ] Self

VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self

Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office

Self [ ORGANIZATIONS_WITH_THIS_SCOPE ] Head Office
Self [ PEOPLE_INVOLVED ] Head Office

Self [ PLACE_OF_DEATH ] Head Office

Head Office [ RELIGION ] Self

VINCI Airports [ RELIGION ] Optimisation Strategy

Does it help? hardly
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Named Entity Recognition

./ner-mitie.py jobOl.txt

==== NAMED ENTITIES =====

English MISC

French MISC

Head Office ORGANIZATION

Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON

Technical Services Agreements MISC
VINCI Airports ORGANIZATION

Does it help? ...maybe

For a document D, let NER(D) = named entity words
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Subsection 1

Clustering on graphs
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Exploit NER to infer relations

1. Recognize named entities from all documents
2. Use them to compute distances among documents

3. Use modularity clustering
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The named entities

L
2.

I

g

o

19.

20.
21.

Operations Head Airports Office VINCI Technical Self French/ Strate%/Agreements English Services Optimisation

Europe and P&C Work Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate
International English

Scientist Product Analyze Java Features & Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press
Performance Deezer Data Computer

Lean6Sigma Lean-type Office Banking Paris CDI France RPA Middle Accenture English Front Benelux

Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance market develop Finance & IS&T
Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia Ellglis]f%fares with Company
Inc

Paris Integration France Automation Automotive French . Linux/Genivi HMI Ul Software EB Architecture Elektrobit technologies
GUIDE Engineers German Technology SW well-structured Experts Tools

Product Google Managers Python JavaScript AWS JSON BigQuery Java Platform Engineering HTML MySQL Services Professional
Googles Ruby Cloud OAuth

EHR Aledades Provide Wellness Perform ACO Visits EHR»system-specéﬁc Coordinator Aledade Medicare Greenway Allscripts
Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata & Python Company GDIA Ford Visa SPARK Data
Applied Science Work C++ R Unix/Linux Physics Microsoft Operations Monte JAVA Mobility Insight Analytics Engineering Computer
Motor SQL Operation Carlo PowerPoint

Management Java CANDIDATE Application Statistics Gurobi Provides Provider Math ics Service Maintains Deliver SM&G
SAS/HPF SAS Data Science Economics Marriott PROFILE Providers OR Engineering Computer SQL Education

Alto Statistics Java Sunnyvale Research ML Learning Science Operational M achine'fina:on Computer C++ Palo Internet R Seattle
LLamasoft Work Fortune Chain Supply C# Top Guru What Impactful Team LLamasofts Makes Gartner Gain

Worldwide Customer Java Mosel Service Python Energy Familiarity CPLEX Research Partnering Amazon R SQL CS Operations
Operations Science Research Engineering Computer éystems or Build

Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain Economics Experience R Research US
Scientist UK SQL Japan Economist

Competency Statistics Knowledge Employer c ication Research Machine EEO United ORMA Way OFCCP Corporation Mining
& C# Python Visual Studio Opportunity Excellent Modeling Data Jacksonville Arena Talent Skills Science Florida Life Equal
AnyLogic Facebook CSX Oracle The Strategy Vision Operations Industrial Stream of States Analytics Engineering Computer
Framework Technolo,

Java Asia Research Sué}g[y in Europe Activities North Comp(m)' WestRocks SusminubilityAm(’rira Masters WRK C++ Norcross
()])timi:aiion GA ILOG South NYSE Operations AMPL CPLEX Identify Participate OPL WestRock

I T Federal Administration System NAS Development JMP Traffic Aviation FAA Advanced McLean Center CAASD Flow Air
Tableau Oracle MITRE TFM Airspace National SQL Campus

Abilities & Skills 9001-Quality S Management ISO GED

Statistics Group RDBMS Research Mathematics Teradata ORSA Greenplum Java SAS U.S. Solution Time Oracle Military Strategy
Physics Linear/Non-Linear Operations both Industrial Series Econometrics Engineering Clarity Regression 209/392




Word similarity: WordNet

entity

abstract_entity physical_entity thing

—~

abstraction physical object horror

P
- -
.

instrumentation being

conveyance person

mail  vehicle public transport  male person  female person
’ N | |

.

Wheeled vehicle bus train béy g&rl
—1

Self propelled bicycle School bus Boat train
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WordNet: hyponyms of “boat”
v rowing_boat

cdgpe jollyeboat

birchba? ecanoe

gl
PuRvhgr stea
fopck eshell . o~
smaliioua - -

lifelpopat
Aihalehoz@urfoat

pioat
catiracle

hora P hoat

DAJICE® D03

motQEhoat

gndnepeEad hoat

Cab'.m Ik pnotorboat hy pofoil

boat

AT

ra

goredola
9 skiff
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Wu-Palmer word similarity
Semantic WordNet distance between words w, w-

2 depth(les(wy, w2))
len(shortest _path(wy, ws)) + 2 depth(les(wy, w2))

wup(wi, wg) =

» lcs: lowest common subsumer

earliest common word in paths from both words to WordNet root

>
Example: wup(dog, boat)?

depth( whole ) = 4

18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate
-> chordate -> animal -> organism -> living_thing -> whole -> artifact
-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat

13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat

wup(dog, boat) = 8/21 = 0.380952380952
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Extensions of Wu-Palmer similarity

» to lists of words H, L:

wup(H, L) = |H|1iLi ZZWUP(U,w)

veEH weL

» to pairs of documents D, Ds:
wup(D1, D) = wup(NER(Dy), NER(D>))

> wup and its extensions are always in [0, 1]
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The similarity matrix

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.38 0.49 0.47 0.47 0.44 0.54 0.31 0.44
0.63 1.00 0.45 0.45 0.54 0.40 0.42 0.42 0.57 0.49 0.46 0.45 0.59 0.35 0.43 0.42 0.42 0.41 0.47 0.32 0.40

0.5

1 0.45 1.00 0.40 0.53 0.35 0.37 0.37 0.58 0.47 0.43 0.40 0.59 0.28 0.39 0.37 0.38

0.45 0.40 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.38 0.48 0.47 0.47
0.54 0.53 0.63 1.00 0.34 0.35 0.35 0.49 0.42 0.39 0.37 0.50 0.29 0.36 0.35 0.35

0.51
0.66

0.45 0.40 0.35 0.45 0.34 1.00 0.42 0.43 0.66 0.54 0.49 0.45 0.67 0.34 0.44 0.43 0.43 0.40 0.49 0.28 0.40
0.46 0.42 0.37 0.46 0.35 0.42 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.34 0.45 0.45 0.44 0.42 0.50 0.28 0.40
0.47 0.42 0.37 0.46 0.35 0.43 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.36 0.47 0.45 0.45 0.43 0.51 0.30 0.42
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.33 0.31 0.29 0.40 0.23 0.28 0.27 0.28 0.26 0.31 0.21 0.26
0.58 0.49 0.47 0.56 0.42 0.54 0.54 0.55 0.33 1.00 0.46 0.43 0.59 0.34 0.42 0.41 0.41 0.39 0.46 0.31 0.39
0.54 0.46 0.43 0.52 0.39 0.49 0.49 0.51 0.31 0.46 1.00 0.39 0.56 0.29 0.38 0.36 0.36 0.34 0.41 0.24 0.35
0.50 0.45 0.40 0.49 0.37 0.45 0.47 0.48 0.29 0.43 0.39 1.00 0.70 0.40 0.50 0.49 0.48 0.46 0.54 0.35 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.40 0.59 0.56 0.70 1.00 0.23 0.29 0.29 0.29 0.28 0.33 0.20 0.27
0.38 0.35 0.28 0.38 0.29 0.34 0.34 0.36 0.23 0.34 0.29 0.40 0.23 1.00 0.48 0.45 0.46 0.42 0.52 0.30 0.43
0.49 0.43 0.39 0.48 0.36 0.44 0.45 0.47 0.28 0.42 0.38 0.50 0.29 0.48 1.00 0.39 0.39 0.36 0.45 0.26 0.37
0.47 0.42 0.37 0.47 0.35 0.43 0.45 0.45 0.27 0.41 0.36 0.49 0.29 0.45 0.39 1.00 0.48 0.46 0.54 0.33 0.44
0.47 0.42 0.38 0.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.51 0.32 0.43
0.44 0.41 0.35 0.45 0.34 0.40 0.42 0.43 0.26 0.39 0.34 0.46 0.28 0.42 0.36 0.46 0.43 1.00 0.53 0.31 0.43
0.54 0.47 0.43 0.53 0.40 0.49 0.50 0.51 0.31 0.46 0.41 0.54 0.33 0.52 0.45 0.54 0.51 0.53 1.00 0.36 0.46
0.31 0.32 0.24 0.33 0.26 0.28 0.28 0.30 0.21 0.31 0.24 0.35 0.20 0.30 0.26 0.33 0.32 0.31 0.36 1.00 0.47
0.44 0.40 0.35 0.44 0.34 0.40 0.40 0.42 0.26 0.39 0.35 0.46 0.27 0.43 0.37 0.44 0.43 0.43 0.46 0.47 1.00
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The similarity matrix

1.00
0.63
0.51
0.51
0.66
0.45
0.46
0.47
0.72
0.58
0.54
0.50
0.72

0.49
0.47
0.47
0.44
0.54

0.44

Too uniform! Try zeroing values below median
0.51 0.66 0.45 0.46 0.47 0.72

0.63
1.00
0.45
0.45
0.54

0.57
0.49
0.46
0.45
0.59

0.47

0.51
0.45
1.00

0.53

0.45

1.00
0.63
0.45
0.46
0.46
0.67
0.56
0.52
0.49
0.68

0.48
0.47
0.47
0.45
0.53

0.44

0.54
0.53

0.57
0.58

0.63 0.45 0.46 0.46 0.67

1.00

0.49

0.50

0.49

0.49
0.66
.44 0.66
.00 0.67
.67 1.00

coro

0.58 0.54 0.50 0.72
0.49 0.46 0.45 0.59

0.47
0.56 0.52

0.54 0.49
0.54 0.49
0.55 0.51

1.00 0.46
0.46 1.00
0.43

0.59 0.56

0.46

0.49

0.45
0.47
0.48

0.43

1.00
0.70

0.50
0.49
0.48
0.46
0.54

0.59
0.68
0.50
0.67
0.67
0.68

0.59
0.56
0.70
1.00

0.49 0.47 0.47 0.44

0.48 0.47 0.47 0.45

0.44
0.45 0.45
0.47 0.45

0.50 0.49

0.48 0.45

1.00
0.48
0.46
0.45 0.54

0.44
0.45

0.48

0.46

0.48
1.00

0.51

0.46

0.46

0.53

52
45
54
51
53
00

HOOOOO

0.46

0.44

0.44

0.46

0.43

0.44

0.46

1.00 0.47
0.47 1.00
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The graph

WA

\5& N/ 17
N
g !i‘w{\\"i\
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G 15

0%
X m”‘}(
YR\

G = (V, E), weighted adjacency matrix A

Ais like B with zeroed low components
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Modularity clustering

“Modularity is the fraction of the edges that fall within a cluster minus

the expected fraction if edges were distributed at random.”
» “at random”=random graphs over same degree sequence
» degree sequence = (k1,. .., k,)where k; = [N ()]

> “expected” = all possible “half-edge” recombinations

— 00 O
> o 6——06 C

» expected edges between u, v: k,k,/(2m) where m = |E)|
» mod(u,v) = (Auy — kuky/(2m))
» mod(G) = > mod(u,v)zy,

{uv}eRE

ZTyy = 1ifu, v in the same cluster and O otherwise

»  “Natural extension” to weighted graphs: ky = 3, Auv.m =3, Auw
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Use modularity to define clustering
» Whatis the “best clustering”?

» Maximize discrepancy between actual and expected
“as far away as possible from average”

max > mod(u, v)Tyy
{u}er
YueViveV axy, €{0,1}

» Issue: optimum could be intransitive

> ldea: treat clusters as cliques (even if zero weight)

then clique partitioning constraints for transitivity
Vi<j<k wmjtog—zg < 1

Vi<j<k xjj—xjptag <1

Vi<ji<k — Xij + Tk + Tik <1

ifi,j € Candj,k € Ctheni, k € C
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The resulting clustering

cluster 1: jobOL, job02, job03, job05, joblO
cluster 2: job04, job06, job22
cluster 3: job07, job08, jobll, jobl2, job20 |cb27.
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Is it good?

Vinei
Axa
Deezer
Alstom
Aledade

> 7

Accenture
Expedia

fragmentl

Elektrobit
Google
Ford
Marriott
Llamasoft

fragm ent2

« —named entities rarely appear in WordNet

» Desirable property: chooses number of clusters
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Subsection 2

Clustering in Euclidean spaces
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Clustering vectors

Most frequent words[w | over collection | C |of documents
./keywords.py

global environment customers strategic processes teams sql job industry use
java developing project process engineering field models opportunity drive
results statistical based operational performance using mathematical computer
new technical highly market company science role dynamic background products
level methods design looking modeling manage learning service customer
effectively technology requirements build mathematics problems plan services
time scientist implementation large analytical techniques lead available plus
technologies sas provide machine product functions organization algorithms
position model order identify activities innovation key appropriate different
complex best decision simulation strategy meet client assist quantitative
finance commercial language mining travel chain amazon pricing practices
cloud supply

[(ted|t=w)|C]

tfidf, d) =
idfc(w, d) {heClwe h}
keyword(i,d) = wordw having i" best tfidfc(w, d)value
vect(d) = (tfidfe(keyword(i,d),d) | i < m)

Transforms documents to vectors
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Minimum sum—of—squares clustering

» MSSC, a.k.a. the k-means problem

» Given points pi, ..., p, € R™, find clusters C1, . ..

mmz Z |p; — centroid(C})]|3

i<k i€C;
where centroid(C;) = % > pi
! 1€C;

» k-means alg.: given initial clustering C1, ..., Cy

1: Vj < k compute y; = centroid(C})

2: Vi <n,j < kify;isthe closest centr. to p; let z;; = 1 else 0

3: V_] < kupdateC’j — {pz | Tij = 1A Sn}
4: repeat until stability
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k-means with £ = 2

Vinci AXA
Deezer Alstom
Accenture Elektrobit
Expedia Ford
Google Marriott
Aledade Amazon 1-3
Llamasoft CSX
WestRock

MITRE

Clarity

fragments 1-2
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k-means with £ = 2: another run

Deezer
Elektrobit
Google
Aledade

Vinci

AXA
Accenture
Alstom
Expedia
Ford
Marriott
Llamasoft
Amazon 1-3
CSX
WestRock
MITRE
Clarity
fragments 1-2
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k-means with k& = 2: third run!

AXA Vinei
Deezer Accenture
Expedia Alstom
Ford Elektrobit
Marriott Google
Llamasoft Aledade
Amazon 1-3

CSX

WestRock

MITRE

Clarity

fragments 1-2

A fickle algorithm
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We can’t trust k-means: why?

04 ] 04 1 04 ]

03] ] 03] ] o F ]

02 02 02

01 01 01

00| 00| 00|

L L ] oi w2z W1 oz o1 o8 01 10 61 2 o0 o2 o1 s 08

04 . 1 04 1 04 .
° °

03] ] 03] 1 03] ]

02 02 02

0 0 0

00| 00| 00|

Wi Wz w0 0z a6 o5 10 Wi Wz o0 0z a6 o5 10 7wz w0 0z o1 06 o5 10

04 ] 04 1 04 ]

03] ] 03] 1 03] ]

02 02 02

0 0 0

00| 00| 00|

W%z o0 0z o 06 o5 10 % 0z o0 0z a6 o5 10 % 0z o0 0z a6 o5 10
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Subsection 3

Distance resolution limit
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Nearest Neighbours

E-NEAREST NEIGHBOURS (k-NN). .

Given: . oy,
> keN c
» adistance functiond : R" x R" - R,
> asetX C R" S

» apointz € R" \ &,
find the subset Y C X such that:
@ Y=k :
b) VyeV,zeX (d(z,y) <d(zx))

» basic problem in data science

> pattern recognition, computational geometry, machine learning, data
compression, robotics, recommender systems, information retrieval, natural
language processing and more

» lixample: Used in Step 2 of k-means:
assign points to closest centroid

[Cover & Hart 1967]
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With random variables

» Consider 1-NN
> Letl( = |X]| o

> Distance function family
{d" :R" x R* — R, b,

» For eachm:

>
| 2

>

random variable Z™ with some distribution over R"
for i < ¢,random variable X" with some distrib. over
Rn
X™iid wrt. ¢, Z™ independent of all X"

m — ] m m m
Dr. = I}1<1?d (Zzm, X™)

Dty = maxd™ (27, X1")
i<t
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Distance Instability Theorem

» Letp > 0beaconstant
> If

Ji <l (d™(Z™, X]"))? converges asm — 0o
then, for any e > 0,

closest and furthest point are at about the same distance

Note “3i” suffices since Vm we have X" iid w.r.t. i
[Beyer et al. 1999]

321/392



Distance Instability Theorem

» Letp > 0beaconstant
> If

3 <0 lim Var((d™(Z™, X™)P) = 0

m—0o0
then, for any ¢ > 0,
lim P(Dy < (1+¢)Dmin) =1

max min
m—00

Note “Ji” suffices since Vm we have X" iid w.r.t. i

[Beyer et al. 1999]
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Preliminary results

» Lemma. {B™},, seq. of rnd. vars with finite variance
and lim E(B™)=0bA lim Var(B™) = 0; then
m—r0o0

m— 00

Ve >0 lim P(|[B" b <2) =1

denoted B™ —p b‘

> .{B™},, seq.of rnd. varsand g a
continuous function; if B™ —p b and g(b) exists,

» Corollary. If {A™},,,{B™},, seq. of
rnd. vars. s.t. A™ —p a and B™ —p b # 0 then
{%}m _>IP’ %
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Proof

1.

pm = E((d™(Z™, X[™))P) independent of i
(since all X™ iid)

Vv o Xy

m

—p 1:

» E(V,,) =1 (rnd. var. over mean) = lim,, E(V;;,) = 1

» Hypothesis of thm. = lim,, Var(V};,) =0
» Lemma=V,, —p 1

L D™ = ((d™(Zm, X)) | i < ) —p 1 (byiid)

4. Slutsky’s thm. = min(D™) —p min(1) = 1

simy for max

max(D™)

Corollary = T-i5ms —p 1
Diiax __ pm max(D™)
Dm?X - Zm m?n(Dm) —pl

min

Result follows (defn. of —p and D > D™ )

max — min
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When it applies

>
>

>

>

iid random variables from any distribution
Particular forms of correlation

e.g. U; ~ Uniform(0, V%), X1 = U1, X; = U; + (X;-1/2) fori > 1
Variance tending to zero

e.g. X; ~N(0,1/7)

Discrete uniform distribution on m-dimensional

hypercube

Computational experiments with k-means:
instability already withn > 15
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...and when it doesn’t

> Complete linear dependence on all distributions
can be reduced to NN in 1D

> Exact and approximate matching

> Query point in a well-separated cluster in data
» Implicitly low dimensionality
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Subsection 4

MP formulations
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MP formulation

min Y 3 [|pi — y5ll5 @i

%'Ejlkxg

z7y18

Vi <k
Vi<n
Vi <k
Vi <k

i<n j<k

i<n

> Tij

Jj<k

> Tij

i<n

Yj

Yj
1

S

R™
{071}nk
Fﬂk

(MSSC)

/

variables

MINLP: nonconvex terms; continuous, binary and integer
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Reformulation

The (MSSC) formulation has the same optima as:

IIliIl Z Z F)ij ZIJij )
.y, P i<n <k
Vi<nj<k |pi—yll3 < Py
Vi <k YoPiti; = D YT
i<n i<n
i<k
Vi <k Yy; € ([Hgnpih, m<aXpih] | h < k)
z e {01}
P € [0,PY"* )

» The only nonconvexities are
products of binary by continuous bounded variables
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Products of binary and continuous vars.

Suppose term zy appears in a formulation

Assume x € {0,1} and|y € [0, 1] |is bounded

>
>
» means “either z = 0orz = y”
» Replace xy by a new variable =
>

Adjoin the following constraints:

[0,1]
<y+(1-2)
<z

(1—93)

|/\|/\l\z
o M

» = Everything’s linear now!

[Fortet 1959]
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Products of binary and continuous vars.

> Suppose term zy appears in a formulation

» Assumez € {0,1} and|y € [y*,y"]|is bounded

» means “either 2 = 0or z = ¢”
> Replace xy by a new variable =

> Adj oin the f()ll()wing constraints:

z € [min(y",0), max(y",0)]
y— (1 —2)max(ly"],|y"]) < 2z <y+ (1 —2)max(|y"],y"])
—zmax(|y"|, [yV]) < 2z < azmax(ly"|,|y"])
> — Everything’s linear now!
[L. et al. 2009]
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MSSC is a convex MINLP

ming ZZ

z,y,P,x, i<n i<k
Vi<n,j<k 0<
Vi<ng<k llpi—y;ll3
Vi<k sz‘rz‘j

i<n
LN, g S Yy; — (L — Ti5) max(|y—|, |Y =
Vi<n,j<k 1 Ly <
Vi<ngj<k  —azymax(lyllyY]) <
Vi<n inj

i<k
Vi<k yj

xT

X
Vi<n,j<k &ij

Yj»Eijs y¥, yV are vectors in R™

M M M M M

< By

< PY

Py
> &

i<n

<y + (1= ziy) max(ly”|, y7])

<z max(|y”], [yY))

1

", y"]

{0, 13*

[0, P

[0, PU]"E

[min(y”, 0), max(yY, 0)]
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How to solve it

» cMINLP is NP-hard
> Algorithms:
» Outer Approximation (OA)
» Branch-and-Bound (BB)
> Best (open source) solver: BoNMIN
» Another good (commercial) solver: KNITRO
> With k = 2, unfortunately...

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution,
best possible 6.1855969 (32142.17 seconds)

> Interesting feature: the bound
guarantees we can’t to better than bound

all BB algorithms provide it

333/392



BonMiIN’s first solution

Alstom Vinci
Elektrobit AXA
Ford Deezer
Llamasoft Accenture
Amazon 2 Expedia
CSX Google
MITRE Aledade
Clarity Marriott
fragment 2 | Amazon1& 3

WestRock

fragment 1
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Couple of things left to try

> Approximate ¢, by {; norm
¢, is a linearizable norm

» Randomly project the data
lose dimensions but keep approximate shape
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Linearizing convexity

> Replace [|p; — y;|3 by |lpi — y;ll1
» Warning: optima will change

but still within “clustering by distance” principle

Vlgnngk Hpi_yj||1:Z|pia_yja|
a<d

> Replace each | - | term by new vars. Q;j, € [0, PY]
Adjust PY in terms of || - |1

» Adjoin constraints

Vi<nj<k Y Qija < Py
a<d
Vi<n,j<k,a<d _Qija < pia_yjaSQija

» Obtain a MILP
Most advanced MILP solver: CPLEX
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CPLEX s first solution

objective 112.24, bound 39.92, in 44.74s

AXA
Deezer
Ford
Marriott
Amazon 1-3
Llamasoft
CSX
WestRok
MITRE
Clarity
fragments 1-2

Vinci
Accenture
Alstom
Expedia
Elektrobit
Google
Aledade

Interrupted after 281s with bound 59.68
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Subsection 5

Random projections again
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Works on the MSSC MP formulation too!

min Y Y | Tps = Ty;ll3 )
T,YsS  i<n j<d
Vi <d % > Tpixy; = Ty,
i<n
Vi<n Yoy =1
j<d
\V/] S d Z Tij = S5
i<n
vji<d y, € R™
€ {0,1}
s € N¢

where T"is a k x m random projector
replace 7'y by /
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Works on the MSSC MP formulation too!

mi/n Yo T — y§||%$w \
©y's  i<nj<d
vj<d u o Ipiwy =y
i<n
Vi<n doryy = 1
j<d MSSC’
Vi <d > Tij = 5 | )
i<n
Vi<d y§ e RF
c {0’ 1}nd
s € N¢

> wherek = O(% Inn)
> less data, || < |y| = get solutions faster
» Yields smaller cMINLP
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BonwmiN on randomly proj. data
objective 5.07, bound 0.48, stopped at 180s

Deezer Vinei
Ford AXA
Amazon1-3 | Accenture
CSX Alstom
MITRE Expedia
fragment 1 Elektrobit
Google

Aledade

Marriott

Llamasoft

WestRock

Clarity

fragment 2
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CPLEX on randomly proj. data

...although it doesn’t make much sense for || - ||; norm...

objective 53.19, bound 20.68, stopped at 180s

Vinci AXA
Deezer Accenture
Expedia Alstom
Google Elektrobit
Aledade Marriott
Ford Llamasoft
Amazon 1-3 WestRock
CSX MITRE
Clarity fragment 1-2
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Many clusterings?

Compare them with clustering measures
e.g. “adjusted mutual information score”
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Outline

Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory’s upper bound
Delsarte’s upper bound
Pfender’s upper bound
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Definition

» Optimization version. Given K € N, determine the
maximum number kn(K') of unit spheres that can be
placed adjacent to a central unit sphere so their
interiors do not overlap

» Decision version. Givenn, K € N,is kn(K) < n?
in other words, determine whether n unit spheres can be placed
adjacent to a central unit sphere so that their interiors do not

overlap

Funny story: Newton and Gregory went down the pub...
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Some examples

n=6K=2 n=12,K =3 more dimensions

n  t (lattice) t (nonlattice)
0 0

1 2

2 6

3 12

4 24

5 40

6 72

7 126

8 240

9 272 (306)"
10 336 (500)°
1 438 (582
12 756 (840)"
13 918 (1130)"
14 1422 (1582)*
15 2340

16 4320

17 5346

18 7398

19 10668

20 17400

2 210

2 4989
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Radius formulation

Givenn, K € N, determine whether there exist n vectors
x1,..., 7, € RE such that:

Vi<n e} = 4
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Contact point formulation

Givenn, K € N, determine whether there exist n vectors
x1,..., 7, € RE such that:

vi<n  Jwli = 1 B
Vi<j<n || —xj||§ 1

A%

348/392



Spherical codes

» S%-1 C R¥ unit sphere centered at origin
» K-dimensional spherical z-code:

» (finite) subset C c SK—1

> Vr£yeclC r-y<z

> non-overlapping interiors:

Vi<j lei—azll; > 1
& el + ol - 222 > 1
< 1+1-2x-2; > 1
& 2r-x; <1
& xiexg < 1:cos(z):z
T2 3
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Subsection 1

Lower bounds
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Lower bounds

> Construct spherical -code C with |C| large
» Nonconvex NLP formulations
» SDP relaxations

» Combination of the two techniques
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MINLP formulation

Maculan, Michelon, Smith 1995
Parameters:

» K:space dimension
» n:upper bound to kn(K)
Variables:

> 1; € RX: center of i-th vector
» «; = liff vector i in configuration

n
max >y
i=1
Vi<n l|zi]]? = oy
Vi<j<n ||lzi—z|]> > o
Vi<n v € [-1,1)K
Vi<n a; € {0,1}
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Reformulating the binary products

> Additional variables: 5;; = 1 iff vectors i, j in
configuration

> Linearize o;a; by f;;
» Add constraints:

Vi<j<mn Bii < o4
Vz<]§n ﬂij < O
VZ<]§TL 5@' > ozi—i—ozj—l

353/392



Computational experiments

AMPL and Baron

» Certifying YES
» n=06,K =2:0K 0.60s
> n =12, K = 3: 0K, 0.07s
> n =24, K = 4: FAIL, CPU time limit (100s)
» Certifying NO
» n =17, K = 2:FAIL, CPU time limit (100s)
» n =13, K = 3: FAIL, CPU time limit (100s)
» n =25 K = 4: FAIL, CPU time limit (100s)

Almost useless
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Modelling the decision problem

max a )
T,00
Vi<n l|zi]|? = 1
Vi<j<n ||lz;,—z > « ¢
Vi<n r, € [-1,1)%
a > 0 )

» Feasible solution (z*, o*)
» KNP instanceis YESiffa* > 1

[Kucherenko, Belotti, Liberti, Maculan, Discr. ippl. Math. 2007]
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Computational experiments
AMPL and Baron
» Certifying YES
» 1 =6, K = 2: FAIL, CPU time limit (100s)
» n =12, K = 3: FAIL, CPU time limit (100s)
» n =24, K = 4: FAIL, CPU time limit (100s)
» Certifying NO
» n =7, K = 2:FAIL, CPU time limit (100s)
» =13, K = 3: FAIL, CPU time limit (100s)
» 5 =25 K = 4: FAIL, CPU time limit (100s)
Apparently even more useless
But more informative (arccos o = min. angular sep)

Certifying YESbya > 1
> n=06,K =2:0K, 0.06s
> n=12,K = 3: 0K, 0.05s
> =24 K = 4: OK, 1.48s
> n =40, K = 5: FAIL, CPU time limit (100s)
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What about polar coordinates?

> VZS’I”L Ii:(xily---axiK)’_)(192'1;---’191‘,](—1)
» Formulation

K—1

() VE<K psinﬁi,k_lncosﬁih = T
h=k

(1) Vi<j<n |loi—zl3 > p

Vi<n k<K (sin(ﬂik))Q—l-(cos(z?ik))Q =1

(optional) p = 1

Only need to decide s;;, = sinv;;, and ¢;, = cos ¥y,
Replace z in (f) using (1): get polyprogin s, ¢
Numerically more challenging to solve (polydeg 2K)
OPEN QUESTION: useful for bounds?

357/392



Subsection 2

Upper bounds from SDP?
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SDP relaxation of Euclidean distances

» Linearization of scalar products
\V/Z,jSTL IL‘i'l'j—>Xij

where X is ann x n symmetric matrix
> ||sz§ =z 1 = Xy
> ||z — %HQ 4|3 + H%Hz 2z; -5 = Xi + Xj5 — 2X5
» X =zzx' = X — 22" = 0 makes linearization exact

» Relaxation:

X — a2 = 0= Schur(X,2) = e a! =0
—_ b :1; X —_
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SDP relaxation of binary constraints

> Vi<n «€{0,1} & ol =q

> Let Abe ann x n symmetric matrix
» Linearize o;a; by A;; (hence o by A4;))
» A = oo makes linearization exact

» Relaxation: Schur(A, ) = 0
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SDP relaxation of [MMS95]

max Yo \
i=1
\4) <j S n Aij S %
VZ<]§77, Aij > C)éi+04j—1
Schur(X,z) = 0
Schur(A,a) = 0
Vi<n voe [-1,1K
a € [0, 1]
X e [-1,1”
A e [0,)” )
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Computational experiments

» Python, PICOS and Mosek
or Octave and SDPT3

» bound always equal ton

» prominent failure :-(
| 4

» can combine inequalities to remove A from SDP

Vi < ] Xii + ij — ZXZ']'

(then eliminate all constraints in A)

» integrality of o completely lost
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SDP relaxation of [KBLLMO7]

max a
Vi<n X = 1
X e [-1,1]”
X =0
a > 0
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Computational experiments

With K =2
n 7(1* ¢ "knpsdpfeas2D,out' using 132 ——
2 | 4.00
3 | 3.00
4| 2.66
5| 250 |
6 | 240 .
71 233 : \
8| 228 b
9| 225 \
10 | 222 \
11 | 220 ~
12 | 218 ~
13| 216 \\\\\
14| 215 —
15| 214 g : : : S 5 5 .
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Computational experiments

With K =3

Always — 22
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An SDP-based heuristic?

1. X* € R": SDP relaxation solution of [KBL.MO7]
2. Perform PCA, get z € R
3. Local NLP solver on [KBLMO7] with starting point z

However...
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The Uselessness Theorem

Thm.
1. The SDP relaxation of [KBLMO7] is useless

2. Infact, it is extremely useless

1. Part 1: Uselessness

» Independent of K:
no useful bounds in function of K

2. Part 2: Extreme uselessness
(a) For all n, the bound is 2"

n—1

(b) Jopt. X* with eigenvalues 0, "+, ..., 5

By 2(b), applying MDS/PCA makes no sense
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Proof of extreme uselessness

Strategy:
» Pull a simple matrix solution out of a hat
» Write primal and dual SDP of [KBLMO7]
» Show it is feasible in both
» Hence it is optimal

> Analyse solution:
>
> its objective function value is 2n/(n — 1)
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Primal SDP

V1 <i<j<nletB;; = (1;;) and 0 elsewhere

quantifier | natural form standard form dual var
max a max o
Vi<n | X; =1 E,eX =1 U;
Vi <j <n ){',','Jr)\’j_/‘ 72X,‘J >« Aij .X+Oé§0 Wi j
Aij = =EBi; — Ej; + Bij + Eji
Vi<j<n|X;<I1 (Bij + Eji) @ X <2 Yij
Vi < i<n X,J > —1 (_Eij — Eﬂ) e X <2 Zij
X >0 X >0
a>0 a>0
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Dual SDP m Z e

1<J ) . 0
GA) >
Zq Eji)+wz] ij
Yij — z]
ZU'LE”‘FZ sz] 2 |
1<J
1<J
w,y,z >0
v=y— 2 |
| B 2 "UzJ
Simplify [v] mmzuﬁ g |
—
=
Z (% l] jl +w1] 1,
E; + i |
Zuz i1 “ Zwij 2
i<j
w,v >0
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Pulling a solution out of a hat

o = 2n
n—1
n 1
X" = I, — n
n—1 n—1
ut = 2
n—1
wt = L
n(n —1)
vt = 0
where 1,, = all-onen X n matrix
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Solution verification

» linear constraints: by inspection
> X = 0: eigenvalues of X* are0, =, ..., "=

’n—1

> > wibi + Zi<j(v2] (Eij — Eji) "‘ leAlJ) = 0:

Z u; By + Z wl]AU

1<J

- Eu A'L

n—lg n—l% J

21+ ! (—(n—=1I,+ (1, —1,))
= n ——~({—n—- n n — 1n

n—1 n(n —1)

1

= —1,>~0

n(n —1)
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Corollary

lim v(n, [KBLMOT]) = Tim —2"

n—oo n—oo 1, —

=2

as observed in computational experiments
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Subsection 3

Gregory’s upper bound
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Surface upper bound

Gregory 1694, Szpiro 2003
Consider a kn(3) configuration

inscribed into a super-sphere of
radius 3. Imagine a lamp at the
centre of the central sphere that
casts shadows of the surround-
ing balls onto the inside sur-
face of the super-sphere. Each
shadow has a surface area of 7.6;
the total surface of the super-
ballis 113.1. So % =14.9isan
upper bound to kn(3).
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Subsection 4

Delsarte’s upper bound
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Pair distribution on sphere surface
» Spherical z-codeChasz; - z; < z(i < j <n=]|C|)

1
vte[-1,1] or=—[{(ig) [i,j <nAmiz; =1}

» t-code:leto, = 0fort € (1/2,1)
» |C| = n < oc: only finitely many o, # 0

2
/ oudt = Z o= — |all pairs| = LR
[7171} n

[—1,1]

1
oL = —Nn
n

Vte (1/2,1) oy
Vte [-1,1] o
{or>0]te[-1,1]}

AN
g © o =
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Growing Delsarte’s LP

» Decision variables: o, for < |1 1]
» Objective function:

max |[C| = maxn = max Z oy
g

= 0y + max Z o = 14+ max Z o
7 tel-1a/2) 7 tel-11/2)

Note n not a parameter in this formulation

» Constraints:

Vie[-1,1/2] ,>0

» [P unbounded! — need more constraints
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Gegenbauer cuts

>

v

Look for function family .# : [-1,1] — Rs.t.

VoeZ ) ¢(t)oy >0

te[—1,1/2]

Most popular .#: Gegenbauer polynomials G}

Special case GE = P]"7 of Jacobi polynomials where = (1 - 2)/2)
pe h+a\ (h+p3 i -
}zﬂ_2h2< )( 1)(t+1)(t_1)}

Matlab knows them: G (t) = gegenbauerC(h, (K — 2)/2,t)

Octave knows them: Gf (t) = gs1_sf_gegenpoly_n(h, £52,1)

need command pkg load gsl before function call

They encode dependence on K
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Delsarte’s LLP

» Primal:
1 4+ max oo ooy
te[-1,3]
Vh € H Zl GE(t)oy > —GE(1) 3 [DelP]
vt e [-1, 3] e o, > 0.
» Dual:
1+min Y (=GK(1))d,
vt e [-1, 1] heHz GEt)d, > 1 }[DelD]
Vh € H < d, < 0

380/392



Delsarte’s theorem

» [Delsarte et al., 1977]

Theorem
Letdy > 0and F : [-1,1] — R such that:

(i) 3H € (NU{0}) andd c R > 0
sLE() = 3 dyGE(t)
heH
(i) Vte|-1z F(t)<0

Then kn(K) < %}1)

» Proofbased on properties of Gegenbauer polynomials
» Best upper bound: min F'(1) /dy = énirll F(1) = [DelD]
o=

» [DelD] “models” Delsarte’s theorem
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Delsarte’s normalized LP (G# (1) = 1)

» Primal:

1+ max Z O
te[-1,3]
Vhe H Z GhK(t)Ut
te[—1,1]
Vi e [-1, 3] oy

» Dual:

Lfmin ¥ (~1)dy
heH

vte[-1,3] X Gi(t)dn
heH

Vh € H dy,

» dy =1 = remove (Jﬁ‘om H

v

v

v

IN

—1 7 [DelP]
0
1 7 [DelD]
0
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Focus on normalized [DelD]

Rewrite —d;, as dy:

1 + min > dy
heH
vie[-1,4] X GrE(t)d, < —1 p[DelD]
heH
Vh € H d, > 0

Issue: semi-infinite LP (SILP) (how do we solve it?)
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Approximate SILP solution

vy

Only keep finitely many constraints
Discretize [—1, 1] with a finite T C [—1, 1]
Obtain relaxation [DelD]:

val([DelD]7) < val([DelD])

Risk: val([DelD];) < min F'(1)/dy
not a valid bound to kn(K)

Happens if soln. of [DelD]; infeasible in [DelD]

i.e. infeasible w.r.t. some of the coly many removed constraints
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SILP feasibility

» Given SILP S = min{c'z | Vi € [ a] x < b;}

» Relaxto LP S = min{c'z | Vi € [ a] x < b;}, where 1 T
> Solve S, get solution z*

» Lete = max{a2* —b; | i € I}

‘ continuous oplimization w.r.t. single var. i ‘

» Ife < 0then z* feasible in S
= val(S) < c'a*

» If e > Orefine S and repeat
> Apply to [DelD], get solution d* feasible in [DelD]

385/392



| DelD] feasibility

1. Choose discretization T of [—1,1/2]

2. Solve
1 4 min > dp
heH
vteT > GE(t)d, < -1 }I[DelDIly
heH
Vh € H d, > 0

get solution d*

3. Solve e = max{1 + > GE(t)d, |t € [-1,1/2]}

heH

4. If € < 0then d* feasible in [DelD]
= kn(K) <143 end;

5. Else refine T and repeat from Step 2

386/392



Subsection 5

Pfender’s upper bound
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Pfender’s upper bound theorem

Thm.
LetC, = {z; e SE7 |i<nAVj#i(z; zj<2)}¢0>0;f:[-1,1] = Rs.t
@ > flzi-z;)>0 (1) f(t) +co <Ofort € [-1,2] (i) f(1)+eo <1

i,j<n
Thenn < -
Co

([Pfender 2006])
Letg(t) = f(t) + co

n?coy < nPco+ Z flzi - xy) by (i)

ij<n
= Z(f(%'%)‘f‘co): Z 9(w; - j)
i,j<n i,7<n
< Z:g(xz - x4) since g(t) < O0fort < zandx; € C, fori <n
i<n
= ng(1) since ||z;||2 = 1fori <n
< n since g(1) < 1.
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Pfender’s LLP

» Condition (i) of Theorem valid for conic combinations of
suitable functions F:

f) = Z cnfrn(t) forsomecy, >0,

heH

e.g. F = Gegenbauer polynomials (dgaul)

» Get SILP
max o (minimize 1/cq > n)
ceRIH|
vte[-1,2] Y enGE(t)+ec < 0 (D)
heH
YoenGEQ) +eo < 1 (i)
heH
Vhe H ¢, > 0 (coniccomb.)

» Discretize [—1, z] by finite T, solve LP, check validity (again)
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Delsarte’s and Pfender’s theorem compared

» Delsarte & Pfender’s theorem look similar:

Delsarte ‘ Pfender

(@) F(t) G. poly comb @) f(t) G. poly comb

)Vt e [—1,2z] F(t) <0 | (i)Vte[-1,2] f(t)+co <0
(i) f(1) +co <1

= kn(K) < £ = kn(K) <

v

Trysetting F'(t) = f(t) 4 co: condition (ii) is the same

» By condition (iii) in Pfender’s theorem

f(l) + CO< 1

F(1)
< =
kn(K) < i - o

= Delsarte bound at least as tight as Pfender’s

» Delsarte () = [, | F(t)dt > 0= [, ;(f(t) +co)dt >0
Pfender (i) = f[71 1 f(t)dt > 0 more stringent

» Delsarte requires weaker condition and yields tighter bound
Conditioned on F'(t) = f(t) + co, not a proof! Verify computationally
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The final, easy improvement

> However you compute your upper bound B:

» The number of surrounding balls is integer
» Ifkn(K) < B,theninfactkn(K) < | B
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THE END
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