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What is Mathematical Programming?

» Formal declarative language for describing
optimization problems

» As expressive as any imperative language
» Interpreter = solver

» Shifts focus from algorithmics to modelling
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Syntax

» A valid sentence:

min  x; + 2z — log(x1xs)
2
T35 > 1
To € N.

» An invalid one:

min -+ 21 + +sincos )

Tyy = Loy

i<z
Ty # Ty
1 < Ia. )
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MINLP Formulation

Given functions f,g1,...,9, : Q" > Qand Z C {1,...,n}

min  f(x)
Vi<m g(x) 0 [P]
VJ ez €y Z

m IN

> oz) =0 & (¢(z) S0A—¢(z) <0)
» L<z<U <& (L-z<0Az—-UZ<D0)

> f,gi represented by expression DAGs

o 2 O
! Log (14) \>
! B g

Class of all formulations P: MP
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Semantics

» Given P € MP, there are three possibilities:
[P] exists, P is unbounded, P is infeasible

» Pis feasible iff [ P] exists or is unbounded
otherwise it is infeasible

» P has an optimum iff [ P] exists

otherwise it is infeasible or unbounded
Are feasibility and optimality really different?

» Feasibility prob. g(x) < 0:
can be written as MP min{0 | g(x) < 0}

» Bounded MP min{f(z) | g(z) < 0}:
bisection on fyin f(z) < fy A g(xz) <0

» Unbounded MP: not equivalent to feasibility
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Example

P = min{x; + 2x9 — log(z1x2) | a:lx% >1AN0<z; <1Azy €N}

2 4 6 8 10

[P] = (opt(P), val(P)) opt(P) = (1,1) val(P) = 3
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Solvers (or “interpreters”)
» Take formulation P as input
» Output [P] and possibly other information
» Trade-off between generality and efficiency

(i) LiNeaAR PRoGrRaMMING (L.P)
f,g;linear, Z = @

(i) Mxep-INTEGER LP (MILP)
f,g: linear, Z # @

(i11) NoNLINEAR PROGRAMMING (NLP)
some nonlinearity in f, g;, Z = @

f, g; convex: convex NLP (cNLP)
(iv) Mixep-INTEGER NLP (MINLP)

some nonlinearity in f, g;, Z # @
f, g; convex: convex MINLP (cMINLP)

» Each solver targets a given class
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Some application fields

» Production industry
planning, scheduling, allocation, ...

» Transportation & logistics
facility location, routing, rostering, ...

» Service industry
pricing, strategy, product placement, ...

» Energy industry (a/l of the above)
» Machine Learning & Artificial Intelligence
clustering, approximation error minimization
» Biochemistry & medicine
protein structure, blending, tomography, ...

» Mathematics
Atssm,g number, p ackmg o f g(),()m(zlrl,ca[ ()[)J(’cls.. .
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Can we solve MPs?

» “Solve MPs”: is there an algorithm D s.t.:

unbounded P isunbounded
[P] otherwise

infeasible P is infeasible
VP eMP D(P)=

» Le. does there exist a single, all-powerful solver?
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Formal systems (F'S)

» A formal system consists of:

» an alphabet

» aformal grammar
allowing the determination of formulce and sentences

» aset A of axioms (given sentences)

» aset R of inference rules
allowing the derivation of new sentences from old
ones

» A theory T is the smallest set of sentences that is
obtained by recursively applying R to A

12/307



Example: PA1

» Theory: Ist order sentences about N
» Alphabet: +, x, A,V,V,3, -, =, 5(-) and variable names
» Peano’s Axioms:

1. Va (0 # S(z))

2. Y,y (S(z) = S(y) >z =)

3. Ve (z+0=u2x)

4. Vz (x x0=0)

5. Va,y (x4 S(y) = Sz +y))

6. Vr,y (r x S(y) =2 xy+x)

7. axiom schema over all (k + 1)-ary ¢: Vy = (y1,...,yx)

(¢(0,y) AVao(z,y) — ¢(S(x),y)) = Vap(z,y)

> Inference: see
https://en.wikipedia.org/wiki/List_of_rules_of_inference
e.g. modus ponens (P — Q) AN P) — Q)

>

e.g. dz € N" Vi (p;(z) < 0) (polynomial MINLP feasibility)
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https://en.wikipedia.org/wiki/List_of_rules_of_inference

Example: Reals

» Theory: polynomial systems over R
» Alphabet: +, x, A, V,V, 3, =, <, <,0, 1,variable names
» Axioms: field and order

» Inference: see
https://en.wikipedia.org/wiki/List_of_rules_of_inference

e.g. modus ponens (P — Q) A P) — Q)
» Generates polynomial rings R[X, ... . X, (for all k)
e.g.dz € R" Vi (p;(z) < 0) (polynomial NLP feasibility)
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https://en.wikipedia.org/wiki/List_of_rules_of_inference

The use of formal systems

Givena FS F:

>

v

A decision problem is a set P of sentences
Decide if a given sentence f belongs to P
Decidability in formal systems:
P = provable sentences
Proof of f: finite sequence of sentences ending with f; sentences
either axioms or derived from predecessors by inference rules
PA1: decide if sentence f about N has a proof
PA1 contains 3z € Z" Vi p;(x) <0  (polyp)
Reals: decide if sentence f about R has a proof
Reals contains 3z € Z" Vi p;(z) <0  (poly p)
Formal study of MINLP/NLP feasibility
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Decidability, computability, solvability

» Decidability: applies to decision problems
» Computability: applies to function evaluation
» Isthe function f, mapping i to the i-th prime integer,
computable?
» Isthe function g, mapping Cantor’s CH to 1 if provable in
ZFC axiom system and to O otherwise, computable?
» Solvability: applies to other problems

E.g. to optimization problems!
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Completeness and decidability

» Complete FS F:
for f € F, either f or —f is provable
otherwise F is incomplete
» Decidable F'S F:
Jalgorithm D s.t.

D(f)=1 iff f is provable
vre ]:{ D(f) =0 iff fisnot provable

otherwise F is undecidable
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Example: PA1

» Godel’s Ist incompleteness theorem:
PAlisincomplete

» Turing’s theorem: PAl is undecidable

» PAlisundecidable and incomplete
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Godel’s 1st incompleteness theorem

» F:any FS extending PA1

» Thm.| F is either incomplete or inconsistent

» ¢: sentence “¢ not provable in 7~
denoted F \/ ¢; it can be constructed in F; hard part of thm.

» Assume F is complete: either F - ¢ or F F —¢

» If F-¢ then F + (F I/ ¢) i.e. F/¢, contradiction

» fF - —¢then F+~(Fto)ie. F- (FE o)
this implies F - ¢,i.e. F - ¢ A ~¢, F inconsistent

» Assume F is inconsistent: any sentence is provable,
i.e. F complete
details: 0 = 1, hence 0 V ¢p and 1 V ¢, hence (0 A 1) V 9, i.e. ¥, and

symmetrically for =1, for any v

» WARNING: Fi/6 2 F F —¢
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Turing’s theorem

» Turing Machine (TM): computation model

» infinite tape with cells storing finite alphabet letters
» head reads/writes/skips i-th cell, moves left/right

» states=program (e.g. if s write 0 & move left)

» initial tape content: input, final tape content: output
» final state L: termination; @ nonterm.

» TM dynamics can be written in PA1 statements

» Any PA1 sentence p(z) can be represented by TM:
while(1) i=0; if p(x) return YES; else i=i+1
only terminates if true; loops forever if false

» Juniversal TM (UTM) representing all PA1 sentences

» TM termination < decidability in PA1

» Harting ProBLEM (HP):

TM M & input z,is M (z) = L?
HP is undecidable

v
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Turing’s theorem

» enumerate all TMs: (M | i € N)

1 M(z)=L1
0 Mi(z)=2
» show H # F for any computable F'(i, x):

gy - | O Fl=0

G is partial computable because I is computable
» let M, be the TM computing G
» consider H(y,y):
» if F(y,y) = 0then G(y) =0
soM,(y)=Land H(y,y) =1
» if F(y,y) # 0then G(y) is undefined
S0 J\[u(y) @and H(y,y) =0

» so H(y,y) # F(y,y) forally
» H is uncomputable = PAl is undecidable

» halting function H (i, z) = {
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Example: Reals

v

Tarski’s theorem: Reals is decidable

Algorithm:

constructs solution sets (YES) or derives contradictions(NO)
= provides proofs or contradictions for all sentences!

v

v

= Reals is complete

v

Reals is decidable and complete
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Tarski’s theorem

» Algorithm based on quantifier elimination

» Feasible sets of polynomial systems p(z) < 0
have finitely many connected components

» Each connected component recursively built of
cylinders over points or intervals

extremities: pls., 00, algebraic curves at previous recursion levels

» In some sense, generalization of Realsin R*
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Dense linear orders

Given a sentence ¢ in DLO
» Reduce to DNF 3z; ¢;(x) with ¢; = A ¢;;
» Each ¢;; has form s = t or s < ¢ (s, ¢ vars or consts)
» s,tboth constants:
s < t,s = tverified and replaced by 1 or 0
» s,tthe same variable z;:
s < treplaced by 0, s = t replaced by 1
» if sisx; and ¢ is not:
s = t means “replace z; by t” (eliminate ;)
» remaining case:
gi conj.of s < x;and z; < t:
replace by s < ¢ (eliminate x;)

» ¢; no longer depends on z;, rewrite 3z; ¢; as ¢;
» Repeat over vars. z;, obtain real intervals or contradictions

Quantifier elimination!
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Decidability and completeness

» PAlisincomplete and undecidable

» Realsis complete and decidable
» Are there F'S F that are:

» incomplete and decidable?
» complete and undecidable?
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Incomplete and decidable (trivial)

» Nolnference:
Any FS with <oo axiom schemata and no inference rules

v

Only possible proofs: sequences of axioms

v

Only provable sentences: axioms

v

For any other sentence f: no proof of f or —f

v

Trivial decision algorithm:
given f, output YESif f is a finite axiom sequence,
NO otherwise

» Nolnference is decidable and incomplete
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Incomplete and decidable (nontrivial)

>

ACF: Algebraically Closed Fields (e.g. C)

field axioms + “every polynomial splits” schema

ACF decidable by quantifier elimination

ACF,: ACF UAXIOM(C, = [>" 1 =0]) (p prime)

J<p

Vp (prime) C, independent of ACF =

= decidability as in ACF

3 fields of every prime characteristic p

= each ACF,, satisfies C, and negates C, for q # p

In ACF, no proof of C, nor ~C, possible

Decision alg. D(v)) for ACF:
» if ¢ = C) or ~C), for some prime p, return NO
» else run quantifier elimination on 1

ACF is decidable and incomplete

if ACF axioms include —~C, for all p, then ACF complete
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Complete and undecidable (impossible)

» F'S F complete:

Vi) € F 3 proof of ) or —1)
» Proofs are finite sequences of sentences
» Algorithm D:

1. iteratively generate all (countably many) proofs
combine axioms w/inference rules and repeat

2. for each new sentence 7,is 7 = ¢ or 7 = —)?
Return 1 or 0 and break; else continue

» D terminates because F is complete
» 1f FSis complete, then it is decidable
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The two meanings of completeness

» WARNING!!!
“complete” is used in two different ways in logic
1. Godel’s Ist incompleteness theorem
FS F complete if ¢ or —¢ provable V¢

2. A:sentences; R: inference rules
Acompletewrt Rift AF = AF ¢
» AE:qpis logically valid
never false for any I'S w/axioms A and infer. rules R
» Godel’s completeness theorem: FOL is complete

» Pay attention when reading literature/websites
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Undecidability & Incompleteness

» |[Nonexistence of a proof for f] # [Proof of — f]
IfFS decidable & incomplete, decision alg. answers NO to f and
~f for f independent

» Information complexity:
decision = 1 bit, proof = many bits

» Undecidability and incompleteness are different!
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Is MP solvable?

» Hilbert’s 10th problem: is there an algorithm for

solving polynomial Diophantine equations?

» Modern formulation:

» [Matiyasevich 1970]: NO

can use them to model UTM dynamics
» Let p(a, z) = 0 be a Univ. Dioph. Eq. (UDE)
» min{0 | p(a, ) = 0} is an undecidable (feasibility) MP

» min(p(e, z))? is an unsolvable (optimization) MP
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Worst-case algorithmic complexity

» Computational complexity theory:
worst-case time/space taken by an algorithm to complete
» Algorithm A
» e.g.to determine whether a graph G = (V, E) is
connected or not
» input: G; size of input: v = |V| + |E|
» How does the CPU time 7(.A) used by A vary with ?
» 7(A) = O(v*) for fixed k: polytime
» 7(A) = O(2”): exponential
» polytime « efficient
» exponential <> inefficient
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Polytime algorithms are “efficient”

» Why are polynomials special?
» Many different variants of Turing Machines (TM)
» Polytime is invariant to all definitions of TM

» Inpractice, O(v)-O(v?) is an acceptable range
covering most practically useful efficient algorithms

» Many exponential algorithms are also usable in
practice for limited sizes
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Instances and problems

» An input to an algorithm A: instance
» Collection of all inputs for A: problem

consistent with “set of sentences” from decidability
» BUT:

» A problem can be solved by different algorithms
» There are problems which no algorithm can solve

» Given a problem P, what is the complexity of the best
algorithm that solves P?
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Complexity classes

» Focus on decision problems
» If 3 polytime algorithm for P, then P € P

» If there is a polytime checkable certificate for all YES
instances of P, then P € NP

» No-one knows whether P = NP (we think not)

» NP includes problems for which we don’t think a
polytime algorithms exist
e.g. k-CLIQUE, SUBSET-SUM, KNAPSACK, HAMILTONIAN
CYCLE, SAT, ...
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Subsection 1

Some combinatorial problems
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k-CLIQUE

» Instance: (G = (V, E), k)
» Problem: determine whether G has a clique of size k

@ 3

» 1-cLiquE? YES (every graph is YES)

» 2-cLiQuE? YES (every non-empty graph is YES)
» 3-cLIQUE? YES (triangle {1, 2,4} is a certificate)
certificate can be checkedin O(k) < O(n)

» 4-cLiQuE? NO
no polytime certificate unless P = NP
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MP formulations for cLIQUE

Variables? Objective? Constraints?
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MP formulations for cLIQUE

Variables? Objective? Constraints?
» Pure feasibility problem:

2T =
€V

r € {0,1}"
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MP formulations for cLIQUE

Variables? Objective? Constraints?
» Pure feasibility problem:

Vi, j} ¢ E xi+r; <
> T =
eV

xr €
» Max CLIQUE:
max Y. ¥
=%

Wi,j} ¢ B wi+x; <

xr €

{0, 13"

1
{0, 13"
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SUBSET-SUM

» Instance: lista = (a1,...,a,) € N"andb € N

» Problem: isthere J C {1,...,n}suchthat > a; = 0?
jeJ

» a=(1,1,1,4,5),b =3: YES J = {1,2,3}
allb € {0,...,12} yield YES instances

> a=(3,6,9,12),b = 20: NO
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MP formulations for SUBSET-suMm

Variables? Objective? Constraints?
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MP formulations for SUBSET-suMm

Variables? Objective? Constraints?
» Pure feasibility problem:

Zajxj = b }

ji<n
r € {0,1}"
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KNAPSACK

>

>

Instance: c,w € N, K € N
Problem: find J C {1,...,n}s.t.¢(J) < Kandw(J) is

maximum

c=(1,2,3),w=(3,4,5),K =3

» ¢(J) < K feasible for Jin @, {j},{1,2}
» w(@) =0,w{1,2})=3+4="7T,w({j}) <5forj<n
= Jmax = {1,2}

K = 0: infeasible

natively expressed as an optimization problem

notation: c¢(J) = >~ c; (similarly for w(J))
JEJ
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MP formulation for KNAPSACK

Variables? Objective? Constraints?
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MP formulation for KNAPSACK

Variables? Objective? Constraints?

max Z U)jil?j
Jj<n
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HamiLTONIAN CYCLE

» Instance: G = (V, E)
» Problem: does G have a Hamiltonian cycle?

cycle covering every v € V exactly once

NO YES(ccrl.1~>2~>5~>3~>4~>1)

G) : G) °
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MP formulation for HaAmiLToONIAN CYCLE

Variables? Objective? Constraints?
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MP formulation for HaAmiLToONIAN CYCLE

Variables? Objective? Constraints?

Jjev
{i,j}€E

eV
{i,j}€E

i€S,jgs
{i.j}eE

WARNING: second order statement!

quantified over sets

other warning: need arcs not edges in (1)-(3)
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SATISFIABILITY (SAT)
» Instance: boolean logic sentence f in CNF
A VG
i<m jeC;

where (; € {z;,z;} forj <n
» Problem: isthere ¢ : + — {0, 1}" s.t. ¢(f) = 17

> fE (xl\/fg\/.T?))/\(.’fl\/(L’g)
r1 = 22 = 1,23 = 0is a YES certificate
» = (21 Va) ATy VI) A (T V) A (21 V To)

¢ || z=(1,1) | 2=(0,0) | x=(1,0) | = (0,1)
false CQ C1 03 04
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MP formulation for sart

Exercise
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Subsection 2

NP-hardness
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NP-Hardness

» Do hard problems exist? Depends on P # NP
» Next best thing: define hardest problem in NP

» A problem P is NP-hard if
Every problem @ in NP can be solved in this way:

1. given an instance g of Q) transform it in polytime to
an instance p(q) of P s.t. ¢is YES iff p(q) is YES
2. run the best algorithm for P on p(q), get answer

a € {YES,NO}

3. return o
pis called a polynomial reduction from Q to P
» If Pisin NP andis NP-hard, it is called NP-complete
» Every problem in NP reduces to sat [Cook 1971]
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Cook’s theorem

Theorem 1:

S of strings is

accepted by some nondeterministic Turing
machine within polynomial time, then S
is P-reducible to {DNF tautologies}.

Boolean decision variables store TM dynamics

Proposition symbols:

i :
Ps,t’ for 1s+isg, 1s<s,t<T.

P; t is true iff tape square number s
B

at step t contains the symbol
i

Qe

true iff at step t the machine is in

state q;.

S for 1s<s,tsT is true iff at

s,t

time t square number s is scanned

by the tape head.

Definition of TM dynamics in CNF

B, asserts that at time t one and

only one square is scanned:

By = (S ¢ vSy,p v rer VSp ) &

&  (s; . vAs: )]
1<i< j<T it It

for 1<isr, 1<t<T. Qt is

G:F.,' asserts
that if at time t the machine is in
state q; scanning symbol oj, then at
time t + 1 the machine is in state Qs
where ax is the state given by the

transition function for M.
t

G, ; = E (1t vas. . vard vk
i,j o= t s,t s,t t+1

1

Description of a dynamical system using a declarative program-
ming language (sat) — what MP is all about!
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Cook’s theorem: sets and params

v

Reduce nondeterministic polytime TM M to MILP
» Tuple (Q,%, s, F,0):
states, alphabet, initial, final, transition
» Transitionrelationd: (Q ~ F x X) x (Q x X x {—1,1})
» M polytime: terminates in p(n)
n size of input, p(-) polynomial
» Index sets:
states ), characters ¥, tape cells /, steps K

K| = O(p(m), 11| = 2K
» Paramelers:
initial tape string 7; = symbol j € X in cell s
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Cook’s theorem: decision vars

» Viel,jeX ke K

tijr = lifftape cell i contains symbol j at step k
» Viel,ke K

hi. = 1iffheadis at tape cell i at step k
» Ve @, ke K

g, = 1iff M isin state { at step k
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Cook’s theorem: constraints (informal)

1. Initialization:

L.l initial string 7 on tape at step k = 0
1.2 M in initial state s at step k = 0
1.3 head initial positiononcelli =0atk =0

2. Execution:

2.1 Vi, k: cell i has exactly one symbol j at step &

2.2 Vi, k: if cell i changes symbol between step k and
k + 1, head must be on cell i at step k

2.3 Vk: M is in exactly one state

2.4 Vk,i,j € X: cell i and symbol j in state k lead to
possible cells, symbol and states as given by ¢

3.1 M reaches termination at some step k£ < p(n)

53/307



Cook’s theorem: constraints (informal)

1. Initialization:

L1 Vi (tig0 = 1)
1.2 ds,0 = 1
13 hoo =1
2. Execution:
21 Vi, b (3 tige = 1)
22 Vi, j# 3k <pn) (tijetig gt = hir)
23 Vk Y, hay = 1
2.4 Vi l, . k
(hik qex tijie = > Pitdk+1 Qe kr1 tivd g kv1)
((€,9),(¢',5",d)) €6

3. Termination:

31> ap=1
kfEF
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Cook’s theorem: conclusion

Nonlinear constraints can be linearized:
z=ayANz,y € {0,1} Az €[0,1] =
z<zANz<yANz>z+y—1Aze{0,1} Aze]0,1]
MILP is feasibility only

MILP has polynomial size

= MILP is NP-hard

v

v

v

v
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Reduction graph
After Cook’s theorem
To prove NP-hardness of a new problem P, pick a known NP-hard

problem () that “looks similar enough” to P and find a polynomial
reduction p from @ to P [Karp 1972]

Why it works: suppose P easier than Q, solve Q by calling p o Alg . conclude Q as easy as P, contradiction
56/307



Example of polynomial reduction

» STABLE: given G = (V, E) and k € N, does it contain a stable
set of size k?

» We know k-cLIQUE is NP-complete, reduce from it

» Giveninstance (G, k) of cLIQUE consider the complement

graph (computable in polytime)

G=(V.E={{i,j}|i.j€VA{ij}¢E})

» Thm.: G has a clique of size k iff G has a stable set of size k
» p(G) = Gisapolynomial reduction from cLIQUE to
STABLE

» = sTABLE is NP-hard

» STABLE is also in NP
U C Visastable set iff E(G[U]) = @ (polytime verification)

» = STABLE is NP-complete
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MILP is NP-hard (from sAT)

» sATis NP-hard by Cook’s theorem, Reduce from satin

CNF
AV

where /; is either z; or 7; = —z;
» Polynomial reduction p

SAT ‘ Zj :i'j \ A

» E.g. pmaps (21 V 23) A (T2 V 23) to

min{0 | x1 + 22 > 1 Axg — 22 > 0A 2 € {0,1}%}

» saTis YES iff MILP is feasible

(same solution, actually)
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Complexity of Quadratic Programming

min ' Qr + c'x
Axr > b

» QUADRATIC PROGRAMMING = QP

» Quadratic objective, linear constraints, continuous
variables

» Many applications (e.g. portfolio selection)
» If Q PSD then objective is convex, problem is in P
» If Q has at least one negative eigenvalue, NP-hard

» Decision problem: “is the min. obj. fun. value < 07”7
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QP is NP-hard

» By reduction from SAT, let o be an instance

> p(o,x) > 1:linear constraints of sat — MILP reduction
» Consider QP
min  f(z) = > z;(1 — ;)

(0,0) > 1 (1)
<<l

o ™

» Claim: o is YES iff val(}) =
» Proof:
» assume o YES with soln. z*, then z* € {0,1}", hence
f(z*) =0, since f(z) >0 for all z,val(t) =0
» assume o NO, suppose val(f) = 0, then (1) feasible
with soln. 2/, since f(2’) = 0then 2’ € {0, 1}, feasible
in saT hence o is YES, contradiction
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Box-constrained QP is NP-hard

» Add surplus vars v to sar—MILP constraints:
plo,z) —1—v=0
(denote by Vi < m (a x — b; — v; = 0))

» Now sum them on the objective

min Y x;(1—x;)+ Y (a]z — by — v;)? }

i<n i<m
0<z<1,v>0
» Issue: v not bounded above

» Reduce from 3saT, get < 3 literals per clause
= can consider 0 < v < 2
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cQKP is NP-hard

> CONTINUOUS QUADRATIC KNAPSACK PROBLEM (CQKP)

min f(z)=2'Qx + c'z

D ajrj =

j<n
x € [0,1]7,
» Reduction from suBSET-sum
givenlista € Q™ and ~,isthere J C {1,... ,n}st. > aj =~?
reduce to f(z) = 3> z;(1 — z;) -
» oisa YES instance of SUBSET-sum
> letzr =1 iff j € J, x; = 0 otherwise
» feasible by construction
> fisnon-negative on [0, 1] and f(z*) = 0: optimum
» oisaNO instance of SUBSET-suM

> suppose opt(cQKP) = z* s.t. f(z*) =0
> thenz* € {0,1}" because f(z*) =0
> feasibility of z* — supp(z*) solves o, contradiction, hence f(z*) > 0
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QP on a simplex is NP-hard

min  f(z)=2"Qr + c'x
Z LL']‘ =1
Jj<n
Vi<n z; > 0
» Reduce Max cLIQUE to subclass f(z) = — >  x;x;
{i.j}€E

Motzkin-Straus formulation (MSF)
» Theorem [Motzkin& Straus 1964]

Let C be the maximum clique of the instance G = (V, E) of MAX CLIQUE
Jo* € opt (MSF)  f* = f(z*) =3 (1 - ﬁ)
{ L ifjecC

@

VieV =g v .
J € o 0 otherwise
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Proof of the Motzkin-Straus theorem

x* =opt( max > xx;) st |C={je€V|x}>0} smallest (})
g[gjl]; iieE .

1.|Cis aclique

» Suppose 1,2 € Cbut {1,2} ¢ E[C],thenz], 2} > 0, can perturb by small
€ € [—xt,xl], getz€ = (x7 + €,25 — ¢, .. .), feasible w.r.t. simplex and bounds

» {1,2} ¢ E = z122 does not appear in f(z) = f(z*) depends linearly on ¢; by
optimality of 2*, f achieves max for ¢ = 0, in interior of its range = f(¢)
constant

> sete = —x7 or = z} yields global optima with more zero components than z*,

against assumption (f), hence {1, 2} € E[C], by relabeling C'is a clique

64./307



Proof of the Motzkin-Straus theorem

x* = opt( max Z zizg) st.|C = {j €V ;27 > 0}| smallest (})

N

O] = w(G)
> square simplex constraint 3, z; = 1, get
Zm?—i—Q Z Tiz; =1

jev i<jev
> by constructionz} = 0forj ¢ C=

w(x*):Z(x;)2+2 Z z Z(x +2f(z")=1

jecC i<jeC jec

» o (x) = 1for all feasible z, so f(x) achieves maximum when Z]-EC(:L“;‘-)2 is
‘(‘ forallj € C

> again by SImplex constraint

1 1
=1m @) =1 I <1 o

jeC

n11n1mum ie. $ =

so f(z*) attains maximum 1 — 1/w(G) when |C| = w(G)
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Copositive programming

» STQP: minz ' Qx : Zj rj=1ANz>0
NP-hard by Motzkin-Straus
» Linearize: X = zz'

» Ae B=1tr(A"B)

write StQP objective as min Q) @ X
» LetC ={X | X =xz2" Az >0},C = conv(O)
> ri=le () =1e1eX =1
» STQP=minQe X :1e X =1AX €(C

» Dual=maxy:Q —yl € C*
C*={A|Vx >0 (x" Az > 0)} (copositive cone)

» = cNLP which is NP-hard!
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Two exercises

» Prove that quartic polynomial optimization is
NP-hard; reduce from one of the combinatorial
problems given during the course, and make sure
that at least one monomial of degree four appears
with non-zero coefficient in the MP formulation.

» As above, but for cubic polynomial optimization.
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Portfolio optimization

You, a private investment banker, are seeing a customer.
She tells you “I have 3,450,000$ I don’t need in the next three
years. Invest them in low-risk assets so I get at least 2.5% re-
turn per year.”

Model the problem of determining the required portfolio.
Missing data are part of the fun (and of real life).

[Hint: what are the decision variables, objective, constraints? What data are missing?]
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Types of MP

Continuous variables:

» LP (linear functions)

> QP (quadratic obj. over affine sets)

> QCP (linear obj. over quadratically def’d sets)
QCQP (quadr. obj. over quadr. sets)

v

v

cNLP (convex sets, convex obj. fun.)
SOCP (LP over 2nd ord. cone)
SDP (LLP over PSD cone)

v

v

v

COP (LP over copositive cone)

v

NLP (nonlinear functions)
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Types of MP

Mixed-integer variables:
» IP (integer programming), MIP (mixed-integer programming)
> extensions: MILP, MIQ, MIQCP, MIQCQP, cMINLP, MINLP
» BLP (LP over {0,1}")
» BQP (QP over {0,1}")

More “exotic” classes:
» MOP (multiple objective functions)
» BLevP (optimization constraints)

> SIP (semi-infinite programming)
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A gemin Distance Geometry

» Heron’s theorem

» Heron lived
around year O

» Hang out at

Alexandria’s library

A= /s(s—a)(s—b)(s—c)

» A =area of triangle
» s=3(a+b+c)

Useful to measure areas of agricultural land
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Heron’S theorem: PrOOfIM.Edwards.high school student, 2007]
A2a+28+2v=2n=a+B+y=m

2o

r4+ix = wue
r+iy = ve
r+iz = we”

= (r4iz)(r+iy)(r+iz) = (uow)e(@+b+7) =
uvw e!™ = —uvw € R
= Im((r +iz)(r +iy)(r +iz)) =0

=iz tyte) =ayz == /15

B.s=31(a+b+c)=az+y+=

s—a = TH+Y+z—yY—z==
s—b = x4+y+z—zr—z=y
s—c = xt+ytz—r—y==z

A:%(ru—krb—krc)zr%m:m: \/3(5—‘1)(3_5)(5_0)
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Subsection 1

The universal isometric embedding
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Representing metric spaces n R"

» Given metric space (X, d) with dist. matrix D = (d;;),
embed X in a Euclidean space with same dist. matrix

» Consider i-throw ¢; = (d;y, ..., d;,) of D
» Embed i € X byvector ), € R"
> Define f(X) = {01,...,6,}, f(d(i,5)) = [ f(D) = F(5)]lo

» Thm.: (f(X), () is ametric space with distance
matrix D

[Kuratowski 1935]
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Proof

» Consider i, j € X with distance d(i, j) = d;;
» Then

(i, ) = [10i=0jllec = max|di—dju| < max|dy| = di;

ineq. < above from triangular inequalities in metric space:

dir < d'i,j + dﬂc/\d‘/k < d'i,j =+ (lzlc:>‘(171\' - (]A/k‘ < dz]

» max |d;, — d;i| over k < nis achieved when

kedi,j} = f(d(i,j)) = dy
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Subsection 2

Dimension reduction
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Schoenberg’s theorem

» [L Schoenberg, Remarks to Maurice Fréchet’s article “Sur
la définition axiomatique d’une classe d’espaces distanciés
vectoriellement applicable sur I’espace de Hilbert”,

Ann. Math., 1935]

» Question: Given n x n symmetric matrix D, what are
necessary and sufficient conditions s.t. Disa EDM!
corresponding to n points z1, ..., x, € RE with K
minimum?

» Maintheorem:

Thm.

D = (dij) is an EDMiiff (d3; + d3; — d2; | 2 < i,j < n)is
PSD of rank K

» Gave rise to one of the most important results in data
science: Classic Multidimensional Scaling

LEuclidean Distance Matrix
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Gram in function of EDM

» 7= (xq,...,2,) C RE, writtenas n x K matrix

» matrix G = zz' = (z; - z;) is the Gram matrix of x

Lemma: G = 0 and each M > 01is a Gram matrix of some

» Avariant of Schoenberg’s theorem
Relation between EDMs and Gram matrices:

G = —%JDQJ (§)
» where D* = (d;) and

J=1I,— 111" =
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Multidimensional scaling (MDS)

v

Often get approximate EDMs D from raw data
(dissimilarities, discrepancies, differences)

» G = —1JD?J is an approximate Gram matrix
» Approximate Gram = spectral decomposition PAP" has A # 0

Let A closest PSD diagonal matrix to A
zero the negative components of A

v

v

r = PvAisan “approximate realization” of D
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Classic MDS: Main result

1. Prove lemma: matrix is Gram iff it is PSD
2. Prove Schoenberg’s theorem: G = —%J D?*J
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Proof of lemma

» Gram C PSD

» zisann X K real matrix
» G = zz ' its Gram matrix
» For each y € R" we have

)

yGy' =yl )y = () (@"y") = (y2)(yx)" = |lyz]} >0

» =G =0
» PSD C Gram

» LetG>=0ben xn
Spectral decomposition: G = PAPT

(P orthogonal, A > 0 diagonal)

A > 0= /A exists

G =PAPT = (P\F)(\F PT) = (P\F)(P\F)
Let 2 = PV/A, then G is the Gram matrix of z

v

v

v

v
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Schoenberg’s theorem proof (1/2)

» Assume zero centroid WLOG (can translate x as needed)
Expand: d?j = |lzs — 2|2 = (w5 — ) (zi — 25) = T2 + T35 — 2235m5 (%)

v

> Aim at “inverting” (x) to express z;z; in function of d?j

0 by zero centroid

> Sum () overi: Yy, d?, =3, xiw; + nxjr; — 235375

» Similarly for j and divide by n, get:

11]

1

— o dy = *ZIIZJFIJ”J ()

n i<n i<n

1 1

o Dody = i+ . Dowir ()
j<n j<n

> Sum () over j, get:
1 ) 1
DITRILS SRS D) S
irj i j i

> Divide by n, get:

2

0,
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Schoenberg’s theorem proof (2/2)

> Rearrange (x), (1), (1) as follows:

QIL'Z'IZ']' = TixTi + TjTj — d?J (4)
1 . 1
wiwi =~ dh -~ ©)
J J
v, = L dgflz"p-:p- (6)
Vaatv} - ., (%] 1bg
n P n :

> Replace LHS of Eq. (5)-(6) in RHS of Eq. (4), get
1 2 1 2 2 2
2z = ; Zdik + E de]- — dij — E kazk
k k k

» By (xx) replace % Z x;x; with n% Z dfj, get
i i,]

1 1
2mizy = — D (d +diy) —di - o} D di ()
% ok

which expresses x;x; in function of D

a
3
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Principal Component Analysis (PCA)

v

Given an approximate distance matrix D

find z = MDS(D)

» However, you want 2 = P+v/Ain K dimensions
but rank(A) > K

Only keep K largest components of A
zero the rest

v

v

v

Get realization in desired space
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Example 1/3

Mathematical genealogy skeleton

Kastrer
Euler
i Paff
Thibaut ) amae Laplamz
*ibius
Fourier Poissor

Guvermanm  Dirksen GawB-l

IR "
WeierstraB Jacobi - Dirichlet

‘ Gerling

Pliag]

Gorban i i
Kovalevslcaya Lipschitz
Klein
Nocther

- T
Livbermars  Furtwiansgler

Hilbert Taussloy-Tooe
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Example 2/3

A partial view

| Euler Thibaut Pfaff  Lagrange Laplace Mobius Gudermann Dirksen Gauss
9

Kastner 10 1 1 8 2 2 2 2
Euler 11 9 1 3 10 12 12 8
Thibaut 2 10 10 3 1 1 3
Pfaff 8 8 1 3 3 1
Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Mobius 4 4 2
Gudermann 2 4
Dirksen 4

0 10 1 1 9 8 2 2 2 2

10 0 11 9 1 3 10 12 12 8

1 11 0 2 10 10 3 1 1 3

1 9 2 0 8 8 1 3 3 1

D= 9 1 10 8 0 2 9 11 11 7

o 8 3 10 8 2 0 9 11 11 7

2 10 3 1 9 9 0 4 4 2

2 12 1 3 11 11 4 0 2 4

2 12 1 3 11 11 4 2 0 4

2 8 3 1 7 7 2 4 4 0



Example 3/3

In2D

ccccc

Mossiu Lagrang®
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Subsection 3

Distance geometry problem
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The Distance Geometry Problem (DGP)

Given K € Nand G = (V, E,d) withd : E — R,
findz : V — RN s,

V{i,j} € B |lz; — ;|5 = d;

/|, drawit so edges are drawn as
2

Given a weighted graph

segments with lengths = weights 1‘ \K? ‘\?
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Some applications

» clock synchronization (K = 1)

» sensor network localization (K = 2)

» molecular structure from distance data (K = 3)
» autonomous underwater vehicles (KX = 3)

» distance matrix completion (whatever K)
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Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial
measurements of their time differences

K=1
V: timestamps

v

v

v

{u,v} € E if known time difference between u, v
d: values of the time differences

v

Used in time synchronization of distributed networks
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Clock synchronization

5 [Atomic clock (S) }

16:27

A C S B

16:21 16:23 16:25 16:27 16:29 16:31

| | | | | | | | | | | |
[ I [ [ [ I I [ I [ I |

16:20 16:22 16:24 16:26 16:28 16:30
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Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to
locate a set of geographically distributed objects using
measurements of the distances between some object pairs

» K =2

» V: (mobile) sensors

» {u,v} € F iff distance between u, v is measured
» d: distance values

Used whenever GPS not viable (e.g. underwater)

dyv % battery consumption in P2P communication betw. u, v

95/307



Sensor network localization
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Molecular structure from distance data
From [Liberti et al., SIAM Rev., 2014]

» K =3

» :atoms

» {u,v} € Fiff distance between u, v is known
» d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)

Covalent bond lengths and angles known precisely

Distances < 5.5 measured approximately by NMR
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Complexity

» DGP, withd : F — Q. isin NP

if instance YES Jrealization 2 € R™*!

if some component z; ¢ Q translate z so z; € Q
consider some other z;

let/ =|sh.pathp:i—jl= > du,c€Q
{u,v}ep
» thenz; =2, +( =2, €Q

» = verification of

vV vV v Vv

Vi g} €E |ai— x| =dy

in polytime

» DGPx may not be in NP for K > 1

don’t know how to verify ||z; — 2|2 = d;; for z ¢ Q¥
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Hardness
ParTITION is NP-hard

iel idl

Givena = (a1,...,a,) e N", ITC{1l,...;n}st. > a; => a;?

» Reduce ParTtITION to DGP;

» a — cycle C
V(C) = {1,....n}, B(C) = {{1,2},... {n,1}}
» Fori < nlet di71'+1 = a;
dn,n—H =dp = ap

>
2 p 3
1 1
1 ) 4
3 e 3
5

[Saxe, 1979]
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ParTITION 1s YES = DGP; 1s YES

» Given: / C {1,...,n}st.> a;=>

icl igl
» Construct: realization z of C'in R

1. 21 =0 // start
2. induction step: suppose z; known
ifiel
let Tiv1 = T + di,i+1 // go right
else
let Tiy1l = Ty — di,i+1 // go left

» Correctness proof: by the same induction
but careful when i = n: have to show x, 1 = x,
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ParTITION 1s YES = DGP; 1s YES

D)= @1 —m) = > diip1=

icl il
SN
il igl
= diig1 = Y (zi—mi41) = (2)
igl igl

1H=(2)= Z(xi+l —x;) = Z(ﬂﬂz —Tiy1) = Z(%‘H — ;) 0
i€l igl i<n

= (Tngr — Tn) + (T — Tp1) + -+ (23 —22) + (x2 —21) = 0

= Tpnt+1 = 1
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ParTITION 1s NO = DGP; is NO

» By contradiction: suppose DGP; is YES, z realization of C'

> F={{u,v} € E(C) | zy <y},
E(C)NF ={{u,v} € E(C) | &y > x4y}

» Trace zy,...,z,: follow edgesin ' (=) and in E(C) \ F (+)

Z (v — zu) = Z (zu — @v)
T4 1 Ts xr3 2 {u,v}EF {u,v}¢F
o L S e
-3 2 -1 0 1 2 3 Z [ = |zu — @]
) {u,v}eF {u,v}¢F
duy = ST duw
{u,v}eF {u,v}¢F

> LetJ={i<n|{i,i+1} e F}U{n|{n,1} € F}
= Zai:Zai

» So J solves Partition instance, contradiction
» = DGP is NP-hard, DGP; is NP-complete
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Number of solutions

> (G, K):DGP instance

» X C RE™: get of solutions

» Congruence: composition of translations, rotations, reflections
» C = set of congruences in R¥

> z ~ymeansdp € C (y = px):
distancesin x are preserved iny through p

» = if [ X] >0, |X]| = 2%
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Number of solutions modulo congruences

» Congruence is an equivalence relation ~ on X
(reflexive, symmetric, transitive)

v

Partitions X into equivalence classes

> X = X/~:sets of representatives of equivalence classes

v

Focus on | X| rather than | X|
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Rigidity, flexibility and | X|

v

infeasible < | X| =0

rigid graph & | X| < R

globally rigid graph < | X| =1

flexible graph < | X| = 2%

| X| = Ng: impossible by Milnor’s theorem

v

v

v

v
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Milnor’s theorem implies | X | # R,

v

System S of polynomial equations of degree 2

Vi<m pi(x1,...,2p5) =0

v

Let X be the set of x € R*¥ satisfying S

v

Number of connected components of X is O(3"K)
[Milnor 1964]

v

Assume | X | is countable; then G cannot be flexible
= each incongruent rlz is in a separate component
= by Milnor’s theorem, there’s finitely many of them
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Examples

Vli=1{1,2,3}

E' = {{u,v} |u < v}

dt=1

V2=viu{4}

E? = E'U {{1,4},{2,4}}

42 = 1/\d14=\/§

Vi=Vv2

E3 = {{u,u+1}ju <3}U{1,4}
dt=1

x1

T4

T3

x2

p congruence in R2
= pz valid realization
X|=1

p reflects za wrt z1, 72
= px valid realization
x| =2 (49

p rotates 7773, Tiza by 6
= pz valid realization
|X| is uncountable

U, ,7,=,..)
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Subsection 4

Distance geometry in MP
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DGP formulations and methods

v

System of equations

v

Unconstrained global optimization (GO)

v

Constrained global optimization

v

SDP relaxations and their properties

v

Diagonal dominance

v

Concentration of measure in SDP

Isomap for DGP

v

109/307



System of quadratic equations

V{u,v} € E ||z, — 2,||* = 42, (7)

Computationally: useless
reformulate using slacks:

H’lln{ Z 812“} | V{U,U} ekl qu_xUHZ = div"i_suv} (8)

{uv}erE
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Unconstrained Global Optimization

mxin Z (N — | _dfw)2 (9)

{uv}eE

Globally optimal obj. fun. value of (9) is 0 iff z solves (7)

» GO solvers from 10 years ago
» randomly generated protein data: < 50 atoms

» cubic crystallographic grids: < 64 atoms
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Constrained global optimization

» min, >, |||z — z,* — d2,] exactly reformulates (7)
{uv}erE
> Relax objective f to concave part, remove constant term,

rewrite min — f as max f

» Reformulate convex part of obj. fun. to convex constraints
» Exact reformulation
max, S lww — 22
{uv}eE (10)
V{w,v} € E |z, —z,|* < d3,
Theorem (Activity)

At a glob. opt. z* of a YES instance, all constraints of (10) are active
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Linearization

= Vi, jt € E a3 + llayll; — 22: - x; = d

N V{i,j} € E Xii + X5, —2X;; = dfj
X = zxal
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Relaxation

X = 2z’
= X—zz" =0
(relax) = X—zz" = 0
IK .’L’T
= -
Schur(X, z) ( X ) = 0

If z does not appear elsewhere = get rid of it (e.g. choose = = 0):

replace Schur(X,z) = 0by X > 0
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SDP relaxation

min F' e X
V{Z,j} elE X;+ ij —2X;; = dZZJ
X =0

How do we choose F?

FeX =Tr(F'X)
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Some possible objective functions

» For protein conformation:
min Z (Xu + ij — QXZ“)
{i,j}€E

With == Changed to 2 iIl COIlStI‘aiIltS (or max and <)
“push-and-pull” the realization

» [Ye, 2003], application to wireless sensors localization
min Tr(X)

Tr(X) = Tr(P7'AP) = Tr(P~1PA) = Tr(A) = 3,

i A
= hope to minimize rank

» How about “just random”?
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How do you choose?

for want of some better criterion...

TEST!

v

Download protein files from Protein Data Bank (PDB)

they contain atom realizations

v

Mimick a Nuclear Magnetic Resonance experiment

Keep only pairwise distances < 5.5

v

Try and reconstruct the protein shape from those
weighted graphs

v

Quality evaluation of results:

> LDE(z) = (max s = ]l = di|
» MDE(z) = i 3 |l — ] — dij |
{i,j}eE
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Objective function tests

SDP solved with Mosek
SDP + PCA
Instance LDE CPU
Name V| |E| ‘ PP Ye Rnd PP Ye Rnd PP Ye Rnd
€07000dd . 1 15 39 3.31 4.57 444 1.92 2.52 2.50 0.13 0.07 0.08
€07000dd.C 36 242 1061 4.85 4.85 3.02 3.02 3.02 | 0.69 0.43 044
€0700.0dd.G 36 308 4.57 4.77 4.77 241 2.84 284 | 0.86 0.54: 0.54
CO150alter.1 37 335 4.66 4.88 4.86 2.52 3.00 3.00 0.97 0.59 0.58
C0080create.1 60 681 17 4.86 4.86 3.08 3.19 3.19 248 146 146
tiny 37 335 4.66 4.88 4.88 2.52 3.00 3.00 0.97 0.60 0.60
1guu-1 150 959 10.20 4.93 4.93 343 343 343 9.23 5.68 5.70
SDP + PCA + NLP
Instance LDE MDE CPU
Name V| |E| PP Ye Rnd PP Ye Rnd ‘ rp Ye Rnd
1b03 89 456 0.00 0.00 0.00 | 0.00 0.00 0.00 8.69 6.28 9.91
lcrn 138 846 0.81 0.81 0.81 0.07 0.07 0.07 33.33 31.32 44.48
1guu-1 150 959 0.97 4.93 0.92 0.10 343 0.08 56.45 7.89 65.33
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Choice

» Yevery fast but often imprecise

» Random good but nondeterministic

» Push-and-Pull: can relax X;; + X;; — 2X;; = d;; to
X+ Xj; — 2X; > d3;
easier to satisfy feasibility, useful later on

» Heuristic: add +nTr(X) to objective, withn < 1

might help minimize solution rank

{i,7}€E
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When SDP solvers hit their size limit

» SDP solver: technological bottleneck

» How can we best use an LP solver?

» Diagonally Dominant (DD) matrices are PSD

» Not vice versa: inner approximate PSD cone Y = 0

» Idea by AA. Ahmadi [Ahmadi & Hall 2015]

You won’t see this in TD, Octave+YALMIP is very slow, interface bottleneck
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Diagonally dominant matrices

n x nmatrix X is DD if

J#i

1 01  —02 0 004 O

0.1 1 ~0.05 01 0 0

E.g. —0.2  —0.05 101 001 0
0 0.1 0.1 1 0.2 0.3
0.04 0 001 02 1 —03
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DD Linearization

Vi<n X; > Z | X (*)
J#i

v

introduce “sandwiching” variable T’
write | X |as T
add constraints -7 < X < T

by > constraint sense, write () as

Xi> Y Ty

J#i

v

v

v
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DD Programming (DDP)

V{Z,j}EE Xii—f-ij—ZXij = dZZJ
X is DD

\V/{Z,]} el X;+ ij — QXW = d?]
= B ; b
i
-T'<X < T
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The issue with inner approximations

DDP could be infeasible!
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Exploit push-and-pull

> Enlarge the feasible region

» From
V{Z,]} el X,;+ ij — QXZJ = dfj

» Use “push” objective min ) X;; + X;; —2X

ijEE

ij
» Relax to

V{i,jt e E Xu+ Xj; —2X;; > dfj
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Hope to achieve LP feasibility

126/307



DDP formulation for the DGP

min Z (Xn + ij - 2Xz]) )
{i,7}€E
V{Z,]} ek X+ ij — 2X,;j > dlzj
=
-'<X < T
T > 0
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SDP vs. DDP: tests

Using “push-and-pull” objective in SDP

SDP solved with Mosek, DDP with CPLEX

SDP + PCA
SDP DDP
Instance LDE MDE CPUmodl/soln | LDE MDE  CPUmodl/soln
C07000dd. 1 0.79 0.34 0.06/0.12 | 0.38 0.30 0.15/0.15
C0700.0dd.G 238 0.89 0.57116 | 1.86 0.58 1.11/0.95
C0150alter.1 148 045 0.73/1.33 154  0.55 1.23/1.04
C0080create.1 | 249  0.82 1.63/7.86 | 0.98 0.67 3.39/4.07
1guu-1 0.50 0.15 6.67/684.89 | 1.00 0.85 37.74153.17
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Subsection 5

DGP cones
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Cones

» Set C'is a cone if:

VA, BeC,a,>0 aA+pBeC

v

If C C S, (setn x n symmetric matrices)

C"={YV|VX eC (YeX>0)}

» An x nmatrix cone C'is finitely generated by X C R™ if

VX eCBeRY X = daa"

zeX

v

PSD, DD are cones (prove it)
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Representations of DD

» Consider E;;, B! E;; in§,

7/]7
Define & = {E“\z<n} & ={E}|i<jLE=&U&
» E;; =diag(0,...,0,1;,0,...,0)
> Et has minor ( L Ly >, 0 elsewhere
- Lji 1
> B has minor , 0 elsewhere
' —Lii 1y

» Thm. DD = cone generated by & sarer & cartson 1971
Pf. Rays in £ are extreme, all DD matrices generated by £
» Cor. DD finitely gen. by
XDD:{el|i<n}U{e,iej |j<t<n}
Pf. Write E;; = eje; Ei (eitej)(e; £ ej)T, where ¢; is
the i-th std basis element of R™
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Finitely generated dual cone theorem
Thm. If C finitely gen. by X', then

C*={Y |Vr e X (Yexz' >0)}

» (=) LetYst.Vo e X (Yexz' >0)
» VX eC, X =Y bpaa’ (by fin. gen.)
reX
» henceYeX =5 4,V e zz' >0 (by hyp.)
» whenceY € C*

» (<) Suppose Z € C* ~{Y |Vz € X (Y ezz' >0)}

» then 3X' C X's.t.Vz € X' (Z e zx < 0) (by hyp.)

» consideranyY = }° dyxx’ € Cwithd >0
zeX’
»thenZeY = 3 §,Zexx’ <0s0oZ ¢ C*
rzeX’
» contradiction=C* = {Y |Vz € X (Y exz" > 0)}
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Dual cone constraints

Remark: X e vv" = v Xv

Use finitely generated dual cone theorem

v

v

Decision variable matrix X

v

Constraints:

v

YVoeX v Xv>0

v

If |X| polysized, get compact formulation

otherwise use column generation

|[Aop| = [€] = O(n?)

v
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Dual cone DDP formulation for DGP

{i.jteE
V{Z,j} ek X11+X]]—2XZ
Yv € X]D)]D) 'UTXU

» v’ Xv > 0forv € App equivalent to:

Vi < j X+ ij + ZXZ]

AV

AVARAVARAYS
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Properties

v

SDP relaxation of original problem

Thm. Dual cone DDP is a relaxation of SDP
Pf. If X = 0, thenVv € R v7 Xv > 0 by defir., and Xpp C R™

v

v

Yields extremely tight obj fun bounds

v

Solutions have large negative rank, unfortunately

retrieving feasible solutions is difficult
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Subsection 6

Barvinok’s Naive Algorithm
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Concentration of measure

From [Barvinok, 1997]
The value of a “well behaved” function at a
random point of a “big” probability space X is
“very close” to the mean value of the function.

and
In a sense, measure concentration can be
considered as an extension of the law of large
numbers.
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Concentration of measure

Given Lipschitz function f : X — Rs.t.

Ve,ye X [f(z) = f(y)| < Lllz —yll

for some L > 0, there is concentration of measure if 3
constants ¢, C' s.t.

Ve >0 P,(|f(z) — E(f)] >¢) < ce C=/F

= “discrepancy from mean is unlikely”
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Barvinok’s theorem

Consider:
» for each k < m, manifolds X}, = {z € R" | 2T Q*z = a4}

> afeasibility problemz € N A}

k<m

» its SDP relaxation Vo < m (Q* ¢ X = a;) with soln. X

Let‘ T = factor(X) H y~N"(0,1)and 2’ = Ty‘

Then 3cand ng € Ns.t.if n > ny,
Prob (Vk < mdist(2’, &) < e/ || X2 lnn) >0.9.

IDEA: since 2’ is “close” to each X}, try local descent!
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Application to the DGP

v

Wi jt € B Xy =A{a | lloi — a5 = dj}

v

DGP can be writtenas () X,

{ij}€E
SDP relaxation X;; + Xj; — 2X;; = d;; A X = Owith
soln. X

v

» Difference with Barvinok: » € Rf", tk(X) < K
» IDEA: sample y ~ N"5(0, \/LR)

» Thm. Barvinok’s theorem works in rank K
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The heuristic

1. Solve SDP relaxation of DGP, get soln. X
use DDP+LP if SDP+IPM too slow

2. a.T = factor(X)

b. y ~ N™E(0, \/LE)
c.x' =Ty
3. Use 2’ as starting point for alocal NLP solver on
formulation
) 2
min 3 (o - oyl - &)

{i,j}€FE

and return improved solution
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SDP+Barvinok vs. DDP+Barvinok

SDhp DDP
Instance LDE  MDE CPU | LDE MDE CPU
€07000dd. 1 0.00 0.00 0.63 | 0.00 0.00 149
€0700.0dd.G 0.00 0.00 21.67 | 042 0.01 30.51
CO150alter.1 0.00 0.00 29.30 | 0.00 0.00 34.13
C0080create.1 | 0.00  0.00 139.52 | 0.00 0.00 141.49
1b03 0.18 0.01 13216 | 038 0.05 101.04
lcrn 0.78  0.02 800.67 | 0.76 0.04 522.60
lguu-1 079 0.01 190048 | 090 0.04 667.03

Most of the CPU time taken by local NLP solver
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Subsection 7

Isomap for the DGP
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Isomap for DG

1. Let D’ be the (square) weighted adjacency matrix of G
2. Complete D' to approximate sqEDM D
3. Perform PCA on D given K dimensions

(@) Let B=—(1/2)JD.J,where.J =1 — (1/n)11"
(b) Find eigenvalivects A, P so B=PTAP
(c) Keep <K largest nonneg. eigenv. of A to get A

(d) Letz = PT\E

Vary Step 2 to generate Isomap heuristics
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Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm on G

(classic Isomap)

B. Find a spanning tree (SPT) of G and compute a random
realization in # € R¥, use its sqEDM

C. Solve a push-and-pull SDP relaxation to find a realization z € R",
use its sgEDM

D. Solve an SDP relaxation with Barvinok objective to find z € R”

(withr < [(\/8|E|+1 —1)/2]), use its sqEDM

haven’t really talked about this, sorry

Post-processing: Use T as starting point for local NLP solver
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Results

Comparison with dgsol [Moré, Wu1997]

T e A o en S e
i e e
Instance mde Ide CPU
Name n_ |E| |lsomap IsoNLP SPT SDP Barvinok DGSol|lsomap IsoNLP SPT SDP Barvinok DGSol|lsomap IsoNLP SPT SDP Barvinok DGSol
C€07000dd. 1 15 39 0.585 0.001 0.190 0.068 0.000 0.135| 0.989 0.004 0.896 0.389 0.001 0.634/0.002 1.456 1.589 0.906 1.305  1.747
C07000dd . 2 15 39 0.599 0.000 0.187 0.086 0.000 0.128| 0.985 0.002 0.956 0.389 0.009 1.000(0.003 1.376 1.226 1.002 1.063  0.887
C07000dd. 3 15 39 0.599 0.000 0.060 0.086 0.000 0.128| 0.985 0.002 0.326 0.389 0.009 1.000(0.003 1.259 1.256  0.861 1.167  0.877
C07000dd . 4 15 39 0.599 0.000 0.283 0.086 0.001 0.128| 0.985 0.002 2.449 0.389 0.008 1.000(0.003 1.347 1.222 0.976 1.063 1.033
C€07000dd. 5 15 39 0.599 0.000 0.225 0.086 0.000 0.128| 0.985 0.002 0.867 0.389 0.007 1.000(0.003 1.284 1.157 0.987 1.100 0.700
C€07000dd. 6 15 39 0.599 0.000 0.283 0.086 0.000 0.128| 0.985 0.002 1.520 0.389 0.002 1.000|0.002 1.372 1.196 0.998 1.305  0.909
C07000dd. 7 15 39 0.585 0.001 0.080 0.068 0.000 0.135| 0.989 0.004 0.361 0.389 0.001 0.634|0.003 1.469 1.322  0.894 1.093 1.719
C07000dd. 8 15 39 0.585 0.001 0.056 0.068 0.000 0.135| 0.989 0.004 0.275 0.389 0.003 0.634|0.003 1.408 1.306 0.692 1.079  1.744
C€07000dd. 9 15 39 0.585 0.001 0.057 0.068 0.000 0.135| 0.989 0.004 0.301 0.389 0.002 0.634|0.002 1.430 1172 0.791 1.093 1.745
C07000dd. A 15 39 0.585 0.001 0.043 0.068 0.000 0.135| 0.989 0.004 0.316 0.389 0.004 0.634|0.002 1.294 1.269 0.722 1.220 1.523
C07000dd.B 15 39 0.585 0.001 0.151 0.068 0.000 0.135| 0.989 0.004 1.022 0.389 0.004 0.634|0.002 1.297 1.279 0.871 1.111 1.747|
C07000dd.C 15 39 0.835 0.022 0.033 0.039 0.031 0.025| 1.012 0.147 0.393 0.211 0.294 0.167(0.004 6.803 6.369 7.371 7.030  7.000
C07000dd.D 36 242 | 0.835 0.022 0.041 0.039 0.042 0.025| 1.012 0.147 0.423 0.211 0.268 0.167(0.006 6.806 6.575 7.422 7.603  7.095
C07000dd.E 36 242 | 0.835 0.022 0.064 0.039 0.031 0.025| 1.012 0.147 0.894 0.211 0.260 0.167|0.006 6.911 6.638 7.365 6.979  7.008
F

C07000dd. 36 242 | 0.599 0.000 0.047 0.086 0.000 0.128| 0.985 0.002 0.308 0.389 0.005 1.000|0.002 1.299 1.310 1.008 1.100 1.040
CO150alter.1 37 335 | 0.786 0.058 0.066 0.014 0.015 0.010| 0.992 0.571 0.693 0.256  0.285 0.253|0.004 9.492 9.456 10.276 10.120 9.272
C0080create.1 60 681 | 0.887 0.053 0.083 0.024 0.024 0.054| 1.967 0.949 0.789 0.511  0.516 0.718/0.012 18.835 19.720 21.247 20.906 19.962
C0080create.2 60 681 | 0.887 0.053 0.047 0.024 0.024 0.054| 1.967 0.949 0.585 0.511  0.512 0.718/0.008 18.791 20.009 21.728 20.885 19.740

C0020pdb 107 999 | 0.939 0.110 0.119 0.059  0.060 0.103| 1.242 1.113 1.349 1.082 1.138 0.798/0.035 29.024 27.772 35.273 35.486 32.479
1guu 150 955 | 0.986 0.068 0.069 0.057 0.057 0.061| 0.999 0.854 0.830 0.735 0.751 0.768/0.048 30.869 28.784 41.488 41.852 37.848
1guu-1 150 959 | 0.986 0.061 0.063 0.058 0.057 0.060( 1.000 0.711 0.855 0.805 0.829 0.778/0.053 31.322 31.442 42.308 41.590 37.218
1guu-4000 150 968 | 0.974 0.081 0.080 0.072 0.065 0.079| 1.000 0.901 0.728 0.961 0.826/0.050 30.352 29.856 42.330 39.832 42.015
C0030pk1 198 3247| 0.961 0.112 0.160 0.076  0.077 0.137{1.197 1.354 2.230 2.054 1.401(0.091 105.175 104.775 149.192 146.360 111.859|
1PPT 302 3102| 0.984 0.121 0.129 0.128 0.129 0.123/1.000 1.519 1.219 1.956 1.224|0.356 112.448 110.345 185.815 187.182 118.681
100d 488 5741| 0.987 6 0.146 0.155 1.000 _1.577 1.397 = 1.358| 0.828 229.809 213.136 659.638 659.280 233.115
GeoMean 0.74{ 0.00~0.09 0.06 1.07 [ 0.04Y 0.73 0.06\ 0.66/70.! 6.30 6.04 5093 6.63  6.30
Avg 0.76\ 0.04 10.11 0.07 1.09 ( 0.44 | 0.88 04714 0.7 0.06 6.12  25.21  49.69 49.55 27.96
StDev 0.17 .05 /0.07 0.03 0.27 \ 0.55/ 0.57 0.65/ 0.34\ 0.18 /51.69 48.82 135.08 134.97 53.26

146/307



Large instances

Instance mde Ide CPU
Name V| |E| IsoNLP  dgsol | IsoNLP  dgsol IsoNLP dgsol
water 648 11939 | 0.005 0.15 | 0.557 0.81 26.98 15.16
3all 678 17417 0.036 0.007 | 0.884 0.810 170.91 210.25
1hpv 1629 18512 0.074  0.078 0936 0.932 374.01 60.28
i12 2084 45251 0.012 0.035 | 0910 0.932 465.10 139.77
1tii 5684 69800 0.078 0.077 | 0950 0.897 | 740048 454.375
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Subsection 8

Concluding remarks
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Summary of difficulties

» (QQuadratic nonconvex too difficult?
Solve SDP relaxation
SDP relaxation too large?

v

v

v

Solve DDP approximation

v

Get n x n matrix solution, need K x n!
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Rank reduction methods

» Multidimensional Scaling (MDS)
» Principal Component Analysis (PCA)
» Barvinok’s naive algorithm (BNA)

» Isomap

Can also use them for dimensionality reduction!
n vectors in R* — RE
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Outline

Clustering on graphs
Clustering in Euclidean
spaces

Distance resolution limit
MP formulations
Clustering in high

dimensions

Clustering in Natural Language o



Job offers

Optimisation / Operations Senior Manager
VINCI Airports.
Rueil-Malmaison, ile-de-France, France

...for the delivery of the f each

project...

projects... to thy

Pricing Data Scientist/Actuary - Price Optimization Specialist(H-F)
AXA Global Direct
ion de Paris, France

The senior price

M sieeer

and Innovation team,

part...

Growth Data scientist - Product Features Team
Deezer
Paris, FR

and will be

OverviewPress play on your next adventure! Music... to join the Product Performance &

Optimization team... www.deezer.com

Analystes et C - Banque -Optimisation des financiére:
"> ccenture

Région de Paris, France

N herchons des analystes jeunes diplomés et d [ detravailler

surdes i dél

opérationnels et des processus) en France et au Benelux. Les postes sont  pourvoir e
base d'un rattachement...

Electronic Health Record (EHR) Coordinator (Remote)
Aledade, Inc. - Bethesda, MD
Must have previous i ion or izati ience with

n CDI, sur

y EHRs and

practice software, p with expertise in

Operations Research Scientist
Ford Motor Company - 2,381 reviews - Dearborn, Ml

Strong knowledge of optimization techniques (e.g. Develop optimization frameworks to

support models related to mobility solution, routing problem, pricing and...

IS&T Controller
Alstom
Saint-Ouen, FR

ALSTOM

The Railway industry today reviews, software depl
TUnRing.. jobsearchalstom.com

Fares Specialist / Spécialiste Optimisation des Tarifs Aériens
Egencia, an Expedia company

Courbevoie - FR

Ef iaChaque année, Egencia des milliers de sociétés ré

plus de 60

pays 2 mieux gérer | devoyage. N

modernes et

des services d'exception a des millions de voyageurs, dela planification 3 a finalisation de leur

voyage. Nous répondons...

Automotive HMI Software Experts or Software Engineers
Elektrobit (EB)
Paris Area, France

Elektrobit in Paris interesting... 5 and optimi
software...
o~ D I 1t Engineer, P Services, Google Cloud
O Google

Paris, France

andjor

Note: By applying to this position your... migration, network optimization, security best...

4,694 reviews - Bethesda, MD 20817

Analyzes data and builds optimization,. Programming models and familiarity with

optimization software (CPLEX, Gurobi)....

/#Research Scientist - AWS New Artificial Intelligence Team!;views - Palo Alto, CA

We are pioneers in areas such as recommendation engines, product search, eCommerce

fraud detection, and large-scale optimization of fulfillment center...
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An examBle

Under the responsibitity of the Commercial Director, the Optimisation / Operations Senior Manager

will have the responsibility to optimise and develop operational aspects for VINCI Airports current

and future portfolio of airports. They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering the objectives of the Technical
Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial
Director in the development and implementation of plans, strategies and reporting processes. As part

of the exercise of its function, the Optimisation Manager will undertake the following: Identification
and development of cross asset synergies with a specific focus on the operations and processing functions
of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives
of the various technical services agreements, the strategy of the individual airports and the Group.
This function will include: Participation in the definition of airport strategy. Definition of this
airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation
Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various
technical services agreements with our airports by developing specific technical competences from the
Head Office level. Oversee the management and definition of all optimisation projects. Identificationm,
overview and management of the project managers responsible for the delivery of the various optimization
projects at each asset. Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Development and implementation of the Group
optimisation plan. Definition of economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service
levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the
strategies, trends and best practices of the airport industry and other reference industries in terms of
the applicability to the optimization plan. Study of the needs and preferences of the passengers,
through a continuous process of marketing research at all of the airports within the VINCI Airports
portfolio. Development of benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Development and participation in the expansion or refurbishment projects
of the airports, to assure a correct configuration and positioning of the operational and commercial
area that can allow the optimization of the revenues and operational efficiency. Support the Director
Business Development through the analysis and opportunity assessment of areas of optimization for all
target assets in all bids and the preparation and implementation of the strategic plan once the

assets are acquired. Maintain up to date knowledge of market trends and key initiatives related

to the operational and commercial aspects of international airports [...]

...and blah blah blah: IS THIS APPROPRIATE FOR MY CV?
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Try Natural Language Processing

» Automated summary

» Relation Extraction

» Named Entity Recognition (NER)
» Keywords
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Automated summar
./summarize.py jobO1l.txt

They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering
the objectives of the Technical Services Agreements activities of VINCI
Airports. The Optimisation Manager will support the Commercial Director
in the development and implementation of plans, strategies and reporting
processes. Identification and development of cross asset synergies with
a specific focus on the operations and processing functions of the airport.
Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Definition of
economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of
processing efficiency, service levels, passenger convenience and
harmonization of the non-aeronautical activities. Development of
benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Maintain up to date knowledge of market
trends and key initiatives related to the operational and commercial
aspects of international airports. You have a diverse range of
experiences working at or with airports across various disciplines such
as operations, ground handling, commercial, etc. Demonstrated high

level conceptual thinking, creativity and analytical skills.

Does it help? hard to say




Relation Extraction
./relextr-mitie.py jobOl.txt

======= RELATIONS =======

Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES_EVENT ] Head Office

Head Office [ INFLUENCED_BY ] Self

Head Office [ INTERRED_HERE ] Self

VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self

Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office

Self [ ORGANIZATIONS_WITH_THIS_SCOPE ] Head Office
Self [ PEOPLE_INVOLVED ] Head Office

Self [ PLACE_OF_DEATH ] Head Office

Head Office [ RELIGION ] Self

VINCI Airports [ RELIGION ] Optimisation Strategy

Does it help? hardly
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Named Entity Recognition

./ner-mitie.py jobOl.txt

==== NAMED ENTITIES =====

English MISC

French MISC

Head Office ORGANIZATION

Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON

Technical Services Agreements MISC
VINCI Airports ORGANIZATION

Does it help? ...maybe

For a document D, let NER(D) = named entity words
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Subsection 1

Clustering on graphs
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Exploit NER to infer relations

1. Recognize named entities from all documents
2. Use them to compute distances among documents
3. Use modularity clustering
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The named entities

L
2.

I

g

o

19.

20.
21.

Operations Head Airports Office VINCI Technical Self French/ Strate%/Agreements English Services Optimisation

Europe and P&C Work Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate
International English

Scientist Product Analyze Java Features & Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press
Performance Deezer Data Computer

Lean6Sigma Lean-type Office Banking Paris CDI France RPA Middle Accenture English Front Benelux

Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance market develop Finance & IS&T
Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia Ellglis]f%fares with Company
Inc

Paris Integration France Automation Automotive French . Linux/Genivi HMI Ul Software EB Architecture Elektrobit technologies
GUIDE Engineers German Technology SW well-structured Experts Tools

Product Google Managers Python JavaScript AWS JSON BigQuery Java Platform Engineering HTML MySQL Services Professional
Googles Ruby Cloud OAuth

EHR Aledades Provide Wellness Perform ACO Visits EHR»system-specéﬁc Coordinator Aledade Medicare Greenway Allscripts
Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata & Python Company GDIA Ford Visa SPARK Data
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Word similarity: WordNet

entity
abstradt_‘_’;;ti;; physical_entity R kit-l;inrg
abstractggg physical object 1\7--7l;ormr
msmmé;;ﬁon V;\ing
|
con\(.e_‘ ance person

male person female person

- - § | |

mail  vehiclé public transport
9 el
Wheelggf vehicle bus train béy g&ﬂ
— | |

Self propelled bicycle School bus Boat train
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WordNet: hyponyms of “boat”
v rowing_boat

cdgpe jollyeboat

birchba? ecanoe

gl
PuRvhgr stea
fopck eshell . o~
smaliioua - -

lifelpopat
Aihalehoz@urfoat

pioat
catiracle

hora P hoat

DAJICE® D03

motQEhoat

gndnepeEad hoat

Cab'.m Ik pnotorboat hy pofoil

boat

AT

ra

goredola
9 skiff
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Wu-Palmer word similarity
Semantic WordNet distance between words w, w-

2 depth(les(wy, w2))
len(shortest _path(wy, ws)) + 2 depth(lcs(wy, w2))

wup(wy, wg) =

» lcs: lowest common subsumer

earliest common word in paths from both words to WordNet root

Example: wup(dog, boat)?

depth( whole ) = 4

18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate
-> chordate -> animal -> organism -> living_thing -> whole -> artifact
-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat

13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat

wup(dog, boat) = 8/21 = 0.380952380952
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Extensions of Wu-Palmer similarity

» to lists of words H, L:

wup(H, L) = |H|1|L| ZZWup(v,w)

veEH weL

» to pairs of documents D;, Dy:
WUp(l)l7 DQ) = WUp(NER(Dl), NER(DQ))

» wup and its extensions are always in [0, 1]
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The similarity matrix

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.38 0.49 0.47 0.47 0.44 0.54 0.31 0.44
0.63 1.00 0.45 0.45 0.54 0.40 0.42 0.42 0.57 0.49 0.46 0.45 0.59 0.35 0.43 0.42 0.42 0.41 0.47 0.32 0.40
0.51 0.45 1.00 0.40 0.53 0.35 0.37 0.37 0.58 0.47 0.43 0.40 0.59 0.28 0.39 0.37 0.38 0.35 0.43 0.24 0.35
0.51 0.45 0.40 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.38 0.48 0.47 0.47 0.45 0.53 0.33 0.44
0.66 0.54 0.53 0.63 1.00 0.34 0.35 0.35 0.49 0.42 0.39 0.37 0.50 0.29 0.36 0.35 0.35 0.34 0.40 0.26 0.34
0.45 0.40 0.35 0.45 0.34 1.00 0.42 0.43 0.66 0.54 0.49 0.45 0.67 0.34 0.44 0.43 0.43 0.40 0.49 0.28 0.40
0.46 0.42 0.37 0.46 0.35 0.42 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.34 0.45 0.45 0.44 0.42 0.50 0.28 0.40
0.47 0.42 0.37 0.46 0.35 0.43 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.36 0.47 0.45 0.45 0.43 0.51 0.30 0.42
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.33 0.31 0.29 0.40 0.23 0.28 0.27 0.28 0.26 0.31 0.21 0.26
0.58 0.49 0.47 0.56 0.42 0.54 0.54 0.55 0.33 1.00 0.46 0.43 0.59 0.34 0.42 0.41 0.41 0.39 0.46 0.31 0.39
0.54 0.46 0.43 0.52 0.39 0.49 0.49 0.51 0.31 0.46 1.00 0.39 0.56 0.29 0.38 0.36 0.36 0.34 0.41 0.24 0.35
0.50 0.45 0.40 0.49 0.37 0.45 0.47 0.48 0.29 0.43 0.39 1.00 0.70 0.40 0.50 0.49 0.48 0.46 0.54 0.35 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.40 0.59 0.56 0.70 1.00 0.23 0.29 0.29 0.29 0.28 0.33 0.20 0.27
0.38 0.35 0.28 0.38 0.29 0.34 0.34 0.36 0.23 0.34 0.29 0.40 0.23 1.00 0.48 0.45 0.46 0.42 0.52 0.30 0.43
0.49 0.43 0.39 0.48 0.36 0.44 0.45 0.47 0.28 0.42 0.38 0.50 0.29 0.48 1.00 0.39 0.39 0.36 0.45 0.26 0.37

0.43
0.43

0.32
0.31

1
3

0.41 0.35 0.45 0.34 0.40 0.42 0.43 0.26 0.39 0.34 0.46 0.28 0.42 0.36 0.46 0.43 1.00 0.5

.47 0.42 0.37 0.47 0.35 0.43 0.45 0.45 0.27 0.41 0.36 0.49 0.29 0.45 0.39 1.00 0.48 0.46 0.54 0.33 0.44
0.42 0.38 0.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.5

.54 0.47 0.43 0.53 0.40 0.49 0.50 0.51 0.31 0.46 0.41 0.54 0.33 0.52 0.45 0.54 0.51 0.53 1.00 0.36 0.46
0.31 0.32 0.24 0.33 0.26 0.28 0.28 0.30 0.21 0.31 0.24 0.35 0.20 0.30 0.26 0.33 0.32 0.31 0.36 1.00 0.47

0.44 0.40 0.35 0.44 0.34 0.40 0.40 0.42 0.26 0.39 0.35 0.46 0.27 0.43 0.37 0.44 0.43 0.43 0.46 0.47 1.00

0
0.47
0.44
0
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The similarity matrix

1.00
0.63
0.51
0.51
0.66
0.45
0.46
0.47
0.72
0.58
0.54
0.50
0.72

0.49
0.47
0.47
0.44
0.54

0.44

Too uniform! Try zeroing values below median
0.51 0.66 0.45 0.46 0.47 0.72

0.63
1.00
0.45
0.45
0.54

0.57
0.49
0.46
0.45
0.59

0.47

0.51
0.45
1.00

0.53

0.58
0.47

0.59

0.45

1.00
0.63
0.45
0.46
0.46
0.67
0.56
0.52
0.49
0.68

0.48
0.47
0.47
0.45
0.53

0.44

0.54
0.53
0.63
1.00

0.49

0.50

0.45
1.00
0.66
0.54
0.49
0.45
0.67

0.44

0.49

0.46

1.00
0.44
0.66
0.54
0.49
0.47
0.67

0.45
0.45
0.44

0.50

0.46

0.44
1.00
0.67
0.55
0.51
0.48
0.68

0.47
0.45
0.45

0.51

0.57
0.58
0.67
0.49
0.66
0.66
0.67
1.00

0.58 0.54 0.50
0.49 0.46 0.45

0.47
0.56

0.54
0.54
0.55

1.00
0.46
0.43
0.59

0.46

0.52
0.49
0.49
0.51

0.46
1.00

0.56

0.49

0.45
0.47
0.48

1.00
0.70

0.50
0.49
0.48
0.46
0.54

0.72
0.59
0.59
0.68
0.50
0.67
0.67
0.68

0.59
0.56
0.70
1.00

0.49 0.47 0.47

0.48

0.44
0.45
0.47

0.47

0.45
0.45

0.49

0.45

1.00
0.48
0.46
0.54

0.47

0.44
0.45

0.48

0.46

0.48
1.00

0.51

0.44

0.45

0.46

1.00
0.53

0.54 0.44

0.47

0.53 0.44

0.49

0.50

0.51

0.46

0.54 0.46

0.52 0.43

0.45

0.54 0.44

0.51

0.53

1.00 0.46
1.00 0.47

0.46 0.47 1.00
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The graph

WA

\5& N/ 17
N
g !i‘w{\\"i\

P W
G 15

0%
X m”‘}(
YR\

G = (V, E), weighted adjacency matrix A

Ais like B with zeroed low components
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Modularity clustering

“Modularity is the fraction of the edges that fall within a cluster minus

the expected fraction if edges were distributed at random.”

>

>

>

“at random” = random graphs over same degree sequence
degree sequence = (ki, ..., ky,) where k; = |N(i)|

“expected” = all possible “half-edge” recombinations

G—0 0——0 O
o ©® O——06 G

expected edges between v, v: k,k,/(2m) where m = |E|
mod(u, v) = (Auy — kuky/(2m))
mod(G) = >  mod(u, v)Tyy

{u,v}eE

ZTyy = 1if u, v in the same cluster and O otherwise

“Natural extension” to weighted graphs: kv = 3, Avv.m =37, Aus

168/307



Use modularity to define clustering
» What is the “best clustering”?

» Maximize discrepancy between actual and expected
“as far away as possible from average”

max  ». mod(u,v)Ty,
{u,v}eFk
VueViveV my €{0,1}

» Issue: optimum could be intransitive

» Idea: treat clusters as cliques (even if zero weight)
then clique partitioning constraints for transitivity

Vi<j<k wmytag—zg, < 1
Vi<j<k xij—l'jk‘f'xik < 1
Vi<j<k — Tyt xjt+ag <1
ifi,j € Candj,k € Ctheni,k € C
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The resulting clustering

cluster 1: jobOl, job02, job03, job05, jobl0
cluster 2: job04, job06, job22
cluster 3: job07,job08, jobll, jobl2, job20 jcb27.
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Is it good?

Vinei
Axa
Deezer
Alstom
Aledade

‘?

Accenture
Expedia

fragmentl

Elektrobit
Google
Ford
Marriott
Llamasoft

fragment2

» ¢ —named entities rarely appear in WordNet

» Desirable property: chooses number of clusters
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Subsection 2

Clustering in Euclidean spaces
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Clustering vectors

Most frequent words[w | over collection | C |of documents
./keywords.py

global environment customers strategic processes teams sql job industry use
java developing project process engineering field models opportunity drive
results statistical based operational performance using mathematical computer
new technical highly market company science role dynamic background products
level methods design looking modeling manage learning service customer
effectively technology requirements build mathematics problems plan services
time scientist implementation large analytical techniques lead available plus
technologies sas provide machine product functions organization algorithms
position model order identify activities innovation key appropriate different
complex best decision simulation strategy meet client assist quantitative
finance commercial language mining travel chain amazon pricing practices
cloud supply

(ted|t=w)|C]

tfidf, =
idfo(w, d) [{heC|we h}]
keyword(i,d) = wordw having i" best tfidfc (w, d)value
vec(d) = (tfidfo(keywords(i,d),d) | i < m)

Transforms documents to vectors
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Minimum sum—of—squares clustering

» MSSC, a.k.a. the k-means problem

» Given points py,...,p, € R™, find clusters (1, . ..

minz Z ||pi — centroid(C})||3

i<k i€C;
where centroid(C};) = ﬁ S ps
: AN
Tiel;

» /-means alg.: given initial clustering C1,.. ., Cy,

1: Vj < k compute y; = centroid(C})

2: Vi <n,j < kify;isthe closest centr. to p; let z;; = 1 else 0

3: Vj < kupdate C; < {p; | z;; = 1 Ni < n}
4: repeat until stability

174./307



k-means with £ = 2

Vinei AXA
Deezer Alstom
Accenture Elektrobit
Expedia Ford
Google Marriott
Aledade Amazon 1-3
Llamasoft CSX
WestRock

MITRE

Clarity

fragments 1-2
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k-means with £ = 2: another run

Deezer
Elektrobit
Google
Aledade

Vinei

AXA
Accenture
Alstom
Expedia
Ford
Marriott
Llamasoft
Amazon 1-3
CSX
WestRock
MITRE
Clarity
fragments 1-2
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k-means with k& = 2: third run!

AXA Vinci
Deezer Accenture
Expedia Alstom
Ford Elektrobit
Marriott Google
Llamasoft Aledade
Amazon 1-3

CSX

WestRock

MITRE

Clarity

fragments 1-2

A fickle algorithm
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We can’t trust k-means: why?

04 ] 04 1 04 ]

03] ] 03] ] o F ]

02 02 02

01 01 01

00| 00| 00|

L L ] oi w2z W1 oz o1 o8 01 10 61 2 o0 o2 o1 s 08

04 . 1 04 1 04 .
° °

03] ] 03] 1 03] ]

02 02 02

0 0 0

00| 00| 00|

Wi Wz w0 0z a6 o5 10 Wi Wz o0 0z a6 o5 10 7wz w0 0z o1 06 o5 10

04 ] 04 1 04 ]

03] ] 03] 1 03] ]

02 02 02

0 0 0

00| 00| 00|

W%z o0 0z o 06 o5 10 % 0z o0 0z a6 o5 10 % 0z o0 0z a6 o5 10
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Subsection 3

Distance resolution limit
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Nearest Neighbours

E-NEAREST NEIGHBOURS (k-NN). .

Given: . oy,
» keN o
> adistance functiond : R" x R" - R, -
> asetX C R S

> apointz € R" \ X,
find the subset Y C X such that: ’
(@ Y=k : Z -
b) VyeV,xeX (d(z,y) <d(zx)) :

» basic problem in data science

» pattern recognition, computational geometry, machine learning, data
compression, robotics, recommender systems, information retrieval, natural
language processing and more

» lixample: Used in Step 2 of k-means:
assign points to closest centroid

[Cover & Hart 1967]
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With random variables

» Consider 1-NN
» Let? = |X)| .
» Distance function family
(@™ R" x R* = R, I
» For each m:

» random variable Z™ with some distribution over R"
» fori < /,random variable X" with some distrib. over

]Rn
» X™iidw.r.t. i, Z™ independent of all X"
m —_ 3 m m m
> Dmin - Iln<1?d (Z 7Xi )

> Dpiyy = maxd™ (2™, X7")
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Distance Instability Theorem

» Letp > 0be a constant
» If

Ji <l (d™(Z™, X]"))? converges asm — 0o
then, for any ¢ > 0,

closest and furthest point are at about the same distance

Note “Ji” suffices since Vm we have X" iid w.r.t. i
[Beyer et al. 1999]
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Distance Instability Theorem

» Letp > 0be a constant
» If

3i < ¢ lim Var((d™(Z™, X™)) = 0

m—o0

then, for any ¢ > 0,

lim P(Dy < (1+¢)Dpin) =1

max min
m—00

Note “Ji” suffices since ¥m we have X" iid w.r.t. i
[Beyer et al. 1999]
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Preliminary results

» Lemma. {B™},, seq. of rnd. vars with finite variance
and lim E(B™) =bA hm Var(Bm) = 0; then

m—00

Ve >0 lim P(|B™ — bl <) =1
m—0o0

denoted B™ —p b‘

> .{B™},, seq.of rnd. vars and g a

continuous function; if B™ —p b and g(b) exists,

» Corollary. If {A™},,, {B™},, seq. of
rnd. vars. s. t A™ —p aand B™ —p b # 0then
{22 m 7P b
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Proof

L p, = E((d™(Z™, X]"))?) independent of ;
(since all X™ iid)
2.V, = XY
» E(V;,) = 1 (rnd. var. over mean) = lim,,, E(V;,,) = 1
» Hypothesis of thm. = lim,,, Var(V;,) = 0
» Lemma=V,, —p 1

3. D™ = (d™(Z2™, X)) | i < £) —p 1 (byiid)

4. Slutsky’s thm. = min(D™) —p min(1) =1
simy for max

—p 1:

max(D™)

5. Corollary = (D) —p 1
6. Ditax — pmmax(DP)_, g
Dmin fm min(D™) P

7. Result follows (defn. of —p and D > D)

max — min
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When it applies

» iid random variables from any distribution

» Particular forms of correlation
e.g. U; ~ Uniform(0, Vi), X1 = U, X; = U + (X;_1/2) fori > 1

» Variance tending to zero
e.g. X; ~N(0,1/7)
» Discrete uniform distribution on m-dimensional

hypercube

» Computational experiments with k-means:
instability already withn > 15
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...and when it doesn’t

» Complete linear dependence on all distributions
can be reduced to NN in 1D

» kixact and approximate matching

» Query point in a well-separated cluster in data

» Implicitly low dimensionality
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Subsection 4

MP formulations
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MP formulation

min 37 37 |[pi — yill5 i
é‘}jl%fw

x?y7s

Vi <k
Vi<n
Vi <k
Vi <k

i<n j<k

i<n

> Tij

Jj<k

> Tij

i<n

Yj

Yj
1

Sj

R™

{07 1}nk
Nk

(MSSC)

/

vartables

MINLP: nonconvex terms; continuous, binary and integer
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Reformulation

The (MSSC) formulation has the same optima as:

min Z Z Pij ZEij )
.y, P i<n i<k
Vi<n i<k |p—yl} < Py
Vi <k YTy = > YT
i<n i<n
i<k
Vi <k y; € ([Hgnpz’h,mgxpih] | h < k)
T {0,1}"%
P € [0, PU]”’C )

» The only nonconvexities are
products of binary by continuous bounded variables
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Products of binary and continuous vars.

» Suppose term zy appears in a formulation

» Assume z € {0,1} and|y € [0, 1] |is bounded

» means “either 2 =0or z = y”

v

Replace xy by a new variable =

v

Adj oin the f()ll()wing constraints:

z € [0,1]
—1-2)< 2z <y+(1-2x)
— < z <z

v

= Everything’s linear now!

[Fortet 1959]
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Products of binary and continuous vars.

» Suppose term zy appears in a formulation

» Assume z € {0,1} and|y € [y%,4Y] |is bounded

» means “either 2 = 0or 2z = y”
» Replace xy by a new variable =

> s\dj oin the f()”()wil'lg constraints:

z € [min(yL, 0), max(yU, 0)]
y— (1 —z)max(jy”),|y")) < 2 <y+(1-2)max(jy"],|y"])
—rmax(ly”], |yY]) < 2z < zmax(|y"|, [yY])
» = Everything’s linear now!

[L. et al. 2009]
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MSSC is a convex MINLP

ming ZZ

z,y,P,x, i<n i<k
Vi<n,j<k 0<
Vi<ng<k llpi—y;ll3
Vi<k sz‘rz‘j

i<n
LN, g S Yy; — (L — Ti5) max(|y—|, |Y =
Vi<n,j<k 1 Ly <
Vi<ngj<k  —azymax(lyllyY]) <
Vi<n inj

i<k
Vi<k yj

xT

X
Vi<n,j<k &ij

Yj»Eijs y¥, yV are vectors in R™

M M M M M

< By

< PY

Py
> &

i<n

<y + (1= ziy) max(ly”|, y7])

<z max(|y”], [yY))

1

", y"]

{0, 13*

[0, P

[0, PU]"E

[min(y”, 0), max(yY, 0)]
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How to solve it

» ¢cMINLP is NP-hard
» Algorithms:
» Quter Approximation (OA)
» Branch-and-Bound (BB)
» Best (open source) solver: BonmIN
» Another good (commercial) solver: KNIrTrRO
» With k = 2, unfortunately...

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution,
best possible 6.1855969 (32142.17 seconds)

» Interesting feature: the bound
guarantees we can’t to better than bound

all BB algorithms provide it
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BonMiIN’s first solution

Alstom Vinei
Elektrobit AXA
Ford Deezer
Llamasoft Accenture
Amazon 2 Expedia
CSX Google
MITRE Aledade
Clarity Marriott
fragment 2 | Amazon1& 3

WestRock

fragment 1
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Couple of things left to try

» Approximate ¢, by /; norm
¢ 1s a linearizable norm

» Randomly project the data
lose dimensions but keep approximate shape
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Linearizing convexity

> Replace [p; — y;|5 by [lpi — y;lh
» Warning: optima will change
but still within “clustering by distance” principle

Vi<n,j <k |pi—yillh =Y Ipia — jal
a<d

v

Replace each | - | term by new vars. Q;;, € [0, PY]
Adjust PY in terms of | - |1

v

Adjoin constraints

Vi<n,j<k Z Qija < Py
a<d
Vi<n,j<ka<d —Qija < Dia—Yja =< Qija

Obtain a MIL.P
Most advanced MILP solver: CPLEX

v
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CPLEX s first solution

objective 112.24, bound 39.92, in 44.74s

AXA
Deezer
Ford
Marriott
Amazon 1-3
Llamasoft
CSX
WestRok
MITRE
Clarity
fragments 1-2

Vinei
Accenture
Alstom
Expedia
Elektrobit
Google
Aledade

Interrupted after 281s with bound 59.68
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Subsection 5

Clustering in high dimensions
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The magic of random projections

> “Mathematics of big data”

» In a nutshell

‘h n
k(—i— ‘ _ [
M‘/ ‘ }‘\'»Wl \ \‘
Merg L] ke Oy

» Clustering on rather than A
> Approximate results with arbitrarily high probability (wahp)

[Johnson & Lindenstrauss, 1984]
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The magic of random projections
» “Mathematics of big data”

» In a nutshell
. Givenpts. 4;,..., A, € R" withmlargeand e € (0,1)

. Pick “appropriate” k ~ O(Ei2 Inn)

1

2

3. Sample k x d matrix T (each comp. i.i.d. N(0, ﬁ )
4. Consider projected points A; = TA; € RFfori <n
)

. With prob— 1 exponentially fast as £k — oo
Vi, j <n (1—¢)[|Ai—Ajlla < [|A;—=Afll2 < (14¢) || Ai— Ajll2

[Johnson & Lindenstrauss, 1984]
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Clustering Google images

[L. & Lavor, in press]
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k-means without random projections

VHimg = Map[Flatten[ImageDatal[#]] &, Himg];

- 3 - - A

Cut[28])= { - ,- o W = ], IR | - —"'.'l';

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
out[29]1= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

Too slow!
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k-means with random projections

Get["Projection.m"];

VKimg = JohnsonLindenstrauss[VHimg, 0.1];

VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]
out[34]1= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

From 0.405s CPU time to 0.00232s
Same clustering
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Works on the MSSC MP formulation too!

min > > ||Tpi — Ty;13 x4 \
298 i<nj<d
Vj<d + o Ipiwi; = Ty;
1<n
Vi <n doryy = 1
j<d
Vi <d D Tij = 5
i<n
Vj<d y; € R™
c {O, 1}nd
s € N¢

where T'is a k x m random projector
replace 7'y by ¢/
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Works on the MSSC MP formulation too!

min Yo T — y;”%%J \
wy's  i<n j<d
Vi <d o o Triwy =y
i<n
Vi <n dory = 1
j<d 3 MSSC’
Vj<d DT = 8 | )
i<n
Vj<d y, € R
e {0’ 1}nd
s € N

» wherek = O(% Inn)
» less data, |y/| < |y| = get solutions faster
> Yields smaller cMINLP
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BonwmiN on randomly proj. data
objective 5.07, bound 0.48, stopped at 180s

Deezer Vinci
Ford AXA
Amazon1-3 | Accenture
CSX Alstom
MITRE Expedia
fragment 1 Elektrobit
Google

Aledade

Marriott

Llamasoft

WestRock

Clarity

fragment 2
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CPLEX on randomly proj. data

...although it doesn’t make much sense for || - |1 norm...

objective 53.19, bound 20.68, stopped at 180s

Vinci AXA
Deezer Accenture
Expedia Alstom
Google Elektrobit
Aledade Marriott
Ford Llamasoft
Amazon 1-3 WestRock
CSX MITRE
Clarity fragment 1-2
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Many clusterings

» We obtained many different clusterings

v

Is there any common sense?

v

How do we compare them?

Can we extract useful information from the
comparison?

v

v

Did we just turn the issue of “I have too many data” into

“I have too many solutions”?
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Outline

Random projections in LP
Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression
Sparsity and /; minimization
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The gist
» Let A,bbe very large, consider LP
min{c'z | Av =bAx >0}

» T short & fat normally sampled

Gl )

" o Im

Mo,g) fJ ke O (4 yn)
» Then
Ar=bNx >0 & TAzr=TbANzx >0
with high probability

211/307



Linear feasibility

Restricted Linear Membership (RLMy)
Given A;,...,A,,be R"and X CR", 37z € X s.t.

1<n

» Linear Feasibility Problem (LFP) with X = R"}
» Integer Feasibility Problem (IFP) with X = 7"

212/307



The shape of a set of points

» Lose dimensions butnottoo much accuracy
Given 44, ..., A, € R" find k < m and points
Al ... Al € RFst. Aand A’ “have almost the same
shape”

» What is the shape of a set of points?

-0

congruent sets have the same shape
» Approximate congruence < distortion:
A, A" have almost the same shape if
Vi<j<n (1-e)ll4i—4;| < |A;=Ajl < 1 +e)]Ai— Ayl
for some small ¢ > 0

Assume norms are all Euclidean
213/307



Losing dimensions in the RLM

Given X C R"and b,A4,,...,4, € R™ find k < m,

v, A, ..., A € R” such that:

JreXb=) mA; ff FweXV =) x4

i<n i<n
A 7 N 7
— ~

high dimensional low dimensional

with high probability
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Losing dimensions = “projection”

In the plane, hopeless

In 3D: no better
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Johnson-Lindenstrauss Lemma

Thm.
Given A C R™ with |[A| = nande > Othereisk ~ O(%Inn)
and a k x m matrix T s.t.

Ve,ye A (1—¢)lz—yll < [[Tz-Ty|| < (1+e)llz—y

If k x m matrix T"is sampled componentwise from N (0, \/LE)’

then A and T'A have almost the same shape
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Sketch of a JLL proof by pictures
Thm.

//Q\ N TN Let T be a k x m rectangular ma-

) N / \
[ ! . === | |trixwith each component sampled from
A | AN
MO, ) andu € R™ st ful| =

Then E(||Tu|?) =
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Mean invariance

Thm.
> T ak x mrnd proj matrix, samples from N (0, 1/v'k)
» u e R™ Jul| =1

> = [[Tuf = flull =1
Pf.
> Tu=(y,..oy) = Vi< by =3 Ty
» E(y:) = Z E( z])ujzzjoujzo
> V(yi) = 32, V(Ty)us

=2 7w = g llul® (vi)
> kIIUIIQ—V(yz)—E(yf—(E(yi))Q) E(y7) (Vi)

> B(|Tull?) = E(lyll*) = BQZ v7) = 32 B(y) =
7 2ick [ull® = Jlull®
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Sampling to desired accuracy

» Distortion has low probability:

Veye A P([Te—Ty| < (1 -e)z—yl) < —

Ve,ye A P([Te—Ty| = (1 +e)z—yl) < —

» Probability 3 pair 2,y € A distorting Euclidean
distance: union bound over () pairs

N
/~
N3
~—
3

|
Il
|
S|

P(—(A and T A have almost the same shape))

P(A and T'A have almost the same shape) >

= re-sampling 7" gives JLL with arbitrarily high
probability
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In practice

» Empirically, sample T very few times (e.g. once will
do!)
on average | Tx — Ty|| ~ ||z — yl|, and distortion decreases
exponentially with n

We only need a logarithmic number of dimensions in
function of the number of points

Surprising fact:

k is independent of the original number of dimensions m
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Subsection 1

Projecting feasibility
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Projecting infeasibility (easy cases)

Thm.
T : R™ — R* a JLL random projection, b, A;,..., A, € R™ aRLMx
instance. For any given vector z € X, we have:

(=i (=

=1

i=1

(ii) Ifb # i y;A; forally € X C R™, where | X]| is finite, then
i=1

P<v,y € XTh+# ZyiTAi> >1—2|X]|e ¢k

i=1

for some constant C > 0 (independent of n, k).

[arXiv:1507.00990v1/math.OC]
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Separating hyperplanes

When | X| is large, project separating hyperplanes instead

» ConvexC C R™,z ¢ C:then Ihyperplane c
separating v, C

» Inparticular, true if C' = cone(4,, ..., A,) for A CR™

» Wecanshowz € C & Tz € TC withhigh
probability

» Asabove,if z € C'then T'x € TC by linearity of T
Difficult partis proving the converse

We can also project point-to-cone distances
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Projecting the separation

Thm.
Given ¢,b, A1,...,An € R™ of unit norm s.t. b ¢ cone{A1,..., A,} pointed, e > 0,
ceR™st.c'b< —e,¢c" A; > e (i < n),and T arandom projector:
P[Tb ¢ cone{TA1,..., TAn}] > 1 —4(n+ 1)e=C(e7 ="k
for some constant C.
Proof

Let o/ be the event that T' approximately preserves |[c — x||? and ||c + x||? for all x €
{b, A1, ..., An}. Since & consists of 2(n + 1) events, by the JLL Corollary (squared ver-
sion) and the union bound, we get

P(o/) > 1 — 4(n + 1)e=C(* =)k

Now consider x = b

(Te, Th) = i(IIT(c +0)12 = IT(c ~ b)II*)

1 £
byJLL < 2(le+ blI* = lle = bl|*) + 7 Ule+ bl1% + |lc — bl|%)
=c'b+e<0
and similarly (T'c, TA;) > 0
[arXiv:1507.00990v1/math.OC]
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The feasibility projection theorem

Thm.
Given ¢ > 0, 3 sufficiently large m < n such that:

for any LFP input A, b where Aism x n
we can sample arandom £ x m matrix 7' with & < m and

P(orig. LFP feasible <= proj. LF'P feasible) > 1 —§
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Subsection 2

Projecting optimality
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Notation

v

P =min{cz | Az = b A x > 0} (original problem)

v

TP =min{cx | TAx =Tb A x > 0} (projected problem)

» v(P) = optimal objective function value of P

v

v(T'P) = optimal objective function value of 7'P
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The optimality projection theorem

» Assume feas(P) is bounded

> Assume all optima of P’ satisfy 3 v; < ¢ for some
given 0 > 0
(prevents cones from being “too flat”)

Thm.

Given d > 0,

v(P) = <v(TP) <v(P) (%)

holds with arbitrarily high probability (w.a.h.p.)

in fact (x) holds with prob. 1 — 4ne C(e?=e*)k where
e =6/(2(0+ 1)n) and n = O(]|y||2) where y is a dual optimal
solution of P having minimum norm
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The easy part

Show v(TP) < v(P):
» Constraintsof P: Ax =b A >0

» Constraintsof TP: TAx =Tb N >0
» = constraints of 7'P are lin. comb. of constraints of P

» = any solution of P is feasible in 7'P
(btw, the converse holds almost never)

» P and 7'P have the same objective function

» = T'Pisarelaxation of P = v(T'P) < v(P)
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The hard part (sketch)

» Eq. (1) equivalent to P for§ = 0

cx < w(P)—20
Axr = b 1)
x > 0

Note: for 6 > 0, Eq. (11) is infeasible
» By feasibility projection theorem,
cx < wv(P)—9
TAx Tb
T 0

AVAN|

is infeasible w.a.h.p. for § > 0
» Hence cx < v(P)— 0 ANTAxz =Tb Az > 0infeasible w.a.h.p.
» = cx > v(P) — 0 holds w.a.h.p. for = € feas(7T'P)
= v(P) -6 <v(TP)

v
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Subsection 3

Solution retrieval
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Projected solutions are infeasible in P

» Az =b = TAxz =Tb by linearity

» However,

Thm.
For z > 0s.t. T Az = Tb, Az = bwith probability zero

» Can’t get solution for original LFP using projected

LFP!
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Solution retrieval by duality

v

Primal min{c"z | Ar =bAz >0} =
dual max{b'y | ATy < c}

v

Let 2’ = sol(T'P) and 3/ = sol(dual(T'P))
= (TA) 'y = (ATT )y = AT(TTy) < e

v

v

= Ty is a solution of dual(P)

» = we can compute an optimal basis J for P

v

Solve A;x; = b, get x;, obtain a solution z* of P

v

Won’t work in practice: errors in computing J
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Solution retrieval by pseudoinverse

» H:optimal basis of 7P
we can trust that — given by solver

» |H| =k = Ay ism x k (tall and slim)
» Pseudoinverse: solve k x k system A Ayzy = Ajb

» letz = (zy,0)

v

Can prove small feasibility error wahp

ISSUE: may be slightly infeasible
empirically: v 2 Obutz~ — Oask — oo

v
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Subsection 4

Quantile regression
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Regression
» multivariate random var. X
functiony = f(X)
sample {(a;,b;) € R xR | i < m}

» sample mean:

fi = argmin Z(bl — p)?

HER i<m

» sample mean conditional to X = A = (a;;):

U = arg min Z(bz — va;)?

vERP i<m
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Quantile regression

» sample median:

~

£ = argminz |b; — ¢]

R j<m
= argmin Z <1 max(b; — &,0) — 1mln( —¢, 0))
EER  j<m 2 2

» sample T-quantile:

f—argmlnz (tmax(b; — £,0) — (1 — 7) min(b; — &,0))

EER  i<m

» sample T-quantile conditional to X = A = (a;j):

A~

B—argmlnz (r max(b; — Ba;,0) — (1 — 7) min(b; — Ba;, 0))

BERP i<,
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Linear Programming formulation

min Tut 4+ (1 —7)u”
ABY =) +ut —u = b
Bou > 0

» Parameters: Aism x p,be R, 7 € R

» Decisionvariables: 57,5~ € R?,u",u~ € R™

» LP constraint matrixis m x (2p + 2m)
density: p/(p + m) — can be high
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Large datasets

» Russia Longitudinal Monitoring Survey
household data (hh1995f)

» m = 3783,p = 855

» A =hf1995f,b = logavg(A)

» 18.5% dense

» poorly scaled data, CPLEX yields infeasible (") after
around 70s CPU

» quantreg in R fails

» 14596 RGB photos on my HD, scaled to 90 x 90

m = 14596, p = 24300

each row of Ais animage vector,b=73" A

62.4% dense

CPLEXkilled by OS after ~30min (presumably for
lack of RAM) on 16GB

v vV VvV VY
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Results on large datasets

Instance ‘ Projection ‘ Original
T m D k opt CPU feas opt CPL gnterr
hh1995f
0.25 3783 856 411 0.00 8.53 0.038% 71.34 17.05 0.16
0.50 0.00 8.44 0.035% 89.17 15.25 0.05
0.75 0.00 8.46 0.041% 65.37 31.67 3.91
jpegs
0.25 14596 24300 506 0.00 231.83 0.51% 0.00 3.69E+5 0.04
0.50 0.00 227.54 0.51% 0.00 3.67E+5 0.05
0.75 0.00 228.57 0.51% 0.00 3.68E+5 0.05
random
0.25 1500 100 363 0.25 2.38 0.01% 1.06 6.00 0.00
0.50 040 251 0.01% 1.34 6.01 0.00
0.75 0.25 2.57 0.01% 1.05 5.64 0.00
0.25 2000 200 377 0.35 4.29 0.01% 2.37 21.40 0.00
0.50 0.55 4.37 0.01% 3.10 23.02 0.00
0.75 0.35 4.24 0.01% 242 21.99 0.00
feas — 100 Az — b||2 IPM with no simplex crossover:
[b]|1/m solution w/o opt. guarantee
l[qnt — proj. qnt||2 cannot trust results
qonterr = ——m/———— simplex method won’t work

# cols

due to ill-scaling and size
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Subsection 5

Sparsity and /; minimization
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Coding problem 1

» Need to send sparse vector y € R" withn > 1
1. Sample full rank & x n matrix A with £ < n

preliminary: both parties know A
2. Encode b = Ay € R*
3. Send b
» Decode by finding sparsest z s.t. Az = b
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Coding problem 2

v

Need to send a sequence w € R

v

Encoding n x k matrix @, withn > k,send z = Qw € R"
preliminary: both parties know Q

v

(Low) prob. e of error: e n comp. of z sent wrong

they can be totally off
» Receive (wrong) vector z = z + x where x is sparse

» Can we recover z?
ok < » Choose k£ x nmatrix As.t. AQ =
£ ola " Letb=Az = A(z4+2) = (Qu—i—:r) =AQuw + Az = Ax
» Suppose we can find sparsest ' s.t. Az’ = b

ra.o * = wecanrecoverz =z — '

» Recoverw’ = (QTQ)~'Q"~
Likelihood of getting small || w — w'||?
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Sparsest solution of a linear system

» Problem min{||z||o | Az = b} is NP-hard

Reduction from Exact CoveR BY 3-SETs [Garey&Johnson 1979, A6[MP5]]

» Relax to min{||z||; | Az = b}
» Reformulate to LLP:

min Y8
Jj<n
Vi<n -—s5;< x; <s; ()
Axr = b

» Empirical observation: can often find optimum

Too often for this to be a coincidence

» Theoretical justification by Candés, Tao, Donoho
“Mathematics of sparsity”, “Compressed sensing”
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Graphical intuition 1

Sparsest solution

Feasible set Ax = b

Norm-1 ball

High probability
of having this
property

» Wouldn’t work with /5, /., norms

Azr = bﬂat al poles — “zero probability of sparse solution”
Warning: this is not a proof. and there are cases not explained by this drawing [Candés 2014]
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Graphical intuition 2

N g
xz
N4 A
!
— — — _1
p=1 p=2 p=00 p=1

» 2 such that A7 = b approximates x in /, norms

» p = 1 only convex case zeroing some components

From [Davenport et al., 2012]; again, this is not a proof!
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Not for the faint-hearted

1. Hand, Voroninski:
arxiv.org/pdf/1611.03935v1.pdf

2. Candeés and Tao:

statweb.stanford.edu/ candes/papers/DecodingLP.pdf

3. Candés:
statweb.stanford.edu/ " candes/papers/ICM2014.pdf

4. Davenport et al.:
statweb.stanford.edu/ "markad/publications/
ddek-chapter1-2011.pdf

5. Lustig et al.:
people.eecs.berkeley.edu/ "mlustig/CS/CSMRI.pdf

6. and many more (look for “compressed sensing”)
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arxiv.org/pdf/1611.03935v1.pdf
statweb.stanford.edu/~candes/papers/DecodingLP.pdf
statweb.stanford.edu/~candes/papers/ICM2014.pdf
statweb.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf
statweb.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf
people.eecs.berkeley.edu/~mlustig/CS/CSMRI.pdf

Finding orthogonal A, Q)

» [Matousek, Gartner 2007]:

» sample A componentwise from N (0, 1)

» approximately preserves Euclidean distances by JLL

» then “find Q@ s.t. QA = 0”

» inpractice, Gaussian elim. on underdet. system AQ) = 0
» Faster:

» sample n x n matrix from uniform distribution

» full rank with probability 1

» find eigenvectors (orthonormal basis)

» random rotation of standard basis: used in JLL proof

» Q:first k eigenvectors, A: last n — k eigenvectors

» AQ = 0 by construction!
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From message to recovery

Procedure:
1. message: character string s
2. w = bin(char2asc(s))
3. send 2z = Qu, receive z = z + x,let b = Az
6 = sparsity of x, Q is n x k full rank with n > k
4. use (}) to find sparsest 2’ satisfying Az = b
5. 7 =z—2a
6. w' = cap(round((QTQ)*Q"2"),[0,1])
7. s' = asc2char(bytechunk(w"))
8. evaluate s, = ||s — ¢||
> 5 =0.08
» n =4k
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Improvements

» Reduce CPU time spent on LP

» n = 4k redundancy for 6 = 0.08 error seems excessive
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L.P size reduction

» Az =bisan (n — k) x n system
» n — k “relatively close” to n
» Exploit JLL to project columns!
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Computational results

k n 5 e a|syE B cPuee  CPUPI
80 320 0.08 0.20 0.02 0 0 1.05 0.56

128 512 0 0 2.72 1.10
216 864 0 0 8.83 2.12
248 992 0 0 12.53 2.53
320 1280 0 0 23.70 3.35
408 1632 0 0 4380 4.75
> k=|s|,n=4k,0 =0.08,¢ =0.2
» o = Achlioptas density R 4

P(T;;=0)=1-a . /
» Serr = number of different // -

characters A

. e

» CPU: seconds of elapsed time M

» Isamplingof A,Q,T
Sentence: Conticuere omnes intentique ora tenebant, inde toro [...]
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Reducing redundancy in n

» How about taking n = (1 + 6)k?

» n— k=~ dkisverysmall

» Makes Az = bvery short and fat

» Prevents compressed sensing from working correctly
» Needn — k ~ k,n =~ k and AQ = 0: impossible

» Relaxto AQ ~ 0?
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The JLL again

Aim AT, Q of size n x kwith AQ ~ 0

» JLL Corollary:
30(e?) approximately orthogonal vectors in R*
» Algorithm:
1. d=0O(lnn)
2. T sampled componentwise from N (0, ﬁ) (asin JLL)
3. colsof T'I,, are n = O(e?) almost orthog. vect. in R?

4. Pf.: JLL approximately preserves distances and scalar
products

Concentration of measure: accuracy increases with d
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Strategy

» Aimatk xnAandn x kQ s.t. AQ =~ 0
withn = (1+ ¢')k and ¢’ “small” (say ¢’ < 1)

» = 2k approxim. orthog. vectors in R” with n < 2k
» JLL: errors too large for such “small” sizes

» Note we only need AQ = 0:
accept non-orthogonality in rows of A & cols of Q)
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LP for almost orthogonality

» Sample () and compute A using an LP
WLOG: we could sample A and compute Q)

» max » Uniform(—1,1)A;;
i<k
i<n

» subjectto AQ =0and A € [—1,1]

» for k = 328 and n = 590 (i.e. &' = 0.8):
» error: > A;Q7 = O(1071Y)
» rank: full
» CPU: 688s (meh)

» for k = 328 and n = 492 (i.e. &’ = 0.5): the same
» for k = 328 and n = 426 (i.e. &' = 0.3): CPU 470s

» Reduce CPU time by solving k& LPs deciding A; (for
i < k)
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Computational results

ko n & s i CPU”® CPUM
328 426 03 182 15 2.45 1.87
154 0 220 149

459 04| O 1 447 245

5 17 2.86 1.46

492 05| 60 0 453 118

34 0 538 118

500 08| 14 0 830 141

107 4 676 143

» CPU for computing A, @ not counted:
precomputation is possible

>
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Conclusion

v

If s is short, set ¢’ = 6 and use compressed sensing (CS)

v

If sislonger, try increasing ¢’ and use CS

» If sis very long, use JLL-projected CS

» Can use approximately orthogonal A, Q) too
Conticuere omnes, intentique ora tenebant. k = 1896,n = 2465
Inde toro pater Aeneas sic orsus ab alto: &8’ = 0.3: min s.t. CS is accurate
Infandum, regina, iubes renovare dolorem. method ‘ error CPU
Troianas ut opes et lamentabile regnum eruerint Danai CS 0 29067s
Quaequae ipse miserrima vidi et quorum pars magna fui. JLL-CS 2 1713s
|\ lr‘gl I, Aeneid, Cantus I1 | These results are consistent over 3samplings

Technique applies to all sparse retrieval problems

N
ol
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Outline

Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory’s upper bound
Delsarte’s upper bound
Pfender’s upper bound
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Definition

» Optimization version. Given K € N, determine the
maximum number kn(K') of unit spheres that can be
placed adjacent to a central unit sphere so their
interiors do not overlap

» Decision version. Givenn, K € N,iskn(K) < n?
in other words, determine whether n unit spheres can be placed
adjacent to a central unit sphere so that their interiors do not

overlap

Funny story: Newton and Gregory went down the pub...
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Some examples

n=6K=2 n=12,K =3 more dimensions

n T (lattice) t (nonlattice)
0 0
1 2
2 6
3 12
4 24
5 40
6 7
7 126
8 240
9 272 (306)"
10 336 (500)"
11 438 (582)"
12 756 (840)°
13 918 (1130)
14 1422 (1582)
15 2340
16 4320
17 5346
18 7398
19 10668
20 17400
21 27720

22 49896
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Radius formulation

Given n, K € N, determine whether there exist n vectors
x1,..., %, € RE such that:
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Contact point formulation

Given n, K € N, determine whether there exist n vectors
x1,..., %, € RE such that:

Vi<n o al; = 1 e
Vi<j<n o w—al; > 1

v
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Spherical codes

» SK~1 C R¥ unit sphere centered at origin
» K-dimensional spherical z-code:

» (finite) subsetC ¢ SK—1
» Ve #£Fyel x-y<z

> non—overlapping interiors:

Vi<j lei—azll; > 1
& el + ol - 2202 > 1
< 1+1-2x-2; > 1
& 2r-x; <1
&S xiex; < 1:cos(z):z
) 3
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Subsection 1

Lower bounds
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Lower bounds

v

Construct spherical -code C with |C| large
Nonconvex NLP formulations

v

SDP relaxations

v

v

Combination of the two techniques
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MINLP formulation

Maculan, Michelon, Smith 1995
Parameters:

» K:space dimension
> n:upper bound to kn(K)

Variables:

» z; € R¥: center of i-th vector
» «; = liff vectoriin configuration

n
max >
i=1
Vi<n |22 = oy
Vi<j<n |]a:i—xj|]2 > a0y
Vi<n r € [-1,1)¥
Vi<n a; € {0,1} J
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Reformulating the binary products

» Additional variables: 5;; = 1iff vectors i, j in
configuration

» Linearize o;a; by f;;
» Add constraints:

Vi<j<mn Bii < o
VZ<]§71 /Bij S Oéj
Vz<j§n 5@' > C(i—i-CYj—l
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Computational experiments

AMPIL. and Baron

» Certifying YES
» n=06,K =2: 0K, 0.60s
» n=12, K = 3: OK, 0.07s
» n =24, K = 4: FAIL, CPU time limit (100s)

» Certifying NO
» n=7,K = 2: FAIL, CPU time limit 100s)
» n =13, K = 3: FAIL, CPU time limit (100s)
» n =25, K = 4: FAIL, CPU time limit (100s)

Almost useless
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Modelling the decision problem

max a )
T,
Vi<n l|z:||* = 1
Vi<ji<n |lz;—z|]* > «
Vi<n r, € [-1,1)%
a > 0 )

» Feasible solution (z*, o*)

» KNP instanceis YES iff o* > 1

[Kucherenko, Belotti, Liberti, Maculan, Discr. Appl. Math. 2007]
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Computational experiments
AMPL and Baron
» Certifying YES
» n =6, K = 2: FAIL, CPU time limit (100s)
» n =12, K = 3: FAIL, CPU time limit (100s)
» n =24, K = 4: FAIL, CPU time limit (100s)
» Certifying NO
» n =7, K = 2: FAIL, CPU time limit (100s)
» n =13, K = 3: FAIL, CPU time limit (100s)
» n =25, K = 4: FAIL, CPU time limit (100s)
Apparently even more useless
But more informative (arccos o = min. angular sep)

Certifying YESbya > 1
» n=6,K=2:0K,0.06s
» n =12, K = 3: OK, 0.05s
> 1 =24, K = 4: OK, 1.48s
» n =40, K = 5: FAIL, CPU time limit 100s)
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What about polar coordinates?

> VZSTL .’172':(.%'ﬂ,...,.’l?ﬁ()i—}(ﬁil,...,ﬁLK_l)

» Formulation

K-1
(t) Vk< K psind; Hcosf}ih = T
h=k
(1) Vi<j<n |z —zl3 > p°
Vi<n k<K (sin(¥y))?+ (cos(¥))? = 1
(optional) p = 1

v

Only need to decide s;;, = sinv;;, and c;;, = cos ¥y,

v

Replace z in (f) using (}): get polyprogin s, c

v

Numerically more challenging to solve (polydeg 2K)
OPEN QUESTION: useful for bounds?

v
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Subsection 2

Upper bounds from SDP?
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SDP relaxation of Euclidean distances

» Linearization of scalar products
VZ,]SR .Z'i'ilfj—)Xij

where X is an n x n symmetric matrix

v

|zill5 = =5 - 2 = X
|z — 37]”2 |3 + ”%Hz 2w x; = Xy + Xj; — 2X5

» X = 22" = X — zx" = 0 makes linearization exact

v

Relaxation:

v

X — a2’ = 0= Schur(X,z) = L a! =0
p— b x X p—
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SDP relaxation of binary constraints

v

Vi<n o €{0,1} & a? =q

v

Let Abe ann x n symmetric matrix
» Linearize o;a; by A;; (hence o by A;;)

» A = aa’ makes linearization exact

v

Relaxation: Schur(A, ) = 0
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SDP relaxation of [MMS95]

max > ]
i=1
Vi<n Xy = oy
VZ<j§n X1+XJ—2XU > Aij
Vi <j <n Az‘j < Qa;
Vi<ji<n A < o
Vi<j<n Aij > oi+a;—1
Schur(X,z) > 0
Schur(A,a) = 0
Vi<n v € [-1,1)K
a € [0,1)"
X e [-1,1”
A € [0,1"
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Computational experiments

» Python, PICOS and Mosek
or Octave and SDPT3

» bound always equal ton

» prominent failure —(
>

» can combine inequalities to remove A from SDP

Vi<ini+ij—2Xij >
= X+ X5 —2X5; > aito—1

(then eliminate all constraints in A)

» integrality of o completely lost
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SDP relaxation of [KBLLMO7]

max (6]
VZ<]§TL Xii+ij_2Xij >«
X e [-1,1]”
X = 0
a > 0
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Computational experiments

With K =2
n 7(1* ¢ ‘knpsdpfeas2D,out' using 152 ——
2 [ 4.00 ol
3 | 3.00
4| 2.66 \
5 250 3.4 \
6 | 240 y \
7| 233 N
8 | 228 g \\
9| 225 \
10 | 222 AN
1 | 220 AN
12 | 218 S~
13 | 216 —
4| 215 I
15 2.14 ¢ 2 4 B 8 10 12 14 16
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Computational experiments

With K =3

Always — 27
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An SDP-based heuristic?

1. X* € R": SDP relaxation solution of [KBLLMO07]
2. Perform PCA, get z € R
3. Local NLP solver on [KBLMO7] with starting point z

However...

281/307



The Uselessness Theorem

Thm

1. The SDP relaxation of [KBLMO7] is useless
2. Infact, it is extremely useless

1. Part 1: Uselessness

» Independent of K:

no useful bounds in function of K
2. Part 2: Extreme uselessness
(a) For all n, the bound is %

(b) 3opt. X* with eigenvalues 0,

n n
n—17"""7"n-1

By 2(b), applying MDS/PCA makes no sense
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Proof of extreme uselessness

Strategy:
» Pull a simple matrix solution out of a hat
» Write primal and dual SDP of [KBLMO7]
» Show it is feasible in both
» Hence it is optimal
» Analyse solution:

>

» its objective function value is 2n/(n — 1)
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Primal SDP

V1 <i<j<nletB;; = (1;;) and 0 elsewhere

quantifier | natural form standard form dual var
max max o
Vi<n| X;;=1 E,eX =1 U
Vi < ] <n X,j,’ 4+ ‘Y./.i — 2)&7,“]‘ >« Aij o X +« < 0 Wij
Aij = —Ey; — Ejj + Ei; + Ej;
Vi<j<n|X;<I (Eij + Eji) e X <2 Yij
Vi <j<n )(,'j > —1 (—Eij — Eji) e X <2 Zij
X =0 X0
a>0 a>0
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Dual SDP
mmZul —|—2Z Yij + Zij)

1<J
Z u By + Z Yij — sz Eji) + wiinj) = 0
1<J
D wy 2 1
i<j
w,y,z >0
Simplify |v| =y + zv=y— 2
mmZul —i-QZ [vij]
1<j
ZUZEM + Z vij(Bij — Eji) + U’ZJAZJ') = 0
1<j
dowy = 1
1<j
w,v >0
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Pulling a solution out of a hat

. 2n
e =
n—1
X" = n [n_ ! n
n—1 n—1
. 2
u _—
n—1
. 1
w g
n(n —1)
vt o= 0

where 1,, = all-onen x n matrix
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Solution verification

» linear constraints: by inspection
» X > 0: eigenvalues of X* are0, 25, ... s

n—1

> >l 4 )0 (i (B — Eji) + wijAig) = 0

i 1<J
2 1
= Es; Az
n—lZ +n(n—1);j !
2 1
= I, - L, + (1, -1,
n—1 +n(n—1)( (n = DI+ ( )
1
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Corollary

lim v(n, [KBLMO7]) = lim —"— — 9

n—0o0 n—oo 1, — 1

as observed in computational experiments
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Subsection 3

Gregory’s upper bound
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Surface upper bound

Gregory 1694, Szpiro 2003
Consider a kn(3) configuration

inscribed into a super-sphere of
radius 3. Imagine a lamp at the
centre of the central sphere that
casts shadows of the surround-
ing balls onto the inside sur-
face of the super-sphere. Each
shadow has a surface area of 7.6;
the total surface of the super-
ballis113.1. So 1131 = 14 9isan
upper bound to kn(3).
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Subsection 4

Delsarte’s upper bound
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Pair distribution on sphere surface

» Spherical z-code Chasz; - z; < 2z (i < j <n=C|)
I
vie[=11] ov=—[{(i,5) 1,5 <nAwi-x; =1}

» t-code:leto, = 0fort € (1/2,1)
» |C| = n < oc: only finitely many o, # 0

1 n?
dt = = — ll 1 = — —
/{_171] oy E oy n|a pairs| p n

te[—1,1]
1
opo=-n = 1
n
Vt€(1/2,1) o = 0
Vte[—l,l] Ot Z 0
{o,>0[te[-1,1]} < o
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Growing Delsarte’s LP
» Decision variables: ;. for ¢ < [~ 1 1]

» Objective function:

max |C| = maxn = max Z oy
g

= 07 + max Z oy = 14+ max Z o
7 tel-1a/2) 7 tel-1a/2)

Note n not a parameter in this formulation

» Constraints:

Vie[-1,1/2] ,>0

» [.P unbounded! — need more constraints
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Gegenbauer cuts
» Look for function family .%# : [-1,1] — Rs.t.

Vo € F Z o(t)or > 0

te[—1,1/2]

v

Most popular .7: Gegenbauer polynomials G}

v

Special case G = P)"7 of Jacobi polynomials where = (i - 2)/2)

PP — = Xh: <h:“°‘> (;Hf) (t+ 1)t — 1)

=0

v

Matlab knows them: G (t) = gegenbauerC(h, (K — 2)/2,t)
Octave knows them: Gf (t) = gs1_sf_gegenpoly_n(h, 552, 1)

need command pkg load gsl before function call

v

v

They encode dependence on K
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Delsarte’s LLP

» Primal:
1 + max ooy
te[-1,1]
Vhe H > 1 GE(t)oy > —GE(1) 3 [DelP]
vt e [-1, 3] o o > 0.
» Dual:
1+min Y (-GE(1))d,
vt e [-1,1] heHZ GEt)d, > 1 }[DelD]
Vh e H < dp, < 0
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Delsarte’s theorem

» [Delsarte et al., 1977]

Theorem

st F(t) =

Then kn(K) <

Letdy > 0and F : [—1,1] — R such that:

() 3H € (NU{0}) andd c R > 0

> dGE(t)
heH

(i) Wte[-1,2 F(t) <0

F(1)

do

» Proofbased on properties of Gegenbauer polynomials

» Best upper bound: min F/(1)/dy = min F(1) = [DelD]

» [DelD] “models” Delsarte’s theorem

296/307



Delsarte’s normalized LP (G# (1) = 1)

» Primal:
1 + max > oy
te[-1,3]
Vhe H Y, GK(t)o,
te[—1,1]
Vt € [—1, %] O¢

—1 5 [DelP]

A%

Vv
o

» Dual:
14+ min > (—1)dy

heH
vte[-1.Y Y GE(t)d
heH
Vh € H d, < 0

1 7 [DelD]

vV

» dp =1 = remove0 from H
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Focus on normalized [DelD]

Rewrite —d;, as d:

1 4+ min Z dh
heH
vie[-1,4] X GE(t)d, < —1 [DelD]
heH
Vh S H dh Z O

Issue: semi-infinite LP (SILP) (how do we solve it?)
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Approximate SILP solution

v

Only keep finitely many constraints
Discretize [—1, 1] with a finite T C [—1, 1]

Obtain relaxation [DelD]:

v

v

val([DelD]7) < val([DelD])

v

Risk: val([DelD]7) < min F(1)/d,

not a valid bound to kn(K)

Happens if soln. of [DelD]; infeasible in [DelD]

i.e. infeasible w.r.t. some of the coly many removed constraints

v
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SILP feasibility

Given SILP S = min{c"z | Vi € [ a] z < b;}
Relaxto LP S = min{c"z | Vi € [ a x < b;}, where1 T

v

v

v

Solve S, get solution z*

Let e = max{a/2* — b; | i € I}
continuous optimization w.r.t. single var. i

v

If ¢ < 0 then z* feasible in S
= val(S) < cTz*

v

v

If € > Orefine S and repeat
Apply to [DelDly, get solution d* feasible in [DelD]

v
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| DelD] feasibility

1. Choose discretization T of [—1,1/2]

2. Solve
1 4+ min > dp
heH
vteT > GE(@t)d, < -1 }I[DelDly
heH
Vh e H dp, > 0

get solution d*

3. Solve e = max{1+ > GF(t)dy |t e[-1,1/2]}

heH

4. If € < 0then d* feasible in [DelD]
= kn(K) <1+ ,cnd;
5. Llse refine T and repeat from Step 2
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Subsection 5

Pfender’s upper bound
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Pfender’s upper bound theorem

Thm.
LetC, = {z; e S~ |i<nAVj#i(z; ;< 2)}5¢0>0; f:[-1,1] - Rs.t.

i,j<n
Thenn < -
co

([Pfender 2006])
Let g(t) = £(t) + co

n*cp < nPcp+ Z flx; - z;) by (i)

i,j<n
= Z (f(zi ) + co) = Z 9(w; - x5)
h,j<n 4,j<n
< Zg(mZ - 1) since g(t) < O0fort < zandz; € C. fori <n
i<n
= ng(1) since ||z;]|2 = 1fori <n
< n since g(1) < 1.
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Pfender’s LLP

» Condition (i) of Theorem valid for conic combinations of
suitable functions F:

f@) = Z cnfn(t) forsomecy >0,

heH
e.g. F = Gegenbauer polynomials (again)
» Get SILP
max co (minimize 1/cq > n)
ceRIH|
vte[-1,2] Y enGE(t)+co < 0 (D)
heH
SoenGEQ) +eo < 1 (i)
heH
Vhe H ¢, > 0 (coniccomb.)

> Discretize [—1, z] by finite T, solve LP, check validity (again)
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Delsarte’s and Pfender’s theorem compared

» Delsarte & Pfender’s theorem look similar:

Delsarte ‘ Pfender

(@) F(t) G. poly comb @) f(t) G. poly comb

)Vt e [~1,2z] F(t) <0 | (i)Vte[-1,2] f(t)+co <0
Gi1) f(1) +co <1

F(1) 1
= kn(K) < £ = kn(K) < =

» Trysetting F(t) = f(t) + co: condition (ii) is the same
> By condition (iii) in Pfender’s theorem

kn(K) < do B Co S%

= Delsarte bound at least as tight as Pfender’s

» Delsarte (i) = f . 1] )dt >0= f[ L 1] (t) + co)dt >0
Pfender (i) = f[ 1] t)dt > 0 more stringent

» Delsarte requlres weaker condition and yields tighter bound

Conditioned on F'(t) = f(t ,not a proof! Verify computationally
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The final, easy improvement

» However you compute your upper bound B:
» The number of surrounding balls is integer
» Ifkn(K) < B,theninfactkn(K) < | B
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THE END
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