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Why the special focus on Robust Optimization? 

  Consulting experience in industry (optimization under worst case)  

  (Reasonably) contained increase in problem complexity 

  I know most about this topic (theoretical + applied experience)  

  A classic: the Bertsimas-Sim model 

Fundaments of Robust Optimization 

Presentation outline 

From Deterministic to Uncertain Optimization 

  An overview of methodologies for Uncertain Optimization 
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DESIRABLE QUALITY FOR UNCERTAIN 
HARD-TO-SOLVE REAL-WORLD PROBLEMS 



It’s a stochastic world 

TLC NETWORK DESIGN 

Traffic flows 

SURGERY SCHEDULING 

Requests of operations 

AIRCRAFT SCHEDULING 

Flight delays 

FINANCE 

Stock value 

Most of real-world optimization problems involve uncertain data 

The topic of Uncertainty in Optimization was identified already by George Dantzig, 
the father of Linear Programming and an icon of Operations Research 

(Linear Programming under Uncertainty, Management Science, 1955) 

Given the presence of uncertainty in a problem, do we really need to take care of it? 

  What if we neglect uncertainty? Do we risk to get meaningless solution?  
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An example: traffic uncertainty in Network Design 

  In every origin-destination pair, traffic volume heavily fluctuates over the week 

  Overall fluctuation in a network link even more severe  

Solution of the professional: dimension network capacity by (greatly) overestimating demand  

Traffic fluctuations of three O-D pairs 
in the USA Abilene Network  

(one-week observation) 

TIMELINE 

Mbps 

? CAN WE DEFINE A BETTER ROBUST SOLUTION THROUGH OPTIMIZATION ? 
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CLASSIC  
OPTIMIZATION 

THE VALUE OF ALL 
COEFFICIENTS 

IS KNOWN EXACTLY 

? REASONABLE ASSUMPTION FOR ANY PROBLEM 

Data uncertainty in Optimization 

Neglecting data uncertainty may lead to bad surprises: 

  nominal optimal solutions may result heavily suboptimal 

  nominal feasible solutions may result infeasible 

NO! 

THEY OVERLOOKED  
DATA UNCERTAINTY… 

ROBUST 
SOLUTION 

solution that remains feasible even when the input data vary 
(PROTECTION AGAINST DATA DEVIATIONS) 

= 

To avoid such situations, we want to find robust solutions: 
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Relativity of Robustness 

2)  Over the years, many protection models have been proposed 

  The term Robustness is nowadays overused in Optimization 

example: Robust Telecom Network Design (= robust against connection failures) 

1)  The question of how modeling the protection is open 

example: Robust Road Routing (= robust against non-rational decision makers) 

3)  There is no evidence of the existence of a dominating model 

In my experience, Professionals like some models more than other models  

ROBUST 
SOLUTION   In this presentation: solution protected against  

deviations of the input data 
= 

(they can understand them and actively participate to their tuning!                better solutions)  

CRITICAL REMARKS 

ANYWAY 
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It was not robust… 

  A simple numerical example may clarify the effects of data deviations: 

Suppose that we have computed an optimal solution  x=1, y=1  for some problem with nominal constraint: 

However, we have neglected that the coefficient of x may deviate up to 10%, so we could have 

OPTIMAL SOLUTION 
ACTUALLY INFEASIBLE! 

  What if this was part of a problem to detect water contamination?  

Fabio D’Andreagiovanni  (CNRS, Sorbonne  - UTC)  –  An introduction to Optimization under Uncertainty 



A simple example of uncertain problem 

  Company producing x units of a product to meet a demand d  

  Unitary production cost c 

  Overproduction   (x > d) 

  Underproduction (x < d) 

store left-over units  (unitary storage cost  s)   

backorder missing units (unitary order cost  b: b > c)   

COST 
FUNCTION 

OPTIMIZATION 
PROBLEM 

PIECEWISE LINEAR 
FUNCTION 

WITH MINIMUM IN x* = d 

   NEWSVENDOR PROBLEM 

If we know exactly the demand d, then we produce exactly d units of product   

HOWEVER, future demand is generally unknown. How many units should we then produce? 

  SCOPE: establish the quantity to produce that satisfies the demand and minimizes the total cost  

EQUIVALENT PROBLEM 
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Many ways of modeling data uncertainty (1) 

Working hypothesis: the demand is a random variable D and we know its probability distribution 

  Closed form solution rarely available for real-world problems 

  This solution can be very different from the one obtained for the expected demand value 

REMARKS: 

Naive way: solve the deterministic problem for the expected value of the demand   

A more rational approach: minimize the expected value of the objective cost function  

with 

and optimal solution 
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Working hypothesis: we have characterized a number of demand scenarios  di , i = 1,…,I 

IF the number of scenarios is sufficiently large, THEN we could build an empirical distribution 
and operate as showed before  

ALTERNATIVELY, we can consider a different expected value of the objective function: 

PROBABILITY OF 
REALIZATION 

OF THE SCENARIO  

decomposable structure 

generalization of the fixed-demand problem 
 (= single scenario with p=1) 

Many ways of modeling data uncertainty (2) 
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Derive the overall deviation range [dlow, dup] of the demand 

WORST-CASE 
PROBLEM 

deterministically protected against all the specified deviations 

  price of complete protection (Price of Robustness) = sensible increase in conservatism 

Many ways of modeling data uncertainty (3) 

Working hypothesis: we have characterized a number of demand scenarios  di , i = 1,…,I 

with optimal solution 

REMARKS: 
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MIN-MAX  
REGRET 

PROBLEM 

Given a solution x’ for scenario d’, define its regret as the value: 

OPTIMAL VALUE OF THE 
DETERMINISTIC PROBLEM 
FOR DEMAND SCENARIO d’ 

COST OF THE SOLUTION x’ 
FOR DEMAND SCENARIO d’ 

Minimization of the maximum regret when considering all the possible scenarios 

  Reduced conservatism  w.r.t. worst-case performance 

  Remarkable increase in conmputational complexity 

  Takes into account all the relevant scenarios, not just the extreme deviations  

Many ways of modeling data uncertainty (4) 

Working hypothesis: we have characterized a number of demand scenarios  di , i = 1,…,I 

REMARKS: 
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Many ways of managing data uncertainty (5) 

A decision maker could choose  to explicity control conservatism of produced solutions  

BUT, this could lead to problem infeasibility! 

SOFTER STRATEGY: consider a probabilistic constraint 

CHANCE-CONSTRAINED 
PROBLEM 

  the probabilistic constraint introduces non-convexities 

  the problem becomes very hard to solve 

  we need the probability distribution of D 

REMARKS: 
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Many ways of managing data uncertainty (6) 

Other alternatives in brief: 

Robust Optimization 

  Recoverable Robustness (Liebchen, Lübbecke, Möhring, Stiller, 2009) 

  Light Robustness (Fischetti, Monaci, 2007) 

 model uncertainty by additional hard constraints that cut off non-robust solutions 

  solve the nominal problem 

  define (limited) reparation actions to adopt in case of bad deviations 

 a kind of Robust Optimization adding bound on the so-called Price of Robustness  
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Let’s take a first break 

  No model dominates the others from a theoretical point of view… 

 …but Robust Optimization is emerging as the most effective way to model and actually solve 

real-world problems 

 (and Professionals like it! - deterministic protection and accessibility) 

  World is stochastic and most of real-world optimization problems involve uncertain data, 

 whose presence cannot be neglected 

  Many models are available for representing uncertain data in optimization  
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Stochastic Programming – some more details 

Let’s say something more about Stochastic Programming (SP): 

  oldest approach to Optimization under Uncertainty 

  well-investigated topic  
 (substantial literature – large community) 

Anyway, I will limit the attention to fundaments of SP 

  need for probability distributions of the uncertain data 

  huge hard-to-solve problems 

  not easily accessible to professionals 

In my experience, SP is still hard to adopt in real-world problems  
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Two-stage Stochastic Programming (1) 

  we must take a decision in a first stage 

We deal with an uncertain min-cost problem where: 

  after this first stage, the uncertain data reveal their actual values  

  we may take a second-stage decision based on the observed data  

FIRST-STAGE 
CONSTRAINTS SECOND-STAGE VARIABLES 

(DEPENDING UPON THE SCENARIO s) 

Assuming to have a set of uncertainty scenarios  s = 1,…,S  we consider the problem: 

SOMETHING TO TAKE INTO ACCOUNT 
 UNCERTAINTY AND SECOND-STAGE + 

FIRST-STAGE  -  SECOND-STAGE 
LINKING CONSTRAINTS 
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Given an uncertainty scenario s we can react smartly 

The second-stage variables represent the fact that we are not completely at the mercy of Nature 

RECOURSE 
ACTIONS 

  the second-stage decision variables ys  

The recourse is defined by: 

  the recourse matrix F  

  the cost of recourse (not yet characterized) 

RECOURSE COST + 

Two-stage Stochastic Programming (2) 
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Two-stage Stochastic Programming (3) 

We can reasonably model recourse cost by an additional vector d  

… still, we have to consider scenario uncertainty 

The resulting Stochastic Program: 

PROBABILITY OF OCCURRENCE 
OF SCENARIO s 

  PRO: Linear Program 

  CON: HUGE Linear Program 
q recourse vars  by  s scenarios  

m linking constraints  by  s scenarios  
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  an estimate of the energy demand for each hour of the day and for each energy district 

We are given: 

  a set of power plants 

3 demand estimates {dz
min, dz

avg , dz
max} for each district z 

SP dimension may easily explode 

We want to choose the energy production level of each plant for each hour so that: 

  the estimated demand is satisfied 

  the total production cost is minimized 

Two-stage stochastic perspective: 

  first-stage cost is the (exactly known) energy production cost  

  recourse cost = cost of balancing the network grid when not meeting district demand 

Explosion of problem dimension even for coarse stochastic demand modeling: 

20 districts 

3^20 scenarios  
= 

more than 3 billions 
demand scenarios! 

As an example, consider a stochastic unit commitment problem 
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A decomposition approach 

 Let’s visualize the problem in the following way:  

Do you notice anything? The problem is decomposable! 

MASTER 
PROBLEM 

(purely based on x) 

SLAVE 
PROBLEM 

solution x’ to check 

feasibility and robustness cuts 
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Another break before moving alone 

  What you have seen about Stochastic Programming is just the tip of the iceberg! 

  I have tried to sketch essential features of the approach that will be useful to point out 
differences with respect to Robust Optimization 

(more than 50 years of research on the topic!) 
uncountable SP modeling and solution methodologies 

  A. Shapiro, D. Dentcheva, A. Ruszczynski,  
  “Lectures on Stochastic Programming: modeling and theory” 
  MPS-SIAM Series on Optimization, 2009 

  For a more exhaustive introduction, I suggest the recent book: 
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Uncertain problems – a remark 

  If we know the distribution followed by the uncertainty, there could be the 

possibility to define a (slightly) modified version of the original problem 

  ASSUMPTION: we have established that  

•  our problem is uncertain 

•  we must consider uncertainty  

  We may tackle uncertainty by one of the methodogies sketched before 

  I will illustrate this possibility by an application in Wireless Network Design 
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Wireless Networks 

A Wireless Network can be essentially described as a set of transmitters T which 
provide for a telecommunication service to a set of receivers R located in a target area 

Radio-electrical (e.g., power emission, frequency channel) 

Positional (antenna height, geographical location) 

set the values of the parameters of each transmitter to 
maximize profit from service, while ensuring a 
minimum quality of service for each served receiver 

WIRELESS NETWORK 
DESIGN PROBLEM 

(WND) 

  Every transmitter is characterized  
 by a set of parameters 
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Service coverage (1) 

r is covered if the signal-to-interference ratio (SIR) is higher than a given threshold: 

(SIR constraint) 

Every receiver r picks up signals from all the transmitters, 
 
BUT:  

  coverage is provided by a single transmitter, chosen 
as server of r 

  all the other transmitters interfere the serving 
 signal 

POWER RECEIVED 
FROM SERVER Tx 

SUM OF POWER FROM  
INTERFERING Txs 

COVERAGE 
THRESHOLD 

If we introduce a continuous variable                              to represent power emission of transmitter t, 
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A fading coefficient art is usually computed through a propagation model and depends on several 
factors such as:   

  the distance between t and r 

  the presence of obstacles 

  the weather 

 The fading coefficients are naturally subject to uncertainty  

Neglecting uncertainty may lead to plans with unexpected coverage holes 

EXPECTED 
COVERAGE ACTUAL 

COVERAGE 

Propagation and fading 
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Stochasticity of propagation (1) 

What do network engineers actually consider to protect from signal uncertainty? 

For each receiver to cover, they look at a probabilistic version of the SIR (signal-to-interference ratio): 

Every signal S is a lognormal random variable 

However, a closed form for the summation of lognormal variables is not yet known.  

so they must adopt one of the approximation proposed in literature 

International  
Telecommunications  

Union (ITU) 

k-LNM  
Method 

Sum Lognormal Vars = Lognormal var L 
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Stochasticity of propagation (2) 

We can use the k-LNM method to get a constraint in the power variables of the transmitters, 
however the constraint is non-linear 

  Network engineers usually adopt a trial-and-error approach supported by simulation 

We can eliminate the non-linearity by making assumption on the deviation 
 (strategy adopted in the design of the Italian DVB-T network in collaboration with AGCOM)  
  

 
 
 

 ANYWAY, we have to check the validity of the solution and repair coverage errors if present 

COVERAGE 
PROBABILITY 
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Intermediate remarks 

  Most real-world optimization problems involve uncertain data, whose presence cannot be neglected 

  Many models are available for representing uncertain data in optimization  

  Until recent times, Stochastic Optimization has been the most used methodology for uncertain 
optimization 

  Sometimes there is the possibility that the uncertain problem may be “reformulated deterministically” 
 exploiting problem-specific information about the uncertainty 

  Robust Optimization has emerged as a very competitive alternative to Stochastic Programming 
 and is particularly appreciated by Professionals 
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Optimization under uncertainty 

  optimize the expected value of the objective function 

Main features:  

  precise knowledge of the uncertainty distribution is required  

Drawbacks:  

  find a solution that is feasible for (almost) all the realizations of the data  

  (hard) very-large scale optimization problems 

STOCHASTIC 
PROGRAMMING 

probably the oldest and most 
studied approach to the question 

  solutions may still be infeasible 

  Many methodologies to deal with it proposed over the years 

  Open question since the time of Dantzig [Management Science 1955] 
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Robust Optimization 

Uncertainty on coefficients is modeled as 
hard constraints that restrict the feasible set 
[Ben-Tal, Nemirovski 98, El-Ghaoui et. al. 97] 

NOMINAL PROBLEM ROBUST COUNTERPART Coefficients  
are uncertain!!! 

      is a subset of all the matrices allowed by deviations from nominal values  

  “larger”     corresponds with higher risk adversion of the decision maker   

NOMINAL 
VALUE DEVIATION ACTUAL 

VALUE 

NOMINAL  
FEASIBLE SET 

ROBUST  
FEASIBLE SET 

  protection entails the so-called Price of Robustness 
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A breakthrough: the Bertsimas-Sim model 

Deviation range:  

ROBUST COUNTERPART 
(NON-LINEAR) 

each coefficient  assumes value in the symmetric range 

Row-wise uncertainty: for each constraint  i,                      specifies the max number  of coefficients deviating from  

MAXIMUM DEVATION 
OF CONSTRAINT i 

 1)  w.l.o.g. uncertainty just affects the coefficient matrix Assumptions: 

 2)  the coefficients are independent random variables following an  
      unknown symmetric distribution over a symmetric range  
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The magic of duality 

ROBUST COUNTERPART [Bertsimas,Sim 04] 
(LINEAR AND COMPACT) 

DEFINE THE 
DUAL PROBLEM 

THE LINEAR RELAXATION HAS 
THE SAME OPTIMAL VALUE 

Linearity requires: 

  m + m n  additional variables 

  m n  additional constraints 
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NON-NEGATIVE 
UNCERTAIN COST VECTOR FEASIBLE SET 

= 
SUBSET OF ALL THE 0-1 VECTORS 

0-1 COST UNCERTAIN LINEAR PROGRAM 

  A robust optimal solution can be obtained by solving n+1 nominal problems with modified cost vector c’  

PROBABILISTIC BOUND OF CONSTRAINT VIOLATION 

  The robust optimal solution is completely protected against at most Γι  deviations occuring in constraint i   

Other relevant results in Γ- Robustenss  

  This solution may become infeasible when more than Γi  deviations occur 

  Anyway, Bertsimas and Sim characterized a bound on the probability that the solution becomes infeasible   
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Robust Optimization VS Stochastic Programming 

  Soft probabilistic VS hard deterministic constraints to represent uncertainty 

need to characterize the probability distribution 

willingness to accept probabilistic guarantees 

need stochastic data 

  Computational tractability 

  Rigid budget of uncertainty (defined by the probability distribution) 
 VS 
 Flexible budget of uncertainty  
 (shape the uncertainty set according to the decision maker’s risk aversion) 
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KISS Bertsimas and Sim 

  Mathematically elegant and accessible theory for dealing with uncertainty 

Very plain and understandable uncertainty model  

  Starting point for many further theoretical developments  
 (see the many subsequent papers mainly by Bertsimas and al. and Sim and al.)  

  Notwithstanding the new developments, after ten years the model still remains a 
central reference in applications 

Keep It Simple 
and Straightforward! 

Easily implementable 

Clear and direct control over robustness 

Ideal robustness model for professionals and “more technical” research 
communities  

  Which is the sense of this model? 

  How am I supposed to use this model? 

It typically dissipates common questions like:   
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PRICE-TAKER 

Energy Offering for a Price-Taker (EnOff-PT) 

producer that does not influence market price  
( limited energy production ) 

The multi-unit offering problem can be decomposed into single-unit problems 

For each generation unit of the producer : 

  a planning horizon decomposed into a set T of time periods  

We want to: 

  choose the energy to offer in each time period in the market 

  the total profit is maximized 

So that:  

  the market price in each time period t   

Given: 

  technical constraints of the units are satisfied (e.g., min up/down time, ramp limits) 
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A natural formulation for the EnOff-PT 
DECISION VARIABLES 

(ENERGY OUTPUT) 

(STATUS ON/OFF) 

RELEVANT FEATURES OF A GENERATION UNIT 

(MIN and MAX ENERGY OUTPUT) 

(RAMP-UP and RAMP-DOWN RATE) 

(MAX ENERGY OUTPUT AT START UP 
and BEFORE SHUT-DOWN) 

(MIN UP and DOWN TIME) 

VARIABLE POWER 
BOUND 

RAMP-UP AND –DOWN 
LIMITS 

PROFIT MAXIMIZATION 
(REVENUE MINUS  COSTS OF GENERATION AND START) 

MIN UP AND DOWN TIME 
(STRONG VERSION) 

(SWITCH ON) 

(SWITCH OFF) 

LINKING OF VARIABLES 
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Price uncertainty in the UC-PT 

Major challenge for 
the price-taker 

WHAT CAN WE DO? 

The price-taker could solve its commitment  problem using estimates of prices that he trusts… 
…BUT he would risk a lot!    

price estimates (sensibly) higher 
than the real market price OVERPRODUCTION LOSSES 

price estimates (sensibly) lower 
than the real market price UNDERPRODUCTION REDUCED 

PROFIT 

We cannot neglect price uncertainty and we must tackle it! 

the hourly prices are not kwown exactly 
when the problem is solved 

(MARKET PRICE UNCERTAINTY) 
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Resuming the Bertsimas-Sim model (BS) 

Deviation range:  each coefficient  assumes value in the symmetric range 

Row-wise uncertainty: for each constraint  i,                      specifies the max number  of coefficients deviating from  

 1)  w.l.o.g. uncertainty just affects the coefficient matrix 

Assumptions: 

 2)  the coefficients are independent random variables following an  
      unknown symmetric distribution over a symmetric range  

ROBUST COUNTERPART 
(NON-LINEAR) 

ROBUST COUNTERPART [Bertsimas, Sim 04] 
(LINEAR AND COMPACT) 
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Γ-Robustness for the price-uncertain UC-PT 

data uncertainty only affects the objective function (uncertain price coefficients) 

  the nominal price in each period 

  the worst deviation of price w.r.t. the nominal price in each hour 

  the number  Γ > 0  of price deviations for which protection is required 

Remarks about the UC-PT: 

Γ-Robust Counterpart: 

Given: 

The robust counterpart  is: 

FEASIBLE ENERGY PRODUCTION SET 

ADDITIONAL VARIABLES AND CONSTRAINTS 
FROM ROBUST DUALIZATION 
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The Baringo-Conejo approach (1) 
Highly cited work proposing a method  for building energy offering curves for a price taker (2011) 

Main steps: 

Computing one robust optimal solution  
for each “lowering“ of the step function 

from the maximum to the minimum price 

identify the overall range of prices in each period - maximum and miminum prices  

  define an elementary price shortfall 

TIME (h) 

ENERGY PRICE 
(EUR/MWh) 

PRICES FOR PROBLEM k= 0 

PRICES FOR PROBLEM k = K 

PRICES FOR PROBLEM k = 1 

PRICES FOR PROBLEM k = 2 

  Solve k = 0, 1, …, K   Γ-Robust Counterpart where in each period  

•  the nominal price is the maximum price of the range 

•  the worst deviation is k-times the elementary price shortfall 

•  Γ = |T| FULL PROTECTION! 

Fabio D’Andreagiovanni  (CNRS, Sorbonne  - UTC)  –  An introduction to Optimization under Uncertainty 



The Baringo-Conejo approach (2) 

The k-th step specifies the minimum money that the 
price-taker wants to sell a specific amount of energy  

For each step function k, we obtain a robust optimal solution 

For each time period: 

  The offering curve built for each time period are submitted to the Energy Exchange   

STEP FUNCTION k MARKET PRICE k OFFERED ENERGY k 

OFFERING CURVE 

  The robust optimal solutions are merged to build one energy offering curve for each time period 

OFFER 
PRICE 

OFFERED ENERGY 
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The Baringo-Conejo approach – our critique 

The approach presents several issues that have NOT been pointed out until our work 

An offering curve is built considering a high number of intermediate prices between  the maximum and minimum prices 
(100 prices in experimentals tests) 

ISSUE 1: definition of offering curves that break market rules 

The offering curves risk to be NOT accepted in the market   (minimum price asked for selling) 

ISSUE 2: risk of non-acceptance 

The approach imposes full protection (worst price in each period)  

ISSUE 4: unnecessarily complex robust counterpart  

it is not necessary to define the Γ-Robustness counterpart of increased dimension 

Violation of the limit on the number of steps of a curve  imposed by market rules 

BIG 
LOSSES 

The offering curves defined merging distinct optimal robust solutions obtained for different assumptions on the prices 
optimality of energy production  is compromised! 

ISSUE 3: compromised optimality and feasibility 

accepted portion of curves may result infeasible (e.g., violation of ramp constraints) 
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our offers are automatically accepted ( ≤ market price!) 

OUR OBJECTIVES: 

  (dramatically) increasing the chances that our energy offers are accepted  

defining robust solutions following the real spirit of Γ-Robustness  
 (full protection is bad!)   

BASIC FEATURES OF OUR STRATEGY: 

we do not compete on price and all our selling offers are at zero price 

from historical market price data, we derive 
•  the nominal value equals the average price over the past observations 
•  the worst deviation is identified by excluding the worst M observations 

 in a way that better fits the practice of power system professionals 

we exclude extreme unlikely price shortfalls and we show that partial protection 
grants (much) higher profits 

Our revised approach based on Γ-Robustness (1) 
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Computational tests 

Tests on 45 realistic instances: 
•  15 power plants located in 3 distinct Italian price-zone 
•  24 time periods (= hours in one day)  
•  3 percentages of exclusions of worst price observations (0, 10, 20 %) 

Experiments on a Windows machine with Intel 2 Duo-3.16 GHz processor and 8 GB of RAM  

Robust model coded in C/C++  interfaced through Concert Technology with CPLEX 12.5.1 

Historical data and test period construction: 

  The  4-week time window is shifted through the entire year with steps of 1 week providing  24 
evaluation periods 

For each hour: 
•  we consider the prices observed in the price zone in a time window of 4 weeks 
•  from these prices, we derive the nominal value and the max deviation of the uncertain price 

  We compute the robust optimal solution for each Γ=0 (=no protection), 1, 2, …, 24 (= full protection) 

We test the performance of the computed robust optimal solution in the week following the 4 weeks 
of the construction set  
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Computational results 

Generation units of increasing capacity 

In almost all cases we can: 

greatly increase the profit w.r.t. a 
practice that we observed among 
professionals (average price)  

dramatically  increase the profit 
w.r.t. full protection 

DIFFERENCE OF TOTAL PROFIT 
(IN EUR, SUM OF 24 TEST PERIODS) 

best protection - no protection     best protection - full protection 
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Some concluding remarks 

  No model dominates the others from a theoretical point of view… 

  World is stochastic and most of real-world optimization problems involve uncertain data 

  Many models are available for representing uncertain data in optimization problems  

  Uncertain optimization problems can be really tricky  

  …but Robust Optimization is itself as way to model and actually solve real-world problems 
 (and Professionals like it! - deterministic protection and accessibility) 

  the Bertsimas-Sim model for Robust Optimization is still a central reference and is used in 
many (practical) studies also outside the Mathematical Programming community   

Thanks for your attention! 
For additional discussions and references I am at your disposal 
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