
Air courier
The air branch of a shipping company uses a�eet of Boeing 777s

and 747s cargo to serve the EMEA demands. A 777 can carry 653
m3 in volume and 103 tonnes (t) in weight. A 747 can carry 854.5
m3 and 134.2 t. Each freighter is dedicated to a single segment (ori-
gin to destination airport and back once a day: both �ights hap-
pen within the same 24 hours). The demand matrix is extremely
�ne-grained, and consists of all order IDs (packages) for the week,
with origin and destination airports, weight and volume. The net-
works consists of airports, linked by the segments that are actually
�own. Theper-mile cost of�ying is a linearly increasing functionof
the loaded weight (the two functions are di�erent for 777 and 747).
Flights can leave empty (in which case the company subcontracts
the�ight); company policy states that, if loaded, the loaded volume
has to �ll at least half the capacity. Model the corresponding vari-
ant of the multicommodity �ow problem.

70 / 114

Air courier: .mod �le

airports

set Airports;

param Dist{Airports, Airports} >= 0, default Uniform(100,2000);

aircrafts

set AircraftTypes;

max volume per aircraft type

param AV{AircraftTypes} >= 0;

max weight per aircraft type

param AW{AircraftTypes} >= 0;

cost per mile per aircraft type

param ACpM{AircraftTypes} >= 0;

number of flights on the time horizon

param DaysMax := 7;

set Days := 1..DaysMax;

71 / 114

Air courier: .mod �le

flight segment network
set Segments within {Airports, Airports};
param Aircraft{Segments} symbolic;
param VolumeCap{(u,v) in Segments} >= 0, default DaysMax*AV[Aircraft[u,v]];
param WeightCap{(u,v) in Segments} >= 0, default DaysMax*AW[Aircraft[u,v]];
param ArcCost{(u,v) in Segments} default ACpM[Aircraft[u,v]]*Dist[u,v];

fine-grained demand
param Dmax;
set Demand;
param Volume{Demand} >= 0;
param Weight{Demand} >= 0;
param Orig{Demand} symbolic;
param Dest{Demand} symbolic;

aggregated demand
set D within {Airports,Airports};
param dV{D} >= 0, default 0;
param dW{D} >= 0, default 0;

72 / 114

Air courier: .mod �le

decision variables

volume (unsplittable) flow

var V{Segments,D} binary;

weight (unsplittable) flow

var W{Segments,D} binary;

whether a flight leaves empty

var E{Segments,Days} binary;

objective function

minimize cost:

sum{(h,k) in D, (u,v) in Segments} ArcCost[u,v]*W[u,v,h,k];

73 / 114

Air courier: .mod �le

constraints

volume multiflow

subject to volumeFlow{(h,k) in D, v in Airports}:

sum{w in Airports: (v,w) in Segments} V[v,w,h,k] -

sum{u in Airports: (u,v) in Segments} V[u,v,h,k] =

if (v == h) then 1 else if (v == k) then -1 else 0;

subject to volumeCapacity{(u,v) in Segments}:

sum{(h,k) in D} dV[h,k]*V[u,v,h,k] <= VolumeCap[u,v];

weight multiflow

subject to weightFlow{(h,k) in D, v in Airports}:

sum{w in Airports: (v,w) in Segments} W[v,w,h,k] -

sum{u in Airports: (u,v) in Segments} W[u,v,h,k] =

if (v == h) then 1 else if (v == k) then -1 else 0;

subject to weightCapacity{(u,v) in Segments}:

sum{(h,k) in D} dW[h,k]*W[u,v,h,k] <= WeightCap[u,v];

74 / 114

Air courier: .mod �le

consistency: can’t spread the aggregated flow!

subject to consistent{(h,k) in D, (u,v) in Segments}:

V[u,v,h,k] = W[u,v,h,k];

company policy on non-empty flights (at least half volume)

subject to companypolicy1{(u,v) in Segments}:

sum{(h,k) in D} dV[h,k]*V[u,v,h,k] >=

(0.5*VolumeCap[u,v]/DaysMax)*sum{t in Days} E[u,v,t];

subject to companypolicy2{(u,v) in Segments}:

sum{(h,k) in D} dV[h,k]*V[u,v,h,k] <=

(VolumeCap[u,v]/DaysMax)*sum{t in Days} E[u,v,t];

75 / 114

Air courier: .run �le

param eps := 1e-6;
model air_courier.mod;
data airports.dat;
data aircrafts.dat;
data segments.dat;
data demands.dat;

aggregate the fine-grained demand
let D := {};
param orig symbolic;
param dest symbolic;
for {d in Demand} {

let orig := Orig[d];
let dest := Dest[d];
let D := D union {(orig,dest)};
let dV[orig,dest] := dV[orig,dest] + Volume[d];
let dW[orig,dest] := dW[orig,dest] + Weight[d];

}

option solver cplex;
solve;

76 / 114

Air courier: .run �le
param curra symbolic;
param nexta symbolic;
param nnext integer, default 0;
if solve_result == "infeasible" then {

printf "instance is infeasible\n";
} else {

for {(h,k) in D} {
printf "demand [%s,%s]: %s", h,k, h;
let curra := h;
repeat while(curra != k) {

let nnext :=
card({v in Airports: (curra,v) in Segments and abs(V[curra,v,h,k]-1)<eps});

if (nnext != 1) then {
printf "ERROR: %d next vtx after %d (check absmipgap)\n",curra,nnext;
break;

}
for {v in Airports:(curra,v) in Segments and abs(V[curra,v,h,k]-1)<eps}{

let nexta := v;
}
printf " -(%d)-> %s", sum{t in Days} E[curra,nexta,t], nexta;
let curra := nexta;

}
printf "\n";

}
} 77 / 114

Subsection 2

Sparsity and `
1

minimization

78 / 114

Coding problem 1

I Need to send sparse vector y 2 Rn with n � 1

1. Sample full rank k ⇥ nmatrixA with k ⌧ n
preliminary: both parties knowA

2. Encode b = Ay 2 Rk

3. Send b
I Decode by �nding sparsest x s.t.Ax = b

79 / 114

Coding problem 2
I Need to send a sequencew 2 Rk

I Encoding n⇥ kmatrixQ, with n � k, send z = Qw 2 Rn

preliminary: both parties knowQ

I (Low) prob. e of error: e n comp. of z sent wrong
they can be totally o�

I Receive (wrong) vector z̄ = z + xwhere x is sparse

I Can we recover z?
I Choose k ⇥ nmatrixA s.t.AQ = 0

I Let b = Az̄ = A(z + x) = A(Qw + x) = AQw +Ax = Ax
I Suppose we can �nd sparsest x0 s.t.Ax0 = b
I) we can recover z0 = z̄ � x0

I Recoverw0
= (Q>Q)

�1Q>z0

Likelihood of getting small kw � w0k?

80 / 114

Sparsest solution of a linear system

I Problemmin{kxk0 | Ax = b} isNP-hard
Reduction fromE���� C���� �� �-S��� [Garey&Johnson 1979, A6[MP5]]

I Relax tomin{kxk1 | Ax = b}
I Reformulate to LP:

min

P
jn

s
j

8j  n �s
j

 x
j

 s
j

Ax = b

9
>=

>;

I Empirical observation: can often �nd optimum
Too often for this to be a coincidence

I Theoretical justi�cation by Candès, Tao, Donoho
“Mathematics of sparsity”, “Compressed sensing”

81 / 114

Graphical intuition 1

I Wouldn’t work with `2, `1 norms
Ax = b �at at poles— “zero probability of sparse solution”

Warning: this is not a proof, and there are cases not explained by this drawing [Candès 2014]

82 / 114

Graphical intuition 2

I x̂ such thatAx̂ = b approximates x in `
p

norms
I p = 1 only convex case zeroing some components

From [Davenport et al., 2012]; again, this is not a proof!

83 / 114

Not for the faint-hearted

1. Hand, Voroninski:
arxiv.org/pdf/1611.03935v1.pdf

2. Candès and Tao:
statweb.stanford.edu/~candes/papers/DecodingLP.pdf

3. Candès:
statweb.stanford.edu/~candes/papers/ICM2014.pdf

4. Davenport et al.:
statweb.stanford.edu/~markad/publications/

ddek-chapter1-2011.pdf

5. Lustig et al.:
people.eecs.berkeley.edu/~mlustig/CS/CSMRI.pdf

6. and many more (look for “compressed sensing”)

84 / 114

