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Practicalities

» URL:
http://www.lix.polytechnique.fr/~liberti/teaching/dix/inf580-17

» Dates: wed-fri
4-6,11-13,18, 25-27 jan
1-3, 8-10, 22-24 feb
1-3, 8-10, 15 mar
» Place: PC 37 (lectures & tutorials)
bring your laptops! (Linux/MacOSX/Windows)

» Exam: either a project (max 2 people) or oral
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Section 1

Introduction

3/246



What is Mathematical Programming?

» Formal declarative language for describing
optimization problems

» As expressive as any imperative language
» Interpreter = solver

» Shifts focus from algorithmics to modelling
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Syntax

» A valid sentence:

min  x; + 2z — log(x1xs)
2
T35 > 1
To € N.

» An invalid one:

min -+ 21 + +sincos )

Tyy = Loy

i<z
Ty # Ty
1 < Ia. )
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MINLP Formulation

Given functions f,g1,...,9, : Q" > Qand Z C {1,...,n}

min  f(x)

Vi<m gi(z) < 0
Vj ez T € 7

> pz) =0 < (#(z) <OA—¢(z) <0)

» L<z<U & (L-2z<0Az-U<0)

> f,gi represented by expression DAGs

7(1-/';1?\ @<;%x
J @
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Semantics

P = min{x; + 2x9 — log(z1x2) | a:lx% >1AN0<z; <1Azy €N}

2 4 6 8 10

[P] = (opt(P), val(P)) opt(P) = (1,1) val(P) = 3
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What is a solution of an MP?

» Given an MP P, there are three possibilities:
1. [P] exists
2. Pisunbounded
3. Pisinfeasible

P has a feasible solution iff [ P] exists or is unbounded
otherwise it is infeasible

v

v

P has an optimum iff [ P] exists
otherwise it is infeasible or unbounded

v

Asymmetry between optimization and feasibility

v

Feasibility prob. g(z) < 0 can be written as MP

min{0 | g(x) < 0}
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Solvers (or “interpreters”)

» Take formulation P as input
» Output [P] and possibly other information
» Trade-off between generality and efficiency
(i) LiNearR PRoGrRaMMING (LP)
f,gi linear, Z = @
(i) MixED-INTEGER LINEAR PROGRAMMING (MILP)
f,g:linear, Z # &
(i11) NonNLINEAR ProGrRamMmING (NLP)
some nonlinearityin f,g;,, Z = @
(iv) MixED-INTEGER NONLINEAR PrRoGRaMMING (MINLP)
some nonlinearityin f, g;, Z # @
(way more classes than these!)

» Each solver targets a given class
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Why should you care?

» Production industry
planning, scheduling, allocation, ...

» Transportation & logistics
facility location, routing, rostering, ...

» Service industry
pricing, strategy, product placement, ...

» Energy industry (a/l of the above)
» Machine Learning & Artificial Intelligence
clustering, approximation error minimization
» Biochemistry & medicine
protein structure, blending, tomography, ...

» Mathematics
Atssm,g number, p ackmg o f g(),()m(zlrl,ca[ ()[)J(’cls.. .
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Section 2

Decidability
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Formal systems (F'S)

» A formal system consists of:
» an alphabet
» aformal grammar
allowing the determination of formulce and sentences
» aset A of axioms (given sentences)
» aset R of inference rules
allowing the derivation of new sentences from old
ones
» A theory T is the smallest set of sentences that is
obtained by recursively applying R to A
> Example 1 (PA1): +, x, A, V,V, 3, = and variable names; 1st
order sentences about N; Peano’s Axioms; modus ponens and
generalization
> Example 2 (Reals): +, x, A, v, =, >, variables, real constants;
polynomials over R; field and order axioms for R, “basic
operations on polynomials”
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What is decidability?

Givena FS F,
» adecision problem P in F is a set of sentences in F

» Decide whether a given sentence f in 7 belongs to P
or not

» PAl: decide whether a sentence f about N has a proof
or not
aproofof f is a sequence of sentences that begins with axioms
and ends with f, each other sentence in the sequence being

derived from applying inference rules to previous sentences

» Reals: decide whether a given system of polynomials p
on R has a solution or not
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Decision and proof in PA1

» Given a decision problem, is there an algorithm with
input f, output YES/NO?
YES: “f has proofin F”
NO: “f does not have a proof in 7~

» [Turing 1936]: an encoding of HALTING PROBLEM in
PAlis undecidable in PA1
» AFS Fis completeif, for every f in F
either f or —f is provable in F
Godel’s first incompleteness theorem = PAl is incomplete 3 f

s.t. fand —f are llIlpI‘OVﬁble in F (such f are called independent in F)

» PAlisundecidable and incomplete
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Decision and proof in Reals

» Given poly system p(z) > 0,is there alg. deciding
YES/NO?
YES: “p(z) > 0 has a solution in R”
NO: “p(x) > 0 has no solution in R”

» [Tarski 1948]: Reals is decidable

» Tarski’s algorithm:
constructs solution sets (YES) or derives contradictions (NO)
Best kind of decision algorithm: also provides proofs!

= Reals is also complete

» Realsis decidable and complete
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A stupid F'S

» Nolnference:
Any FS with <oo axiom schemata and no inference rules

v

Only possible proofs: sequences of axioms

v

Only provable sentences: axioms

v

For any other sentence f: no proof of f or —f

v

Trivial decision algorithm:
given f, output YESif f is an axiom, NO otherwise

v

Nolnference is decidable and incomplete
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Undecidability & Incompleteness

» |[Nonexistence of a proof for f] # [Proof of — f]
In a decidable and incomplete FS, a decision algorithm answers

NOto both f and — f if f is independent

» Information complexity:
decision = 1 bit, proof = many bits

» Undecidability and incompleteness are different!
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Decidability, computability, solvability

» Decidability: applies to decision problems
» Computability: applies to function evaluation
» Isthe function f, mapping i to the i-th prime integer,
computable?
» Isthe function g, mapping Cantor’s CH to 1 if provable in
ZFC axiom system and to O otherwise, computable?
» Solvability: applies to other problems

E.g. to optimization problems!

18/246



Is MP solvable?

» Hilbert’s 10th problem: is there an algorithm for

solving polynomial Diophantine equations?

» Modern formulation:

» [Matiyasevich 1970]: NO

can encode universal TMs in them
» Let p(a, z) = 0 be a Univ. Dioph. Eq. (UDE)
» min{0 | p(a, ) = 0} is an undecidable (feasibility) MP

» min(p(e, z))? is an unsolvable (optimization) MP
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Section 3

Efficiency and Hardness
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Worst-case algorithmic complexity

» Computational complexity theory:
worst-case time/space taken by an algorithm to complete
» Algorithm A
» e.g.to determine whether a graph G = (V, E) is
connected or not
» input: G; size of input: v = |V| + |E|
» How does the CPU time 7(.A) used by A vary with ?
» 7(A) = O(v*) for fixed k: polytime
» 7(A) = O(2”): exponential
» polytime « efficient
» exponential <> inefficient
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Polytime algorithms are “efficient”

» Why are polynomials special?
» Many different variants of Turing Machines (TM)
» Polytime is invariant to all definitions of TM

» Inpractice, O(v)-O(v?) is an acceptable range
covering most practically useful efficient algorithms

» Many exponential algorithms are also usable in
practice for limited sizes
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Instances and problems

» An input to an algorithm A: instance
» Collection of all inputs for A: problem

consistent with “set of sentences” from decidability
» BUT:

» A problem can be solved by different algorithms
» There are problems which no algorithm can solve

» Given a problem P, what is the complexity of the best
algorithm that solves P?
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Complexity classes

» Focus on decision problems
» If 3 polytime algorithm for P, then P € P

» If there is a polytime checkable certificate for all YES
instances of P, then P € NP

» No-one knows whether P = NP (we think not)

» NP includes problems for which we don’t think a
polytime algorithms exist
e.g. k-CLIQUE, SUBSET-SUM, KNAPSACK, HAMILTONIAN
CYCLE, SAT, ...
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Subsection 1

Some combinatorial problems
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k-CLIQUE

» Instance: (G = (V, E), k)
» Problem: determine whether G has a clique of size k

@ 3

» 1-cLiquE? YES (every graph is YES)

» 2-cLiQuE? YES (every non-empty graph is YES)
» 3-cLIQUE? YES (triangle {1, 2,4} is a certificate)
certificate can be checkedin O(k) < O(n)

» 4-cLiQuE? NO
no polytime certificate unless P = NP
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MP formulations for cLIQUE

Variables? Objective? Constraints?
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MP formulations for cLIQUE

Variables? Objective? Constraints?
» Pure feasibility problem:

2T =
€V

r € {0,1}"
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MP formulations for cLIQUE

Variables? Objective? Constraints?
» Pure feasibility problem:

Vi, j} ¢ E xi+r; <
> T =
eV

xr €
» Max CLIQUE:
max Y. ¥
=%

Wi,j} ¢ B wi+x; <

xr €

{0, 13"

1
{0, 13"
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SUBSET-SUM

» Instance: lista = (a1,...,a,) € N"andb € N

» Problem: isthere J C {1,...,n}suchthat > a; = 0?
jeJ

» a=(1,1,1,4,5),b =3: YES J = {1,2,3}
allb € {0,...,12} yield YES instances

> a=(3,6,9,12),b = 20: NO
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MP formulations for SUBSET-suMm

Variables? Objective? Constraints?
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MP formulations for SUBSET-suMm

Variables? Objective? Constraints?
» Pure feasibility problem:

Z ajxj = b
Jj<n
r € {0,1}"
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KNAPSACK

>

>

Instance: c,w € N, K € N
Problem: find J C {1,...,n}s.t.¢(J) < Kandw(J) is

maximum

c=(1,2,3),w=(3,4,5),K =3

» ¢(J) < K feasible for Jin @, {j},{1,2}
» w(@) =0,w{1,2})=3+4="7T,w({j}) <5forj<n
= Jmax = {1,2}

K = 0: infeasible

natively expressed as an optimization problem

notation: c¢(J) = Y~ c;j (similarl for w(.J))
JEJ
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MP formulation for KNAPSACK

Variables? Objective? Constraints?
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MP formulation for KNAPSACK

Variables? Objective? Constraints?

max Z U)jil?j
Jj<n
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HamiLTONIAN CYCLE

» Instance: G = (V, E)
» Problem: does G have a Hamiltonian cycle?

cycle covering every v € V exactly once

NO YES(ccrl.1~>2~>5~>3~>4~>1)

G) : G) °
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MP formulation for HaAmiLToONIAN CYCLE

Variables? Objective? Constraints?
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MP formulation for HaAmiLToONIAN CYCLE

Variables? Objective? Constraints?

Jjev
{i,j}€E

eV
{i,j}€E

i€S,jgs
{i.j}eE

WARNING: second order statement!

quantified over sets

other warning: need arcs not edges in (5)-(7)
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SATISFIABILITY (SAT)
» Instance: open boolean logic sentence f in CNF
AV G
i<m jeC;

where (; € {z;,z;} forj <n
» Problem: isthere ¢ : + — {0, 1}" s.t. ¢(f) = 17

> fE (xl\/fg\/.T?))/\(.’fl\/(L’g)
r1 = 22 = 1,23 = 0is a YES certificate
» = (21 Va) ATy VI) A (T V) A (21 V To)

¢ || z=(1,1) | 2=(0,0) | x=(1,0) | = (0,1)
false CQ C1 03 04
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MP formulation for sart

Exercise
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Subsection 2

NP-hardness
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NP-Hardness

» Do hard problems exist? Depends on P # NP
» Next best thing: define hardest problem in NP

» A problem P is NP-hard if
Every problem @ in NP can be solved in this way:

1. given an instance g of Q) transform it in polytime to
an instance p(q) of P s.t. ¢is YES iff p(q) is YES
2. run the best algorithm for P on p(q), get answer

a € {YES,NO}

3. return o
pis called a polynomial reduction from Q to P
» If Pisin NP andis NP-hard, it is called NP-complete
» Every problem in NP reduces to sat [Cook 1971]
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Cook’s theorem

Theorem 1:

S of strings is

accepted by some nondeterministic Turing
machine within polynomial time, then S
is P-reducible to {DNF tautologies}.

Boolean decision variables store TM dynamics

Proposition symbols:

i :
Ps,t’ for 1s+isg, 1s<s,t<T.

P; t is true iff tape square number s
B

at step t contains the symbol
i

Qe

true iff at step t the machine is in

state q;.

S for 1s<s,tsT is true iff at

s,t

time t square number s is scanned

by the tape head.

Definition of TM dynamics in CNF

B, asserts that at time t one and

only one square is scanned:

By = (S ¢ vSy,p v rer VSp ) &

&  (s; . vAs: )]
1<i< j<T it It

for 1<isr, 1<t<T. Qt is

G;,' asserts
that if at time t the machine is in
state q; scanning symbol oj, then at
time t + 1 the machine is in state Qs
where ax is the state given by the

transition function for M.
t

G, ; = E (1t vas. . vard vk
i,j o= t s,t s,t t+1

1

Description of a dynamical system using a declarative program-
ming language (sat) — what MP is all about!
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Reduction graph
After Cook’s theorem
To prove NP-hardness of a new problem P, pick a known NP-hard

problem () that “looks similar enough” to P and find a polynomial
reduction p from @ to P [Karp 1972]

Why it works: suppose P easier than Q, solve Q by calling p o Alg . conclude Q as easy as P, contradiction
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Example of polynomial reduction

» STABLE: given G = (V, E) and k € N, does it contain a stable
set of size k?

» We know k-cLIQUE is NP-complete, reduce from it

» Giveninstance (G, k) of cLIQUE consider the complement

graph (computable in polytime)

G=(V.E={{i,j}|i.j€VA{ij}¢E})

» Thm.: G has a clique of size k iff G has a stable set of size k
» p(G) = Gisapolynomial reduction from cLIQUE to
STABLE

» = sTABLE is NP-hard

» STABLE is also in NP
U C Visastable set iff E(G[U]) = @ (polytime verification)

» = STABLE is NP-complete
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MILP is NP-hard

» sATis NP-hard by Cook’s theorem, Reduce from satin

CNF
AV

where /; is either z; or 7; = —z;
» Polynomial reduction p

SAT ‘ Zj :i'j \ A

» E.g. pmaps (21 V 23) A (T2 V 23) to

min{0 | x1 + 22 > 1 Axg — 22 > 0A 2 € {0,1}%}

» saTis YES iff MILP is feasible

(same solution, actually)
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COMPLEXITY OF QUADRATIC PROGRAMMING

min ' Qr + c'x
Axr > b

» QUADRATIC PROGRAMMING = QP

» Quadratic objective, linear constraints, continuous
variables

» Many applications (e.g. portfolio selection)
» If Q PSD then objective is convex, problem is in P
» If Q has at least one negative eigenvalue, NP-hard

» Decision problem: “is the min. obj. fun. value = 0?”
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QP is NP-hard

» By reduction from SAT, let o be an instance

> p(o,x) > 1:linear constraints of sat — MILP reduction
» Consider QP
min  f(z) = > z;(1 — ;)

(0,0) > 1 (1)
<<l

o ™

» Claim: o is YES iff val(}) =
» Proof:
» assume o YES with soln. z*, then z* € {0,1}", hence
f(z*) =0, since f(z) >0 for all z,val(t) =0
» assume o NO, suppose val(f) = 0, then (1) feasible
with soln. 2/, since f(2’) = 0then 2’ € {0, 1}, feasible
in saT hence o is YES, contradiction
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Box-constrained QP is NP-hard

» Add surplus vars v to sar—MILP constraints:
plo,z) —1—v=0
(denote by Vi < m (a x — b; — v; = 0))

» Now sum them on the objective

min Y x;(1—x;)+ Y (a]z — by — v;)? }

i<n i<m
0<z<1,v>0
» Issue: v not bounded above

» Reduce from 3saT, get < 3 literals per clause
= can consider 0 < v < 2
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cQKP is NP-hard

> CONTINUOUS QUADRATIC KNAPSACK PROBLEM (CQKP)

min f(z)=2'Qx + c'z

D ajrj =

j<n
x € [0,1]7,
» Reduction from suBSET-sum
givenlista € Q™ and ~,isthere J C {1,... ,n}st. > aj =~?
reduce to f(z) = 3> z;(1 — z;) -
» oisa YES instance of SUBSET-sum
> letzr =1 iff j € J, x; = 0 otherwise
» feasible by construction
> fisnon-negative on [0, 1] and f(z*) = 0: optimum
» oisaNO instance of SUBSET-suM

> suppose opt(cQKP) = z* s.t. f(z*) =0
> thenz* € {0,1}" because f(z*) =0
> feasibility of z* — supp(z*) solves o, contradiction, hence f(z*) > 0
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QP on a simplex is NP-hard

min  f(z)=2"Qr + c'x
Z LL']‘ =1
Jj<n
Vi<n z; > 0
» Reduce Max cLIQUE to subclass f(z) = — >  x;x;
{i.j}€E

Motzkin-Straus formulation (MSF)
» Theorem [Motzkin& Straus 1964]

Let C be the maximum clique of the instance G = (V, E) of MAX CLIQUE
Jo* € opt (MSF)  f* = f(z*) =3 (1 - ﬁ)
{ L ifjecC

@

VieV =g v .
J € o 0 otherwise
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Proof of the Motzkin-Straus theorem

x* =opt( max > xx;) st |C={je€V|x}>0} smallest (})
g[gjl]; iieE .

1.|Cis aclique

» Suppose 1,2 € Cbut {1,2} ¢ E[C],thenz], 2} > 0, can perturb by small
€ € [—xt,xl], getz€ = (x7 + €,25 — ¢, .. .), feasible w.r.t. simplex and bounds

» {1,2} ¢ E = z122 does not appear in f(z) = f(z*) depends linearly on ¢; by
optimality of 2*, f achieves max for ¢ = 0, in interior of its range = f(¢)
constant

> sete = —x7 or = z} yields global optima with more zero components than z*,

against assumption (f), hence {1, 2} € E[C], by relabeling C'is a clique
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Proof of the Motzkin-Straus theorem

x* = opt( max Z zizg) st.|C = {j €V ;27 > 0}| smallest (})

N

O] = w(G)
> square simplex constraint 3, z; = 1, get
Zm?—i—Q Z Tiz; =1

jev i<jev
> by constructionz} = 0forj ¢ C=

w(x*):Z(x;)2+2 Z z Z(x +2f(z")=1

jecC i<jeC jec

» o (x) = 1for all feasible z, so f(x) achieves maximum when Z]-EC(:L“;‘-)2 is
‘(‘ forallj € C

> again by SImplex constraint

1 1
=1m @) =1 I <1 o

jeC

n11n1mum ie. $ =

so f(z*) attains maximum 1 — 1/w(G) when |C| = w(G)
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Two exercises

» Prove that quartic polynomial optimization is
NP-hard; reduce from one of the combinatorial
problems given during the course, and make sure
that at least one monomial of degree four appears
with non-zero coefficient in the MP formulation.

» As above, but for cubic polynomial optimization.
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Portfolio optimization

You, a private investment banker, are seeing a customer.
She tells you “I have 3,450,000$ I don’t need in the next three
years. Invest them in low-risk assets so I get at least 2.5% re-
turn per year.”

Model the problem of determining the required portfolio.
Missing data are part of the fun (and of real life).

[Hint: what are the decision variables, objective, constraints? What data are missing?]
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Section 4

Systematics
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Types of MP

Continuous variables:

» LP (linear functions)

> QP (quadratic obj. over affine sets)

> QCP (linear obj. over quadratically def’d sets)
QCQP (quadr. obj. over quadr. sets)

v

v

cNLP (convex sets, convex obj. fun.)
SOCP (LP over 2nd ord. cone)
SDP (LLP over PSD cone)

v

v

v

COP (LP over copositive cone)

v

NLP (nonlinear functions)
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Types of MP

Mixed-integer variables:
» IP (integer programming), MIP (mixed-integer programming)
> extensions: MILP, MIQ, MIQCP, MIQCQP, cMINLP, MINLP
» BLP (LP over {0,1}")
» BQP (QP over {0,1}")

More “exotic” classes:
» MOP (multiple objective functions)
» BLevP (optimization constraints)

> SIP (semi-infinite programming)
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Section 5

Linear Programming
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Generalities

» Simplex method

v vV VvV VY

>

practically fast

exploration of polyhedron vertices
exponential-time in the worst-case
average complexity: polynomial
smoothed complexity: polynomial

» Ellipsoid method

| 2

>

(weakly) polytime
mostly used for theoretical purposes

» Interior-point method (IPM)

>

| 2

>

| 2

practically fast
follows a central path
(weakly) polytime

can be used for many convex MPs, nost just linear
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Distribution of oil

An oil distribution company needs to ship a large quantity
of crude from the main port to the refining plant, which is un-
Jortunately far from the port, using their pipe networks over
the country.

Model the problem of determining the maximum quantity
of oil they can hope to ship.

[Hint: what are the decision variables? (etc.)]
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Subsection 1

Maximum flow
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Network flows

Given a digraph G = (V, A) with an arc capacity function
¢ : A — R, and two distinct nodes s,t € V, find the flow
from s to t having maximum value

» GivenG = (V, A, ¢, s,t) aflow from s to ¢ is a function
f:A—=>R st

Vo eV ~\ {s,t} Z fuv = Z Jow

uEN— weNT(v)

v(“’? /U) E A fu’l) S C’LL’U

» The value of aflow f is givenby >~ f,

vENT(s)

’ Defn: N~ (v) = {u € V | (u,v) € AL, NT(v) ={w € V | (v,w) € A}
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The Max FLow problem

max > fe
vENT(s)
Yo eV~ {s,t} o fuw = > fow
ueN~(v) wENT(v)
V(U, ’U) cA fuv S [0, Cij]

» Constraint matrix is totally unimodular
= optima have integer components

» Dual of Max FLow is Min Cut
= optimal value = 0 iff network disconnected

» for these two important results, see MAP557
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Multicommodity flow

» Many different flows on the same network
» Given N = (V, A, ¢, s,t) where:
» G = (V,A)isadigraph
» ¢: A — Ry isanarc capacity function
» s, t € VT stVk <r (si # tx)
» Find a set of flows { f* | kK < 7} from s; to t;,

» having max. total value
» satisfying arc capacity

60/246



LP Formulation

» Maximize total value:

k
max E E o

k<r veN*(sy)

» Satisfy flow equations:

VE <rveV ~ {st} b= Z 1’)€w

weEN~(v) weNT(v)

» Satisfy arc capacity:
V(u,v) € A Z k< Cun
k<r
» They are bounded:
Vi <7 (u,v) €A [ €0 cul

uv
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Minimum cost flows

» Flow equations define connected subgraphs:

G connected = Yu # v € V(G) a unit of flow entering v will exit u
as long as “demand”= 0 at intermediate nodes. Conversely: if there

is a flow from u to v then G must be connected

» E.g.aSP s — tisthe connected subgraph of minimum cost
containing s, t:

min Z CyuvTuyw
z:A—R (u,v)EA
-1 u=s
YoeV Z Tyo — Z Ty = 1 u=t [SP}
(u,v)€EA (v,u)€eA 0 othw.
V(u,v) € A Ty € [0,1]

Test this with AMPL
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Flattening the formulation

» Every MP involving linear forms only can be written in the form

min, 'z
Ax < B [P]
e X

» v,x € R", 3 € R™, Aism x n, X is the set where variables range

A0

» For P2PSP on \‘—-> with s = 1 and t = 7 we have:
» v=(2,1,1,2,1,1,0,1,5,4,3,2,6),

_ _ 13
B =(1,0,0,0,0,0,—1), X = [0, 1]
> A=

1 1 1 1 0 0 0 0 0 0 0 0
-1 0 0 0 1 1 0 0 0 0 0 0
0 —1 0 0 —1 0 1 1 1 0 0 0
0 0 0 0 0 0 —1 0 0 1 1 0
0 0 —1 0 0 —1 0 —1 0 0 0 1
0 0 0 —1 0 0 0 0 0 —1 0 —1
0 0 0 0 0 0 0 0 —1 0 —1 0

O~ OO0 0O0

-
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Transpose

1 1 1 1 0 0 0 0 0 0 0 0 0

-1 0 0 0 1 r 0 o0 o0 o0 0 o0 o0

0 -1 0 0 -1 0 1 1 1 0 0 0 0

00 0 0 0 0 -1 0 0 1 1 0 0 (tum)—)

00 -1 0 0 -1 0 -1 0 0 0 1 1

0 o 0 -1 0 0o o0 O 0 -1 0 -1 0

0 0 0 0 0 -1 0 -1 0 -1
— —
coocoo L~ ~looooo
cococol o~ “o loooo
co )l ooco~ “ooo loo
ol oocoo - ~scooco Lo
cococol ~o c=loocoo
coloo~o ocmwoo loo
cool~oo (reflect)—) co=looo
ceclo~oo co =0l oo
lLoocoroo co=-ocoo |
clorooo coco=ol o
Loorooo oo o =oo
cl~rococoo cococo=lo
Loroooo coc oo mo |
~—~— ~
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A dual view

» Letam =

» Turn rows into columns (constraints into variables)

» ...and columns into rows (variables into constraints)

[=NeNoeNoNoNeNo ol il

[e=]

coococoocorroool

[en]

—_

coocormrmrmol oo

—_

OO OO OO

O~ OO

0

0

(=N ool o NN ol

—_

ol ol
—

-1

65/246



LP Dual

» For each constraint define a variable y; (i < 7)
» The LP dual is

yA <

max, —yf } D]
Y
» In the case of the SP formulation, the dual is:

maxy Y — Ys
V(u,v) €A Yy —Yu < Cup } Dgp

» For the P2PSP formulation, dual gives same optimal
value as the “primal” (test with AMPL)

How the hell is this an SP formulation?
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A mechanical algorithm

» Weighted arcs = strings as long as the weights

» Nodes = knots

» Pull nodes s, t as far as you can

» At maximum pull, strings corresponding to arcs
(u,v) in SP have horizontal projections whose length
is exactly c,,

Yt Ys
@ 1—021 5 = Cs2 3

Ty =1
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Telecom

Aninternet provider used historical data to estimate a traf-
Sfic matrix T = (T;;), such that Tj; is the typical demand be-
tween two nodes i, j of its network digraph G = (V, A). It has
a contract with the backbone provider that limits the capac-
ity (in Gbs) oneach arc (i, j) € Ato c;j; the same contract also
regulates the cost per Gbs, set to ;;

Model the problem of finding the feasible multiflow of min-
imum cost that satisfies each demand between source and des-
tination.
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Logistics

A truck-based transportation company needs to plan the
routes for the incoming week. The demands are given as a list
((skstk,di) | k < r) where dj, trucks have to be dispatched

fromnode s, to nodety,. The capacities c,,, on the arcs (u,v) €
A are estimated using traffic data, and the operations cost are
estimated to 100§ per Km.

1. Model the problem, assuming the company has enough
trucks to cover every demand

2. Adjust the problem to the situation where the company
has sufficient trucks to satisfy half of the total demand,
and has to rent the others: the operations costs for the
rented trucks are 200 per Km.

3. Suggest a way to efficiently compute a lower bound on
the total cost.

69/246



Air courier

The air branch of a shipping company uses a fleet of Boeing 777s
and 747s cargo to serve the EMEA demands. A 777 can carry 653
m?® in volume and 103 tonnes (1) in weight. A 747 can carry 854.5
m? and 134.2t. Each freighter is dedicated to a single segment (ori-
gin to destination airport and back once a day: both flights hap-
pen within the same 24 hours). The demand matrix is extremely
fine-grained, and consists of all order IDs (packages) for the week,
with origin and destination airports, weight and volume. The net-
work consists of airports, linked by the segments that are actually
Sflown. The per-mile cost of flying is a linearly increasing function of
the loaded weight (the two functions are different for 777 and 747).
Flights can leave empty (in which case the company subcontracts
the flight); company policy states that, if loaded, the loaded volume
has to fill at least half the capacity. Model the corresponding vari-

ant of the multicommodity flow problem.
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Air courier: .mod file

## airports

set Airports;

param Dist{Airports, Airports} >= 0, default Uniform(100,2000);
## aircrafts

set AircraftTypes;

# max volume per aircraft type

param AV{AircraftTypes} >= 0;

# max weight per aircraft type

param AW{AircraftTypes} >= 0;

# cost per mile per aircraft type

param ACpM{AircraftTypes} >= O;

# number of flights on the time horizon
param DaysMax := 7;

set Days := 1..DaysMax;
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Air courier: .mod file

## flight segment network

set Segments within {Airports, Airportsl};

param Aircraft{Segments} symbolic;

param VolumeCap{(u,v) in Segments} >= 0, default DaysMax*AV[Aircraft[u,v]];
param WeightCap{(u,v) in Segments} >= 0, default DaysMax*AW[Aircraft[u,v]];
param ArcCost{(u,v) in Segments} default ACpM[Aircraft[u,v]]*Dist[u,v];

## fine-grained demand
param Dmax;

set Demand;

param Volume{Demand} >= 0;
param Weight{Demand} >= 0;
param Orig{Demand} symbolic;
param Dest{Demand} symbolic;

## aggregated demand

set D within {Airports,Airports};
param dV{D} >= 0, default O;
param dW{D} >= 0, default O;
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Air courier: .mod file

## decision variables

# volume (unsplittable) flow
var V{Segments,D} binary;

# weight (unsplittable) flow
var W{Segments,D} binary;

# whether a flight leaves empty
var E{Segments,Days} binary;

## objective function

minimize cost:
sum{(h,k) in D, (u,v) in Segments} ArcCost[u,v]*W[u,v,h,k];
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Air courier: .mod file

## constraints
# volume multiflow
subject to volumeFlow{(h,k) in D, v in Airports}:
sum{w in Airports: (v,w) in Segments} V[v,w,h,k] -
sum{u in Airports: (u,v) in Segments} V[u,v,h,k] =
if (v == h) then 1 else if (v == k) then -1 else 0;
subject to volumeCapacity{(u,v) in Segments}:
sum{(h,k) in D} dV[h,k]*V[u,v,h,k] <= VolumeCap[u,v];

# weight multiflow
subject to weightFlow{(h,k) in D, v in Airports}:
sum{w in Airports: (v,w) in Segments} W[v,w,h,k]
sum{u in Airports: (u,v) in Segments} W[u,v,h,k] =
if (v == h) then 1 else if (v == k) then -1 else 0;
subject to weightCapacity{(u,v) in Segments}:
sum{(h,k) in D} dW[h,k]*W[u,v,h,k] <= WeightCapl[u,v];
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Air courier: .mod file

# consistency: can’t spread the aggregated flow!
subject to consistent{(h,k) in D, (u,v) in Segments}:
Vlu,v,h,k] = Wlu,v,h,k];

# company policy on non-empty flights (at least half volume)
subject to companypolicyl{(u,v) in Segments}:
sum{ (h,k) in D} dV[h,k]*V[u,v,h,k] >=
(0.5*VolumeCap [u,v] /DaysMax) *sum{t in Days} E[u,v,t];
subject to companypolicy2{(u,v) in Segments}:
sum{(h,k) in D} dV[h,k]*V[u,v,h,k] <=
(VolumeCap [u,v] /DaysMax)*sum{t in Days} E[u,v,t];
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Air courier: .run file

param eps := le-6;
model air_courier.mod;
data airports.dat;
data aircrafts.dat;
data segments.dat;
data demands.dat;

# aggregate the fine-grained demand
let D := {};
param orig symbolic;
param dest symbolic;
for {d in Demand} {
let orig := Origldl;
let dest := Dest[d];
let D := D union {(orig,dest)};
let dV[orig,dest] := dV[orig,dest] + Volumel[d];
let dW[orig,dest] := dW[orig,dest] + Weightl[d];
}

option solver cplex;
solve;
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Air courier: .run file

param curra symbolic;
param nexta symbolic;
param nnext integer, default O;

if solve_result == "infeasible" then {
printf "instance is infeasible\n";
} else {

for {(h,k) in D} {
printf "demand [%s,%s]l: %s", h,k, h;
let curra := h;
repeat while(curra != k) {
let nnext :=
card({v in Airports: (curra,v) in Segments and abs(V[curra,v,h,k]-1)<eps});

if (nnext != 1) then {
printf "ERROR: %d next vtx after %d (check absmipgap)\n",curra,nnext;
break;
}
for {v in Airports:(curra,v) in Segments and abs(V[curra,v,h,k]-1)<eps}{
let nexta := v;
}
printf " -(%d)-> %s", sum{t in Days} E[curra,nexta,t], nexta;
let curra := nexta;
¥
printf "\n";
}
}
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Subsection 2

Sparsity and /; minimization
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Coding problem 1

» Need to send sparse vector y € R" withn > 1
1. Sample full rank & x n matrix A with £ < n

preliminary: both parties know A
2. Encode b = Ay € R*
3. Send b
» Decode by finding sparsest z s.t. Az = b
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Coding problem 2

» Need to send a sequence w € R

» Encoding n x k matrix Q, withn > k,send z = Qw € R"
preliminary: both parties know Q

v

(Low) prob. e of error: e n comp. of z sent wrong

they can be totally off

v

Receive (wrong) vector z = = + = where x is sparse

» Can we recover z?

Choose k x nmatrix A s.t. AQ =0

Letb=Az = A(z+2) = A(Qw + x) = AQuw + Az = Az
Suppose we can find sparsest 2’ s.t. Az’ =b

= we canrecover 2/ =z — 2’

Recover w’ = (QTQ)~'Q "~
Likelihood of getting small || w — w'||?

vV vV v Vv

v
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Sparsest solution of a linear system

» Problem min{||z||o | Az = b} is NP-hard

Reduction from Exact CoveR BY 3-SETs [Garey&Johnson 1979, A6[MP5]]
» Relax to min{||z||; | Az = b}
» Reformulate to LP:

min Y8
j<n
Vi<n -s5;< x; <sj
Az = b

» Empirical observation: can often find optimum
Too often for this to be a coincidence

» Theoretical justification by Candés, Tao, Donoho
“Mathematics of sparsity”, “Compressed sensing”
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Graphical intuition 1

Sparsest solution

Feasible set Ax = b

Norm-1 ball

High probability
of having this
property

» Wouldn’t work with /5, /., norms

Azr = bﬂat al poles — “zero probability of sparse solution”
Warning: this is not a proof. and there are cases not explained by this drawing [Candés 2014]
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Graphical intuition 2

N g
xz
N4 A
!
— — — _1
p=1 p=2 p=00 p=1

» 2 such that A7 = b approximates x in /, norms

» p = 1 only convex case zeroing some components

From [Davenport et al., 2012]; again, this is not a proof!
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Not for the faint-hearted

1. Hand, Voroninski:
arxiv.org/pdf/1611.03935v1.pdf

2. Candeés and Tao:

statweb.stanford.edu/ candes/papers/DecodingLP.pdf

3. Candés:
statweb.stanford.edu/ " candes/papers/ICM2014.pdf

4. Davenport et al.:
statweb.stanford.edu/ "markad/publications/
ddek-chapter1-2011.pdf

5. Lustig et al.:
people.eecs.berkeley.edu/ "mlustig/CS/CSMRI.pdf

6. and many more (look for “compressed sensing”)
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arxiv.org/pdf/1611.03935v1.pdf
statweb.stanford.edu/~candes/papers/DecodingLP.pdf
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statweb.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf
statweb.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf
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Subsection 3

Random projections
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The gist

» Let A,bbe very large, consider LP

min{c'z | Av =bAzx >0}

» T short & fat normally sampled
» Then

Az =bANz >0 & TAxr=TbANz >0

with high probability
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Linear feasibility with constrained
multipliers

Restricted Linear Membership (RLMy)
Given A;,...,A,,beR"and X CR", 37z € X s.t.

i<n

» Linear Feasibility Problem (LFP) with X = R/
» Integer Feasibility Problem (IFP) with X = Z"}
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The shape of a set of points

» Lose dimensions butnottoo much accuracy
Given 44, ..., A, € R" find k < m and points
Al ... Al € RFst. Aand A’ “have almost the same
shape”

» What is the shape of a set of points?

-0

congruent sets have the same shape
» Approximate congruence < distortion:
A, A" have almost the same shape if
Vi<j<n (1-¢)ll4i—4;| < |A;-4jl < 1+e)]Ai— Ayl
for some small ¢ > 0

Assume norms are all Euclidean
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Losing dimensions in the RLM

Given X C R" and b,A4,...,4, € R™ find k < m,
v, A, ..., A € R"such that:

JreXb=) mA; ff FweXV =) x4

i<n i<n
N 7 N 7
— —

high dimensional low dimensional

with high probability
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Losing dimensions = “projection”

In the plane, hopeless

In 3D: no better
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Johnson-Lindenstrauss Lemma

Thm.
Given A C R™ with |[A] = nand e > O thereisk ~ O(% Inn)
and a k x m matrix T s.t.

Ve,ye A (1—¢)lz—yll < [[Tz-Ty|| < (1+e)llz—y

If k x m matrix T"is sampled componentwise from N (0, \/LE)’

then A and T'A have almost the same shape
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Sketch of a JLL proof by pictures
Thm.

//Q\ N TN Let T be a k x m rectangular ma-

) N / \
[ ! . === | |trixwith each component sampled from
A | AN
MO, ) andu € R™ st ful| =

Then E(||Tu|?) =
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Sampling to desired accuracy

» Distortion has low probability:

1
Vo,ye A P([Tz-Tyll <A -z —yl) = —
1
Ve,ye A P([Tz =Tyl 2 A +e)z—yl) < —

» Probability 3 pair 2,y € A distorting Euclidean
distance: union bound over () pairs

N
/~
N3
~—
3

|
Il
|
S|

P(—(A and T A have almost the same shape))

P(A and T'A have almost the same shape) >

= re-sampling 7" gives JLL with arbitrarily high
probability
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In practice

» Empirically, sample T very few times (e.g. once will
do!)
on average | Tx — Ty|| ~ ||z — yl|, and distortion decreases
exponentially with n

We only need a logarithmic number of dimensions in
function of the number of points

Surprising fact:

k is independent of the original number of dimensions m
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Projecting feasibility
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Projecting infeasibility (easy cases)
Thm.

instance. For any given vector z € X, we have:

(=i (=

=1

i=1

(ii) Ifb # i y;A; forally € X C R™, where | X]| is finite, then

=l

P<Vy € XTh+# ZyiTAi> >1—2|X]|e ¢k

i=1

for some constant C > 0 (independent of n, k).

T : R™ — R* a JLL random projection, b, A;,..., A, € R™ aRLMx

[arXiv:1507.00990v1/math.OC]
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Separating hyperplanes

When | X| is large, project separating hyperplanes instead

» ConvexC C R™,z ¢ C:then Ihyperplane c
separating v, C

» Inparticular, true if C' = cone(4,, ..., A,) for A CR™

» Wecanshowz € C & Tz € TC withhigh
probability

» Asabove,if z € C'then T'x € TC by linearity of T
Difficult partis proving the converse

We can also project point-to-cone distances
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Projecting the separation

Thm.
Given ¢,b, A1,...,An € R™ of unit norm s.t. b ¢ cone{A1,..., A,} pointed, e > 0,
ceR™st.c'b< —e,¢c" A; > e (i < n),and T arandom projector:
P[Tb ¢ cone{TA1,..., TAn}] > 1 —4(n+ 1)e=C(e7 ="k
for some constant C.
Proof

Let o/ be the event that T' approximately preserves |[c — x||? and ||c + x||? for all x €
{b, A1, ..., An}. Since & consists of 2(n + 1) events, by the JLL Corollary (squared ver-
sion) and the union bound, we get

P(o/) > 1 — 4(n + 1)e=C(* =)k

Now consider x = b

(Te, Th) = i(IIT(c +0)12 = IT(c ~ b)II*)

1 £
byJLL < 2(le+ blI* = lle = bl|*) + 7 Ule+ bl1% + |lc — bl|%)
=c'b+e<0
and similarly (T'c, TA;) > 0
[arXiv:1507.00990v1/math.OC]
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The feasibility projection theorem

Thm.
Given ¢ > 0, 3 sufficiently large m < n such that:

for any LFP input A, b where Aism x n
we can sample arandom £ x m matrix 7' with & < m and

P(orig. LFP feasible <= proj. LF'P feasible) > 1 —§
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Projecting optimality
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Notation

v

P =min{cz | Az = b A x > 0} (original problem)

v

TP =min{cx | TAx =Tb A x > 0} (projected problem)

» v(P) = optimal objective function value of P

v

v(T'P) = optimal objective function value of 7'P
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The optimality projection theorem

» Assume feas(P) is bounded

> Assume all optima of P’ satisfy 3 v; < ¢ for some
given 0 > 0
(prevents cones from being “too flat”)

Thm.

Given d > 0,

v(P) = <v(TP) <v(P) (%)

holds with arbitrarily high probability (w.a.h.p.)

in fact (x) holds with prob. 1 — 4ne C(e?=e*)k where
e =6/(2(0+ 1)n) and n = O(]|y||2) where y is a dual optimal
solution of P having minimum norm
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The easy part

Show v(TP) < v(P):
» Constraintsof P: Ax =b A >0

» Constraintsof TP: TAx =Tb N >0
» = constraints of 7'P are lin. comb. of constraints of P

» = any solution of P is feasible in 7'P
(btw, the converse holds almost never)

» P and 7'P have the same objective function

» = T'Pisarelaxation of P = v(T'P) < v(P)
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The hard part (sketch)

>

v

Eq. (4) equivalent to P for 6 = 0

cx = v(P)—20
Ar =
x > 0
Note: for 6 > 0, Eq. (4) is infeasible
By feasibility projection theorem,
cx = v(P)—9
TAzx Tb
T 0

AVAN|

is infeasible w.a.h.p. for § > 0

Hence cx < v(P) — 0 NTAxz = Tb Az > 0 infeasible w.a.h.p.
= cx > v(P) — § holds w.a.h.p. for x € feas(T'P)

= v(P) -6 <v(TP)
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Solutionretrieval
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Projected solutions are infeasible in P

» Az =b = TAxz =Tb by linearity

» However,

Thm.
For z > 0s.t. T Az = Tb, Az = bwith probability zero

» Can’t get solution for original LFP using projected

LFP!
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Solution retrieval from optimal basis

v

Primal min{c"z | Ar =bAz >0} =
dual max{b'y | ATy < c}

v

Let 2’ = sol(T'P) and 3y = sol(dual(T'P))

v

= (TA) 'y =(ATTT)y = AT(TTy) < ¢

v

=Ty is a solution of dual(P)

» = we can compute an optimal basis J for P

v

Solve A;x; = b, get x;, obtain a solution z* of P
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Solving large quantile regression LPs
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Regression
» multivariate random var. X
functiony = f(X)
sample {(a;,b;) € R xR | i < m}

» sample mean:

fi = argmin Z(bl — p)?

HER i<m

» sample mean conditional to X = A = (a;;):

U = arg min Z(bz — va;)?

vERP i<m
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Quantile regression

» sample median:

~

£ = argminz |b; — ¢]

R j<m
= argmin Z <1 max(b; — &,0) — 1mln( —¢, 0))
EER  j<m 2 2

» sample T-quantile:

f—argmlnz (tmax(b; — £,0) — (1 — 7) min(b; — &,0))

EER  i<m

» sample T-quantile conditional to X = A = (a;j):

A~

B—argmlnz (r max(b; — Ba;,0) — (1 — 7) min(b; — Ba;, 0))

BERP i<,
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Linear Programming formulation

min Tut + (1 —7)u”
ABT =B )+ut—u™ = b
Bou = 0

» parameters: Aism x p,b € R™,7 € R

» decisionvariables: 57,5~ € R?, ut,u~ € R™

» LP constraint matrixism x (2p + 2m)
density: p/(p + m) — can be high
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Large datasets

» Russia Longitudinal Monitoring Survey, household
data (hh1995f)

» m = 3783,p = 855

» A =hf1995f,b = logavg(A)

» 18.5% dense

» poorly scaled data, CPLEX yields infeasible (!!!) after
around 70s CPU

» quantregin R fails

» 14596 RGB photos on my HD, scaled to 90 x 90 pixels

m = 14596, p = 24300

each row of Ais animage vector,b=73" A

62.4% dense

CPLEXkilled by OS after ~30min (presumably for
lack of RAM) on 16GB

vV vV Vv Vv
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Results on large datasets

Instance ‘ Projection ‘ Original
T m D k opt CPU feas opt CPL gnterr
hh1995f
0.25 3783 856 411 0.00 8.53 0.038% 71.34 17.05 0.16
0.50 0.00 8.44 0.035% 89.17 15.25 0.05
0.75 0.00 8.46 0.041% 65.37 31.67 3.91
jpegs
0.25 14596 24300 506 0.00 231.83 0.51% 0.00 3.69E+5 0.04
0.50 0.00 227.54 0.51% 0.00 3.67E+5 0.05
0.75 0.00 228.57 0.51% 0.00 3.68E+5 0.05
random
0.25 1500 100 363 0.25 2.38 0.01% 1.06 6.00 0.00
0.50 040 251 0.01% 1.34 6.01 0.00
0.75 0.25 2.57 0.01% 1.05 5.64 0.00
0.25 2000 200 377 0.35 4.29 0.01% 2.37 21.40 0.00
0.50 0.55 4.37 0.01% 3.10 23.02 0.00
0.75 0.35 4.24 0.01% 242 21.99 0.00
feas — 100 Az — b||2 IPM with no simplex crossover:
[b]|1/m solution w/o opt. guarantee
l[qnt — proj. qnt||2 cannot trust results
qonterr = ——m/———— simplex method won’t work

# cols

due to ill-scaling and size
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Section 6

Interlude: Clustering in Natural

Language
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Cx0Os

What you hear
» We optimized our strategy (CEO)
> We optimized our revenues (CFO)
> We optimized our processes (CTO)

» We optimized our operation (COO)
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Cx0Os

What you hear
» We optimized our strategy (CEO)
» We optimized our revenues (CFO)
» We optimized our processes (CTO)
» We optimized our operation (COO)

v

Oh yes we can do big data (C10)
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Cx0Os

What you hear
» We optimized our strategy (CEO)

1 DECIDED TO HIRE
A CO—-CEO TO SHARE
THE JOB WITH ME.

» We optimized our revenues (CFO) J

» We optimized our processes (CTO)

[
» We optimized our operation (COO) :

v

Oh yes we can do big data (C10)

What they mean

We keep changing everything so that investors will mistake
our wasteful dynamism for growth
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Something else they mean

» Departments are compartimentalized
> Every division is a separate legal entity
» Customers must pay to contact the firm

» The firm heavily invests in IBM Watson Technologies

I STARTED A TASK REALLY?
FORCE TO ELIMINATE 1M DOING
REDUNDANCIES IN OUR THE SAME
INTERNAL PROCESSES. THING.

) e’ (g
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And their reasons

» Departments are compartimentalized

so they can blame each other when they fuck up

» Every division is a separate legal entity
so complaining customers must address divisions separately

» Customers must pay to contact the firm
so no-one will complain

» The firm heavily invests in IBM Watson Technologies
so insistent customers will only ever talk to a computer

T'M STEPPING DOWN
AS CEO BECAUSE I
ALREADY MILKED ALL
OF THE CASH OUT OF
THIS DYING COW.

118/246



I may be overly optimistic

» Departments are compartimentalized
as a result of internal fights

» Every division is a separate legal entity
because of a recent merge

» Customers must pay to contact the firm
as the firm has no other revenue

» The firm heavily invests in IBM Watson Technologies
because the CIO heard it’s fashionable

TELL THE
ENGINEER oo ee
oTePREVENUE
E SAD. PROTJECTIONS
L] : 0 CHEER
YOU UP.
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Job offers

Optimisation / Operations Senior Manager
VINCI Airports.
Rueil-Malmaison, ile-de-France, France

...for the delivery of the f each

project...

projects... to thy

Pricing Data Scientist/Actuary - Price Optimization Specialist(H-F)
AXA Global Direct
ion de Paris, France

The senior price

M sieeer

and Innovation team,

part...

Growth Data scientist - Product Features Team
Deezer
Paris, FR

and will be

OverviewPress play on your next adventure! Music... to join the Product Performance &

Optimization team... www.deezer.com

Analystes et C - Banque -Optimisation des financiére:
"> ccenture

Région de Paris, France

N herchons des analystes jeunes diplomés et d [ detravailler

surdes i dél

opérationnels et des processus) en France et au Benelux. Les postes sont  pourvoir e
base d'un rattachement...

Electronic Health Record (EHR) Coordinator (Remote)
Aledade, Inc. - Bethesda, MD
Must have previous i ion or izati ience with

n CDI, sur

y EHRs and

practice software, p with expertise in

Operations Research Scientist
Ford Motor Company - 2,381 reviews - Dearborn, Ml

Strong knowledge of optimization techniques (e.g. Develop optimization frameworks to

support models related to mobility solution, routing problem, pricing and...

IS&T Controller
Alstom
Saint-Ouen, FR

ALSTOM

The Railway industry today reviews, software depl
TUnRing.. jobsearchalstom.com

Fares Specialist / Spécialiste Optimisation des Tarifs Aériens
Egencia, an Expedia company

Courbevoie - FR

Ef iaChaque année, Egencia des milliers de sociétés ré

plus de 60

pays 2 mieux gérer | devoyage. N

modernes et

des services d'exception a des millions de voyageurs, dela planification 3 a finalisation de leur

voyage. Nous répondons...

Automotive HMI Software Experts or Software Engineers
Elektrobit (EB)
Paris Area, France

Elektrobit in Paris interesting... 5 and optimi
software...
o~ D I 1t Engineer, P Services, Google Cloud
O Google

Paris, France

andjor

Note: By applying to this position your... migration, network optimization, security best...

4,694 reviews - Bethesda, MD 20817

Analyzes data and builds optimization,. Programming models and familiarity with

optimization software (CPLEX, Gurobi)....

/#Research Scientist - AWS New Artificial Intelligence Team!;views - Palo Alto, CA

We are pioneers in areas such as recommendation engines, product search, eCommerce

fraud detection, and large-scale optimization of fulfillment center...
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An examBle

Under the responsibitity of the Commercial Director, the Optimisation / Operations Senior Manager

will have the responsibility to optimise and develop operational aspects for VINCI Airports current

and future portfolio of airports. They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering the objectives of the Technical
Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial
Director in the development and implementation of plans, strategies and reporting processes. As part

of the exercise of its function, the Optimisation Manager will undertake the following: Identification
and development of cross asset synergies with a specific focus on the operations and processing functions
of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives
of the various technical services agreements, the strategy of the individual airports and the Group.
This function will include: Participation in the definition of airport strategy. Definition of this
airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation
Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various
technical services agreements with our airports by developing specific technical competences from the
Head Office level. Oversee the management and definition of all optimisation projects. Identificationm,
overview and management of the project managers responsible for the delivery of the various optimization
projects at each asset. Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Development and implementation of the Group
optimisation plan. Definition of economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service
levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the
strategies, trends and best practices of the airport industry and other reference industries in terms of
the applicability to the optimization plan. Study of the needs and preferences of the passengers,
through a continuous process of marketing research at all of the airports within the VINCI Airports
portfolio. Development of benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Development and participation in the expansion or refurbishment projects
of the airports, to assure a correct configuration and positioning of the operational and commercial
area that can allow the optimization of the revenues and operational efficiency. Support the Director
Business Development through the analysis and opportunity assessment of areas of optimization for all
target assets in all bids and the preparation and implementation of the strategic plan once the

assets are acquired. Maintain up to date knowledge of market trends and key initiatives related

to the operational and commercial aspects of international airports [...]

...and blah blah blah: IS THIS APPROPRIATE FOR MY CV?
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Try Natural Language Processing

» Automated summary

» Relation Extraction

» Named Entity Recognition (NER)
» Keywords
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Automated summar
./summarize.py jobO1l.txt

They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering
the objectives of the Technical Services Agreements activities of VINCI
Airports. The Optimisation Manager will support the Commercial Director
in the development and implementation of plans, strategies and reporting
processes. Identification and development of cross asset synergies with
a specific focus on the operations and processing functions of the airport.
Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Definition of
economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of
processing efficiency, service levels, passenger convenience and
harmonization of the non-aeronautical activities. Development of
benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Maintain up to date knowledge of market
trends and key initiatives related to the operational and commercial
aspects of international airports. You have a diverse range of
experiences working at or with airports across various disciplines such
as operations, ground handling, commercial, etc. Demonstrated high

level conceptual thinking, creativity and analytical skills.

Does it help? hard to say
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Relation Extraction
./relextr-mitie.py jobOl.txt

======= RELATIONS =======

Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES_EVENT ] Head Office

Head Office [ INFLUENCED_BY ] Self

Head Office [ INTERRED_HERE ] Self

VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self

Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office

Self [ ORGANIZATIONS_WITH_THIS_SCOPE ] Head Office
Self [ PEOPLE_INVOLVED ] Head Office

Self [ PLACE_OF_DEATH ] Head Office

Head Office [ RELIGION ] Self

VINCI Airports [ RELIGION ] Optimisation Strategy

Does it help? hardly
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Named Entity Recognition

./ner-mitie.py jobOl.txt

==== NAMED ENTITIES =====

English MISC

French MISC

Head Office ORGANIZATION

Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON

Technical Services Agreements MISC
VINCI Airports ORGANIZATION

Does it help? ...maybe

For a document D, let NER(D) = named entity words
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Idea

1. Recognize named entities from all documents
2. Use them to compute distances among documents
3. Use modularity clustering
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The named entities

L
2.

I

g

o

19.

20.
21.

Operations Head Airports Office VINCI Technical Self French/ Strate%/Agreements English Services Optimisation

Europe and P&C Work Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate
International English

Scientist Product Analyze Java Features & Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press
Performance Deezer Data Computer

Lean6Sigma Lean-type Office Banking Paris CDI France RPA Middle Accenture English Front Benelux

Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance market develop Finance & IS&T
Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia Ellglis]f%fares with Company
Inc

Paris Integration France Automation Automotive French . Linux/Genivi HMI Ul Software EB Architecture Elektrobit technologies
GUIDE Engineers German Technology SW well-structured Experts Tools

Product Google Managers Python JavaScript AWS JSON BigQuery Java Platform Engineering HTML MySQL Services Professional
Googles Ruby Cloud OAuth

EHR Aledades Provide Wellness Perform ACO Visits EHR»system-specéﬁc Coordinator Aledade Medicare Greenway Allscripts
Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata & Python Company GDIA Ford Visa SPARK Data
Applied Science Work C++ R Unix/Linux Physics Microsoft Operations Monte JAVA Mobility Insight Analytics Engineering Computer
Motor SQL Operation Carlo PowerPoint

Management Java CANDIDATE Application Statistics Gurobi Provides Provider Math ics Service Maintains Deliver SM&G
SAS/HPF SAS Data Science Economics Marriott PROFILE Providers OR Engineering Computer SQL Education

Alto Statistics Java Sunnyvale Research ML Learning Science Operational M achine'fina:on Computer C++ Palo Internet R Seattle
LLamasoft Work Fortune Chain Supply C# Top Guru What Impactful Team LLamasofts Makes Gartner Gain

Worldwide Customer Java Mosel Service Python Energy Familiarity CPLEX Research Partnering Amazon R SQL CS Operations
Operations Science Research Engineering Computer éystems or Build

Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain Economics Experience R Research US
Scientist UK SQL Japan Economist

Competency Statistics Knowledge Employer c ication Research Machine EEO United ORMA Way OFCCP Corporation Mining
& C# Python Visual Studio Opportunity Excellent Modeling Data Jacksonville Arena Talent Skills Science Florida Life Equal
AnyLogic Facebook CSX Oracle The Strategy Vision Operations Industrial Stream of States Analytics Engineering Computer
Framework Technolo,

Java Asia Research Sué}g[y in Europe Activities North Comp(m)' WestRocks SusminubilityAm(’rira Masters WRK C++ Norcross
()])timi:aiion GA ILOG South NYSE Operations AMPL CPLEX Identify Participate OPL WestRock

I T Federal Administration System NAS Development JMP Traffic Aviation FAA Advanced McLean Center CAASD Flow Air
Tableau Oracle MITRE TFM Airspace National SQL Campus

Abilities & Skills 9001-Quality S Management ISO GED

Statistics Group RDBMS Research Mathematics Teradata ORSA Greenplum Java SAS U.S. Solution Time Oracle Military Strategy
Physics Linear/Non-Linear Operations both Industrial Series Econometrics Engineering Clarity Regression 127/246




Word similarity: WordNet

entity
abstradt_‘_’;;ti;; physical_entity R kit-l;inrg
abstractggg physical object 1\7--7l;ormr
msmmé;;ﬁon V;\ing
|
con\(.e_‘ ance person

male person female person

- - § | |

mail  vehiclé public transport
9 el
Wheelggf vehicle bus train béy g&ﬂ
— | |

Self propelled bicycle School bus Boat train
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WordNet: hyponyms of “boat”
v rowing_boat

cdgpe jollyeboat

birchba? ecanoe

gl
PuRvhgr stea
fopck eshell . o~
smaliioua - -

lifelpopat
Aihalehoz@urfoat

pioat
catiracle

hora P hoat

DAJICE® D03

motQEhoat

gndnepeEad hoat

Cab'.m Ik pnotorboat hy pofoil

boat

AT

ra

goredola
9 skiff
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Wu-Palmer word similarity
Semantic WordNet distance between words w, w-

2 depth(les(wy, w2))
len(shortest _path(wy, ws)) + 2 depth(lcs(wy, w2))

wup(wy, wg) =

» lcs: lowest common subsumer

earliest common word in paths from both words to WordNet root

Example: wup(dog, boat)?

depth( whole ) = 4

18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate
-> chordate -> animal -> organism -> living_thing -> whole -> artifact
-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat

13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat

wup(dog, boat) = 8/21 = 0.380952380952
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Extensions of Wu-Palmer similarity

» to lists of words H, L:

wup(H, L) = |H|1|L| ZZWup(v,w)

veEH weL

» to pairs of documents D;, Dy:
WUp(l)l7 DQ) = WUp(NER(Dl), NER(DQ))

» wup and its extensions are always in [0, 1]
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The similarity matrix

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.38 0.49 0.47 0.47 0.44 0.54 0.31 0.44
0.63 1.00 0.45 0.45 0.54 0.40 0.42 0.42 0.57 0.49 0.46 0.45 0.59 0.35 0.43 0.42 0.42 0.41 0.47 0.32 0.40
0.51 0.45 1.00 0.40 0.53 0.35 0.37 0.37 0.58 0.47 0.43 0.40 0.59 0.28 0.39 0.37 0.38 0.35 0.43 0.24 0.35
0.51 0.45 0.40 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.38 0.48 0.47 0.47 0.45 0.53 0.33 0.44
0.66 0.54 0.53 0.63 1.00 0.34 0.35 0.35 0.49 0.42 0.39 0.37 0.50 0.29 0.36 0.35 0.35 0.34 0.40 0.26 0.34
0.45 0.40 0.35 0.45 0.34 1.00 0.42 0.43 0.66 0.54 0.49 0.45 0.67 0.34 0.44 0.43 0.43 0.40 0.49 0.28 0.40
0.46 0.42 0.37 0.46 0.35 0.42 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.34 0.45 0.45 0.44 0.42 0.50 0.28 0.40
0.47 0.42 0.37 0.46 0.35 0.43 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.36 0.47 0.45 0.45 0.43 0.51 0.30 0.42
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.33 0.31 0.29 0.40 0.23 0.28 0.27 0.28 0.26 0.31 0.21 0.26
0.58 0.49 0.47 0.56 0.42 0.54 0.54 0.55 0.33 1.00 0.46 0.43 0.59 0.34 0.42 0.41 0.41 0.39 0.46 0.31 0.39
0.54 0.46 0.43 0.52 0.39 0.49 0.49 0.51 0.31 0.46 1.00 0.39 0.56 0.29 0.38 0.36 0.36 0.34 0.41 0.24 0.35
0.50 0.45 0.40 0.49 0.37 0.45 0.47 0.48 0.29 0.43 0.39 1.00 0.70 0.40 0.50 0.49 0.48 0.46 0.54 0.35 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.40 0.59 0.56 0.70 1.00 0.23 0.29 0.29 0.29 0.28 0.33 0.20 0.27
0.38 0.35 0.28 0.38 0.29 0.34 0.34 0.36 0.23 0.34 0.29 0.40 0.23 1.00 0.48 0.45 0.46 0.42 0.52 0.30 0.43
0.49 0.43 0.39 0.48 0.36 0.44 0.45 0.47 0.28 0.42 0.38 0.50 0.29 0.48 1.00 0.39 0.39 0.36 0.45 0.26 0.37

0.43
0.43

0.32
0.31

1
3

0.41 0.35 0.45 0.34 0.40 0.42 0.43 0.26 0.39 0.34 0.46 0.28 0.42 0.36 0.46 0.43 1.00 0.5

.47 0.42 0.37 0.47 0.35 0.43 0.45 0.45 0.27 0.41 0.36 0.49 0.29 0.45 0.39 1.00 0.48 0.46 0.54 0.33 0.44
0.42 0.38 0.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.5

.54 0.47 0.43 0.53 0.40 0.49 0.50 0.51 0.31 0.46 0.41 0.54 0.33 0.52 0.45 0.54 0.51 0.53 1.00 0.36 0.46
0.31 0.32 0.24 0.33 0.26 0.28 0.28 0.30 0.21 0.31 0.24 0.35 0.20 0.30 0.26 0.33 0.32 0.31 0.36 1.00 0.47

0.44 0.40 0.35 0.44 0.34 0.40 0.40 0.42 0.26 0.39 0.35 0.46 0.27 0.43 0.37 0.44 0.43 0.43 0.46 0.47 1.00

0
0.47
0.44
0




The similarity matrix

1.00
0.63
0.51
0.51
0.66
0.45
0.46
0.47
0.72
0.58
0.54
0.50
0.72

0.49
0.47
0.47
0.44
0.54

0.44

Too uniform! Try zeroing values below median
0.51 0.66 0.45 0.46 0.47 0.72

0.63
1.00
0.45
0.45
0.54

0.57
0.49
0.46
0.45
0.59

0.47

0.51
0.45
1.00

0.53

0.58
0.47

0.59

0.45

1.00
0.63
0.45
0.46
0.46
0.67
0.56
0.52
0.49
0.68

0.48
0.47
0.47
0.45
0.53

0.44

0.54
0.53
0.63
1.00

0.49

0.50

0.45
1.00
0.66
0.54
0.49
0.45
0.67

0.44

0.49

0.46

1.00
0.44
0.66
0.54
0.49
0.47
0.67

0.45
0.45
0.44

0.50

0.46

0.44
1.00
0.67
0.55
0.51
0.48
0.68

0.47
0.45
0.45

0.51

0.57
0.58
0.67
0.49
0.66
0.66
0.67
1.00

0.58 0.54 0.50
0.49 0.46 0.45

0.47
0.56

0.54
0.54
0.55

1.00
0.46
0.43
0.59

0.46

0.52
0.49
0.49
0.51

0.46
1.00

0.56

0.49

0.45
0.47
0.48

1.00
0.70

0.50
0.49
0.48
0.46
0.54

0.72
0.59
0.59
0.68
0.50
0.67
0.67
0.68

0.59
0.56
0.70
1.00

0.49 0.47 0.47

0.48

0.44
0.45
0.47

0.47

0.45
0.45

0.49

0.45

1.00
0.48
0.46
0.54

0.47

0.44
0.45

0.48

0.46

0.48
1.00

0.51

0.44

0.45

0.46

1.00
0.53

0.54
0.47

0.53

0.49
0.50
0.51

0.46

0.54

0.52
0.45
0.54
0.51
0.53
1.00

0.46

0.44

0.44

0.46

0.43

0.44

0.46

1.00 0.47
0.47 1.00
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The graph

WA
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G = (V, E), weighted adjacency matrix A

Ais like B with zeroed low components
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Modularity clustering

“Modularity is the fraction of the edges that fall within a cluster minus

the expected fraction if edges were distributed at random.”

>

>

>

“at random” = random graphs over same degree sequence
degree sequence = (ki, ..., ky,) where k; = |N(i)|

“expected” = all possible “half-edge” recombinations

G—0 0——0 O
o ©® O——06 G

expected edges between v, v: k,k,/(2m) where m = |E|
mod(u, v) = (Auy — kuky/(2m))
mod(G) = >  mod(u, v)Tyy

{u,v}eE

ZTyy = 1if u, v in the same cluster and O otherwise

“Natural extension” to weighted graphs: kv = 3, Avv.m =37, Aus
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Use modularity to define clustering
» What is the “best clustering”?

» Maximize discrepancy between actual and expected

13 o . . 29
as far away as possible from average

e}

max  ». mod(u,v)Ty,
{u,v}eFE
YueViveV a, €{0,1}

» Issue: trivial solution z = 1 “one big cluster”

» Idea: treat clusters as cliques (even if zero weight)
then clique partitioning constraints for transitivity

Vi<j<k T+ T — T <1
Vi<j<k Tij — Tjk +xi <1
Vi<j<k —myj+aetaxr < 1

V{i,j}¢E x; = 0

ifi,j € Candj, k € Ctheni,k € C
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The resulting clustering

cluster 1: jobOl, job02, job03, job05, jobl0
cluster 2: job04, job06, job22
cluster 3: job07,job08, jobll, jobl2, job20 jcb27.
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Is it good?

Vinei
Axa
Deezer
Alstom
Aledade

‘?

Accenture
Expedia

fragmentl

Elektrobit
Google
Ford
Marriott
Llamasoft

fragment2

» ¢ —named entities rarely appear in WordNet

» Desirable property: chooses number of clusters
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Keywords

Most frequent words[w | over collection | C |of documents
./keywords.py

global environment customers strategic processes teams sql job industry use
java developing project process engineering field models opportunity drive
results statistical based operational performance using mathematical computer
new technical highly market company science role dynamic background products
level methods design looking modeling manage learning service customer
effectively technology requirements build mathematics problems plan services
time scientist implementation large analytical techniques lead available plus
technologies sas provide machine product functions organization algorithms
position model order identify activities innovation key appropriate different
complex best decision simulation strategy meet client assist quantitative
finance commercial language mining travel chain amazon pricing practices
cloud supply

{ted|t=w}|C]

tfidf,
idfo(w, d) {deClwed}]
keyword(i,d) = wordw having i" best tfidfc(w, d)value
vec(d) = (tfidfo(keywords(i,d),d) | i < m)

Transforms documents to vectors
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Minimum sum—of—squares clustering

» MSSC, a.k.a. the k-means problem

» Given points py,...,p, € R™, find clusters (1, . ..

minz Z ||pi — centroid(C})||3

i<k i€C;
where centroid(C};) = ﬁ S ps
: AN
Tiel;

» /-means alg.: given initial clustering C1,.. ., Cy,

1: Vj < k compute y; = centroid(C})

2: Vi <n,j < kify;isthe closest centr. to p; let z;; = 1 else 0

3: Vj < kupdate C; < {p; | z;; = 1 Ni < n}
4: repeat until stability
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k-means with £ = 2

Vinei AXA
Deezer Alstom
Accenture Elektrobit
Expedia Ford
Google Marriott
Aledade Amazon 1-3
Llamasoft CSX
WestRock

MITRE

Clarity

fragments 1-2
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k-means with £ = 2: another run

Deezer
Elektrobit
Google
Aledade

Vinei

AXA
Accenture
Alstom
Expedia
Ford
Marriott
Llamasoft
Amazon 1-3
CSX
WestRock
MITRE
Clarity
fragments 1-2
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k-means with k& = 2: third run!

AXA Vinci
Deezer Accenture
Expedia Alstom
Ford Elektrobit
Marriott Google
Llamasoft Aledade
Amazon 1-3

CSX

WestRock

MITRE

Clarity

fragments 1-2

A fickle algorithm
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We can’t trust k-means

04 ] 04 1 04 ]
03] ] 03] ] o s ]
02 02 02
01 01 01
00| 00| 00|

L L ] oi w2z W1 oz o1 o8 01 10 61 2 o0 o2 o1 s 08
04 . 1 04 1 04 .

° °

03] ] 03] 1 03] ]
02 02 02
0 0 0
00| 00| 00|

Wi Wz w0 0z a6 o5 10 Wi Wz o0 0z a6 o5 10 7wz w0 0z o1 06 o5 10
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00| 00| 00|




Let’s find MSSC’s global optimum!

min - 3, 3 [lpi — yjll3 i )
i<n j<k
V] S k ; bi%i; = Yj
i<k MSSC
vj <k Sop o= [ Y
i<n
VJ S k yj € Rd
c {0,1}7*
s € NF )

Nonconvex terms; continuous, binary and integer variables:

sounds very difficult!
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Reformulations
The (MSSC) formulation has the same optima as:

min Z Z Pij ZEZ']‘ )
Yy, P i<n i<k
Vi<n i<k |pi—yl3 < Py
\4) S n _Z Tij = 1_
i<k
Vi<k y; € [minpi, maxp, | a < dj
z e {01}
P € [0, PU]* )

» Only nonconvexities:

products of bounded by binary variables

» Caveat: cannot have empty clusters
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Products of binary and continuous vars.

» Suppose term zy appears in a formulation

» Assume z € {0,1} and |y € [0, 1] |is bounded

» means “either 2 = 0orz =y”

v

Replace zy by a new variable =

v

/\dioin the I‘ollowing constraints:

z € [0,1]
(1—a3)§ z <y+(1—-2)
r< 2z <z

v

= Everything’s linear now!
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Products of binary and continuous vars.

» Suppose term zy appears in a formulation

» Assume x € {0,1}and|y € [y*,y"]|is bounded

» means “either 2 = 0orz =y”
» Replace xy by a new variable =

> Adioin the following constraints:

z € [min(y",0), max(y",0)]
y— (1 —z)max(|y”],[yV]) < 2z <y+ (1 —z)max(|y”], [y"])
< z

—amax(|y"], [y"]) < wmax(|y"|, [y"])

» = Everything’s linear now!
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MSSC is a convex MINLP

ming ZZ

z,y,P,x, i<n i<k
Vi<n,j<k 0<
Vi<ng<k llpi—y;ll3
Vi<k sz‘rz‘j

i<n
LN, g S Yy; — (L — Ti5) max(|y—|, |Y =
Vi<n,j<k 1 Ly <
Vi<ngj<k  —azymax(lyllyY]) <
Vi<n inj

i<k
Vi<k yj

xT

X
Vi<n,j<k &ij

Yj»Eijs y¥, y¥ are vectors in R?

M M M M M

< By

< PY

o
> &

i<n

<y + (1= ziy) max(ly”|, y7])

<z max(|y”], [yY))

1

", y"]

{0, 13*

[0, P

[0, PU]"E

[min(y”, 0), max(yY, 0)]
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How to solve it

» Encoding the problem: AMPL

» cMINLP is NP-hard, no efficient algorithm

» Technologically advanced: Branch-and-Bound
» Best (open source) solver: BoNnmIN

» With k = 2, unfortunately...

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution,
best possible 6.1855969 (32142.17 seconds)

» Interesting feature: the bound
guarantees we can’t to better than bound

all BB algorithms provide it
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BonMiIN’s first solution

Alstom Vinei
Elektrobit AXA
Ford Deezer
Llamasoft Accenture
Amazon 2 Expedia
CSX Google
MITRE Aledade
Clarity Marriott
fragment 2 | Amazon1& 3

WestRock

fragment 1
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Couple of things left to try

» Approximate ¢, by /; norm
¢ 1s a linearizable norm

» Randomly project the data
lose dimensions but keep approximate shape
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Linearizing convexity

> Replace [p; — y;|5 by [lpi — y;lh
» Warning: optima will change
but still within “clustering by distance” principle

Vi<n,j <k |pi—yillh =Y Ipia — jal
a<d

v

Replace each | - | term by new vars. Q;;, € [0, PY]
Adjust PY in terms of | - |1

v

Adjoin constraints

Vi<n,j<k Z Qija < Py
a<d
Vi<n,j<ka<d —Qija < Dia—Yja =< Qija

Obtain a MIL.P
Most advanced MILP solver: CPLEX

v
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CPLEX s first solution

objective 112.24, bound 39.92, in 44.74s

AXA
Deezer
Ford
Marriott
Amazon 1-3
Llamasoft
CSX
WestRok
MITRE
Clarity
fragments 1-2

Vinei
Accenture
Alstom
Expedia
Elektrobit
Google
Aledade

Interrupted after 281s with bound 59.68
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The magic of random projections

» Very advanced theoretical framework
» Truly a piece of “mathematics of big data”

» In anutshell

2 \ " "
k(* : *) ‘ - [ | ‘
S — Hf J - s L | i K
’ IV(") %—;) /J kKO (‘21 Ljn)

» Clustering on @ rather than p
yields approx. same results with high probability
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The magic of random projections

» Very advanced theoretical framework
» Truly a piece of “mathematics of big data”

» In a nutshell
Given points p;, ..., p, € R?with dlarge and e € (0,1)

Pick “appropriate” k ~ O(%; logn)
Sample k& x d matrix A (each comp. i.i.d. N'(0, ﬁ )

Consider projected points ¢; = Ap; € R* fori <n

;. = W=

With prob— 1 exponentially fast as &k — oo

Vi,j <n (1—-¢)llpi—pjll2 < llgi—gjll2 < (14+¢)|lpi—pjll2
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BonwmiN on randomly proj. data
objective 5.07, bound 0.48, stopped at 180s

Deezer Vinci
Ford AXA
Amazon1-3 | Accenture
CSX Alstom
MITRE Expedia
fragment 1 Elektrobit
Google

Aledade

Marriott

Llamasoft

WestRock

Clarity

fragment 2
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CPLEX on randomly proj. data

objective 53.19, bound 20.68, stopped at 180s

Vinci AXA
Deezer Accenture
Expedia Alstom
Google Elektrobit
Aledade Marriott
Ford Llamasoft
Amazon 1-3 WestRock
CSX MITRE
Clarity fragment 1-2
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Many clusterings

This ain’t finished...
» We obtained many different clusterings
» Isthere any common sense?
» How do we compare them?

» Can we extract useful information from the
comparison?
>

» Did we just turn the issue of “I have too many data” into
“I have too many solutions”?
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Section 7

Kissing Number Problem
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Definition

Given n, K € N, determine whether n unit spheres can be
placed adjacent to a central unit sphere so that their
interiors do not overlap

Funny story: Newton and Gregory went down the pub...
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Some examples

n=6K=2 n=12,K =3 more dimensions

n T (lattice) t (nonlattice)
0 0
1 2
2 6
3 12
4 24
5 40
6 7
7 126
8 240
9 272 (306)"
10 336 (500)"
11 438 (582)"
12 756 (840)°
13 918 (1130)
14 1422 (1582)
15 2340
16 4320
17 5346
18 7398
19 10668
20 17400
21 27720

22 49896
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Equivalent formulation

Givenn, K € N, determine whether there exist n vectors
x1,..., 7, € RE such that:

Vi<n el = 1

<
AN
<
VAN
S
e
|
&
S
v
—

163/246



Spherical codes

» S¥~! C R¥ unit sphere centered at origin

» K-dimensional spherical z-code:
» (finite) subset C ¢ SX-1
» Ve #£AyeC rz-y<z

> non—overlapping interiors:

1
Vi<j ||vi— a4 >2 <:>xi-:(:j2cos(g):§

on S~ !instead

@Q ...can use norm-1 projections
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Lower bounds

v

Construct spherical -code C with |C| large
Nonconvex NLP formulations

v

SDP relaxations

v

v

Combination of the two techniques
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MINLP formulation

Maculan, Michelon, Smith 1995
Parameters:

» K:space dimension
> n:upper bound to kn(K)

Variables:

» z; € R¥: center of i-th vector
» «; = liff vectoriin configuration

n
max >
i=1
Vi<n |22 = oy
Vi<j<n |]a:i—xj|]2 > a0y
Vi<n r € [-1,1)¥
Vi<n a; € {0,1} J
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Reformulating the binary products

» Additional variables: 5;; = 1iff vectors i, j in
configuration

» Linearize o;a; by f;;
» Add constraints:

Vi<j<mn Bii < o
VZ<]§71 /Bij S Oéj
Vz<j§n 5@' > C(i—i-CYj—l
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AMPL and Baron

» Certifying YES
» n=06,K =2: 0K, 0.60s
» n=12, K = 3: OK, 0.07s
» n =24, K = 4: FAIL, CPU time limit (100s)
» Certifying NO
» n=7,K = 2: FAIL, CPU time limit 100s)
» n =13, K = 3: FAIL, CPU time limit (100s)
» n =25, K = 4: FAIL, CPU time limit (100s)

Almost useless
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Modelling the decision problem

max a )
T,
Vi<n l|z:||* = 1
Vi<ji<n |lz;—z|]* > «
Vi<n r, € [-1,1)%
a > 0 )

» Feasible solution (z*, o*)

» KNP instanceis YES iff o* > 1

[Kucherenko, Belotti, Liberti, Maculan, Discr. Appl. Math. 2007]
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AMPL and Baron

» Certifying YES
» n =6, K = 2: FAIL, CPU time limit (100s)
» n =12, K = 3: FAIL, CPU time limit (100s)
» n =24, K = 4: FAIL, CPU time limit (100s)
» Certifying NO
» n=7,K = 2:FAIL, CPU time limit (100s)
» n =13, K = 3: FAIL, CPU time limit (100s)
» n =25 K = 4: FAIL, CPU time limit (100s)
Apparently even more useless
But more informative (arccos o = min. angular sep)

Certifying YESbya > 1
» n=6K=2:0K, 0.06s
» n =12, K = 3: 0K, 0.05s
> n =24 K =4:0K, 148s
» n =40, K = 5: FAIL, CPU time limit (100s)
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What about polar coordinates?

y:(y17'~'7yK) — (p’ﬁla"'aﬁK—l)

p = |yl
K-1
VE< K vy, = psinﬁk,IHcosﬁh
h=k

» Only need to decide s;, = sin ¥, and ¢, = cos Uy,
» Get polynomial programin s, c
» Numerically more challenging to solve

» But maybe useful for bounds?
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SDP relaxation of Euclidean distances

» Linearization of scalar products
VZ,]SR .Z'i'ilfj—)Xij

where X is an n x n symmetric matrix

v

|zill5 = =5 - 2 = X
|z — 37]”2 |3 + ”%Hz 2w x; = Xy + Xj; — 2X5

» X = 22" = X — zx" = 0 makes linearization exact

v

Relaxation:

v

X — a2’ = 0= Schur(X,z) = L a! =0
p— b x X p—

172/246



SDP relaxation of binary constraints

v

Vi<n o €{0,1} & a? =q

v

Let Abe ann x n symmetric matrix
» Linearize o;a; by A;; (hence o by A;;)

» A = aa’ makes linearization exact

v

Relaxation: Schur(A, ) = 0
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SDP relaxation of [MMS95]

max > ]
i=1
Vi<n Xy = oy
VZ<j§n X1+XJ—2XU > Aij
Vi <j <n Az‘j < Qa;
Vi<ji<n A < o
Vi<j<n Aij > oi+a;—1
Schur(X,z) > 0
Schur(A,a) = 0
Vi<n v € [-1,1)K
a € [0,1)"
X e [-1,1”
A € [0,1"
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Python, PICOS and Mosek

» bound always equal to n

» prominent failure :-(

» Why?
» can combine inequalities to remove A from SDP
» integrality of o completely lost
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SDP relaxation of [KBLLMO7]

max (6]
VZ<]§TL Xii+ij_2Xij >«
X e [-1,1]”
X = 0
a > 0
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Python, PICOS and Mosek

With K =2
n a*
2 | 4.00
3 | 3.00
4 | 2.66
5| 250
6 | 240
71 233
8 | 228
9 | 225

10 | 222
11 | 2.20
12 2.18
13 2.16
14 215
15 2.14
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Python, PICOS and Mosek

With K =3

*knpsdpfeas3D,out’ using 1:2 ——

Enforces some separation between “relaxed vectors”
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An SDP-based heuristic

1. X* € R"": SDP relaxation solution of [KBLMO7]
2. Perform Principal Component Analysis (PCA), get = € RK

> concatenate K eigenvectors € R™ corresponding to K largest eigenvalues

3. Use z as starting point for local NLP solver on [KBLMO7]
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Python, PICOS, Mosek + AMPL, IPOPT

v

n=6,K = 2: 0K, 0.02s

n =12, K = 3: OK, 0.02s

n =24, K = 4: 4% error, 0.32s
» n =40, K = 5: 5% error, 1.57s
n="72,K =6:7% error, 12.26s

v

v

v
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Surface upper bound

Szpiro 2003, Gregory 1694
Consider a kn(3) configuration

inscribed into a super-sphere of
radius 3. Imagine a lamp at the
centre of the central sphere that
casts shadows of the surround-
ing balls onto the inside sur-
face of the super-sphere. Each
shadow has a surface area of 7.6;
the total surface of the super-
ballis113.1. So 1131 = 14 9isan
upper bound to kn(3).
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Another upper bound

Thm.

Let:C. = {x; € SKE=L i <nAVj#£i (z 25 <2)}c0 >0 f : [-1,1] — Rsit:

@® > f(zsi-z;)>0 (i) f(t) +co < Ofort € [—1, 2] (iii) f(1) +co <1
,j<n

Thenn < %

(IDelsarte 1977]; [Pfender 2006])
Letg(t) = f(t) + co

2

n?co < n2co+ Z flzi-z5)  by()
i,j<n
= D (f@i-z)+c)= Y glwi-x;)
h,j<n “,j<n
< Z g(z; - ;) since g(t) < Ofort < zandz; € C; fori <n

i<n
ng(1) since ||z;||2 = 1fori <n
< n since g(1) < 1.
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The Linear Programming Bound

» Condition (i) of T'heorem valid for conic combinations of
suitable functions F = {f1,..., fu }:

f(t) = Z cnfn(t)  forsomec, >0

h<H

> LetT:{tl|z§s/\t1 :—1/\tS:Z/\Vi<j(ti <tj)},getLP:

max Co n = 1/cyo smallest
ceRK+1
VteT Z Chfh(t) +co < 0 (i0)
1<h<H
Soepfn(l)+e < 1 (i)
1<h<H
Vi<h<H ¢, > 0 (coniccomb.)

» E.g. F = Gegenbauer polynomials [Delsarte 1977]

» T C [—1, 2], don’t know how to solve infinite LPs so we discretize it
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Some results
> Gegenbauerpolynomials GZ (recursive definition):

Go(t) = 1, Gi(t) =29t
Wh> ThGL(t) = 2t(h+~—1)G)_(t) — (h— 2y — 2)G]_,(¢)

(all normalized so G} (1) = 1)
» Special case G] = P,"" of Jacobi polynomials:

P h + h + 4 h—1
h P = 2h2(7 a)(}Lf)(f+1) (T_l)}

» [Delsarte 1977, Odlyzko & Sloane 1998]

kn(3) < 12,kn(4) < 25,kn(5) < 46, kn(8) < 240, kn(24) < 196560
» Used to prove the “Twelve spheres theorem” (kn(3) = 12)
» My test: works for K > 4, couldn’t make it work for K = 3
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Where does K appear in the LP bound?

» F containing Gegenbauer polynomials
> InGj (1), = %
» K determined by lowest y appearing in F

» Eg. F = {G}(t),G}*(t) | h < 10} yields bound
25.5581 > kn(4) = 24
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Section 8

Distance Geometry

186/246



A gemin Distance Geometry

» Heron’s theorem

» Heron lived
around year O

» Hang out at

Alexandria’s library

A= /s(s—a)(s—b)(s—c)

» A =area of triangle
» s=3(a+b+c)

Useful to measure areas of agricultural land
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Heron’s theorem: Proof
A2a+28+2y=2n=a+B+y=m

2o

r4+ix = wue
r+iy = ve
r+iz = we”

= (r4iz)(r+iy)(r+iz) = (uow)e(@+b+7) =

wvw et = —uvw € R
= Im((r +iz)(r +iy)(r +iz)) =0
=r(rtytz)=ayz=r= TUZ

B.s=31(a+b+c)=az+y+=

s—a =
s—b =
s—c =

1
A=§(Ta+7“b+rc)=r

at+b+ec

r+y+z—y—z==x
r+yt+z—r—z=y
rt+ytz—r—y==z

5 =7rs=+/s(s—a)(s—b)(s—c)

Tt+y+z



Heron’s gifted disciple

>

This proof by Miles Edwards as a high school student in 2007
lhsblogs.typepad.com/files/
a-proof-of-heron-formula-miles-edwards.pdf

(tried to contact him, never g()l an answer)
Beats all other proofs for compactness and elegance

...Other people think so too!
jwilson.coe.uga.edu/emt725/Heron/HeronComplex.html

He was ranked 16th in the Putnam Competition 2010
newsinfo.iu.edu/news/page/normal/13885.html

Want to see what kind of exercises he was able to solve?
kskedlaya.org/putnam-archive/2010.pdf

An example:

Given that A, B, C are noncollinear points in the plane
with integer coordinates such that the distances AB,
AC and BC are integers, what is the smallest possible
value of AB?
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lhsblogs.typepad.com/files/a-proof-of-heron-formula-miles-edwards.pdf
lhsblogs.typepad.com/files/a-proof-of-heron-formula-miles-edwards.pdf
jwilson.coe.uga.edu/emt725/Heron/HeronComplex.html
newsinfo.iu.edu/news/page/normal/13885.html
kskedlaya.org/putnam-archive/2010.pdf

Another gem in DG

» [L Schoenberg, Remarks to Maurice Fréchet’s article “Sur
la définition axiomatique d’une classe d’espaces distanciés
vectoriellement applicable sur I’espace de Hilbert”,

Ann. Math., 1935]

» Question: Given n x n symmetric matrix D, what are
necessary and sufficient conditions s.t. Disa EDM!
corresponding to n points z1, ..., x, € RE with K
minimum?

» Maintheorem:

Thm.

D = (dij) is an EDMiiff (d3; + d3; — d2; | 2 < i,j < n)is
PSD of rank K

» Gave rise to one of the most important results in data
science: Classic Multidimensional Scaling

LEuclidean Distance Matrix
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Gram in function of EDM

= (11,...,7,) C RE, written as n x K matrix
T

v

matrix G = zz' = (z; - z;) is the Gram matrix of x

v

v

Schoenberg’s theorem: relation between EDMs and
Gram matrices

G = —%JDQJ (§)

» D* = (d}),J =1, — ;117
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Multidimensional scaling (MDS)

v

Often get approximate EDMs D from raw data
(dissimilarities, discrepancies, differences)

» G = —1JD?Jis an approximate Gram matrix

» Approximate Gram = spectral decomposition PAP  hasA # 0
Let A closest PSD diagonal matrix to A:

zero the negative components of A

v

v

x = Pv/Aisan “approximate realization” of D

192/246



Classic MDS: Main result

1. Prove G = —%JDQJ
2. Prove matrixis Gram iff it is PSD
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Classic MDS: Proof 1/3

» Assume zero centroid WLOG (can translate x as needed)
Expand: d?j = |lzs — 2|2 = (w5 — ) (zi — 25) = T2 + T35 — 2235m5 (%)

v

> Aim at “inverting” (x) to express z;z; in function of d?j

) 0 by zero centroid
> Sum («) overi: 3o, di; = 3, xix; + najuy — 205357

» Similarly for j and divide by n, get:

1 1

n i<n " i<n
1 1
2
. E di; = 1711—0—; E zjx; (1)
j<n Jj<n

> Sum () over j, get:
1 ) 1
DITRILS SRS D) S
irj i j i

> Divide by n, get:

1 2
D di == wmw (o)
7

0,7
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Classic MDS: Proof 2/3

> Rearrange (x), (1), (1) as follows:

QIiIEj = TixTi + TjTj — d?J (5)
1 . 1
wiwi =~ dej - Zx]-asj (6)
1
Ly o= Z"L i @

> Replace LHS of Eq. (6)-(7) in Eq. (5), get
1 2 15 2 2
2z, = E Zdik + Edkj — dij — E Zl‘kxk
k k

» By (xx) replace % Z x;x; with n% Z dfj, get
i i,]

1 1
2mizy = — D (d +diy) —di - o} D di ()
ok

k

which expresses x;x; in function of D
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Classic MDS: Proof 3/3

» Gram C PSD

» zisann x K real matrix

» G =z its Gram matrix
» For each y € R™ we have

yGy =y(zz )y = (yx)(="y") = (y2)(yx)" = |lyz3 >0

» =G>~ 0
» PSD C Gram

» LetG>=0ben xn
Spectral decomposition: G = PAPT

(P orthogonal, A > 0 diagonal)

A > 0= /A exists

G =PAPT = (P\F)(\F PT) = (P\F)(P\F)
Let x = PV/A, then G is the Gram matrix of z

v

v

v

v
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Principal Component Analysis (PCA)

» You want to draw z = Pv/A in 2D or 3D
butrank(A) = K >3

> Only keep 2 or 3 largest components of A
zero the rest

» Getrealization in desired space
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Example 1/3

Mathematical genealogy skeleton

Kastrer
Euler
i Paff
Thibaut ) amae Laplamz
*ibius
Fourier Poissor

Guvermanm  Dirksen GawB-l

IR "
WeierstraB Jacobi - Dirichlet

‘ Gerling

Pliag]

Gorban i i
Kovalevslcaya Lipschitz
Klein
Nocther

- T
Livbermars  Furtwiansgler

Hilbert Taussloy-Tooe
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Example 2/3

A partial view

| Euler Thibaut Pfaff  Lagrange Laplace Mobius Gudermann Dirksen Gauss

Kastner 0 T T 9 8 2 2 2 2
Euler 11 9 1 3 10 12 12 8
Thibaut 2 10 10 3 1 1 3
Pfaff 8 8 1 3 3 1
Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Mobius 4 4 2
Gudermann 2 4
Dirksen 4

0 10 1 1 9 8 2 2 2 2

10 0 11 9 1 3 10 12 12 8

1 11 0 2 10 10 3 1 1 3

1 9 2 0 8 8 1 3 3 1

D= 9 1 10 8 0 2 9 11 11 7

o 8 3 10 8 2 0 9 11 11 7

2 10 3 1 9 9 0 4 4 2

2 12 1 3 11 11 4 0 2 4

2 12 1 3 11 11 4 2 0 4

2 8 3 1 7 7 2 4 4 0
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Example 3/3

In2D

ccccc

Mossiu Lagrang®
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The Distance Geometry Problem (DGP)

Given K € Nand G = (V, E,d) withd : E — R,
findz : V — RN s,

V{i,j} € B |lz; — ;|5 = d;

/|, drawit so edges are drawn as
2

Given a weighted graph

segments with lengths = weights 1‘ \K? ‘\?
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Some applications

» clock synchronization (K = 1)

» sensor network localization (K = 2)

» molecular structure from distance data (K = 3)
» autonomous underwater vehicles (KX = 3)

» distance matrix completion (whatever K)
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Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from a partial
measurements of their time differences

K=1
V: timestamps

v

v

v

{u,v} € E if known time difference between u, v
d: values of the time differences

v

Used in time synchronization of distributed networks
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Clock synchronization

5 [Atomic clock (S) }

16:27

A C S B

16:21 16:23 16:25 16:27 16:29 16:31

| | | | | | | | | | | |
[ I [ [ [ I I [ I [ I |

16:20 16:22 16:24 16:26 16:28 16:30
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Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to
locate a set of geographically distributed objects using
measurements of the distances between some object pairs

» K =2

» V: (mobile) sensors

» {u,v} € F iff distance between u, v is measured
» d: distance values

Used whenever GPS not viable (e.g. underwater)

dyv % battery consumption in P2P communication betw. u, v
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Sensor network localization
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Molecular structure from distance data
From [Liberti et al., SIAM Rev., 2014]

» K =3

» :atoms

» {u,v} € Fiff distance between u, v is known
» d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)

Covalent bond lengths and angles known precisely

Distances < 5.5 measured approximately by NMR
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Complexity

» DGP, withd : F — Q. isin NP

if instance YES Jrealization 2 € R™*!

if some component z; ¢ Q translate z so z; € Q
consider some other z;

let ¢ = (lengthsh.pathp:i — j) = 3 dy,, €Q

{u,v}€p

vV vV v Vv

» thenz; =2, £ (=2, €Q
» = verification of

Vi j} €E |ai— x| =dy

in polytime

» DGPx may not be in NP for K > 1

don’t know how to verify ||z; — 2|2 = d;; for z ¢ Q¥
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Hardness
ParTITION is NP-hard

iel idl

Givena = (a1,...,a,) e N", ITC{1l,...;n}st. > a; => a;?

» Reduce ParTtITION to DGP;

» a — cycle C
V(C) = {1,....n}, B(C) = {{1,2},... {n,1}}
» Fori < nlet di71'+1 = a;
dn,n—H =dp = ap

>
2 p 3
1 1
1 ) 4
3 e 3
5

[Saxe, 1979]
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ParTITION 1s YES = DGP; 1s YES

» Given: / C {1,...,n}st.> a;=>

icl igl
» Construct: realization z of C'in R

1. 21 =0 // start
2. induction step: suppose z; known
ifiel
let Tiv1 = T + di,i+1 // go right
else
let Tiy1l = Ty — di,i+1 // go left

» Correctness proof: by the same induction
but careful when i = n: have to show x, 1 = x,
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ParTITION 1s YES = DGP; 1s YES

D)= @1 —m) = > diip1=

icl il
SN
il igl
= diig1 = Y (zi—mi41) = (2)
igl igl

1H=(2)= Z(xi+l —x;) = Z(ﬂﬂz —Tiy1) = Z(%‘H —z;) = 0
i€l igl i<n

= (Tngr — Tn) + (T — Tp1) + -+ (23 —22) + (x2 —21) = 0

= Tpnt+1 = 1
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ParTITION 1s NO = DGP; is NO

>

>

By contradiction: suppose DGP is YES, x realization of C

F={{u,v} € E(C) | zy <y},
E(C)NF ={{u,v} € E(C) | &y > x4y}

Trace 21, ..., 2,: follow edges in F' (—) andin E(C) \ F (+)

Z (v — zu) = Z (zu — @v)
T4 1 Ts xr3 2 {u,v}EF {u,v}¢F
o L S e
-3 2 -1 0 1 2 3 Z [ = |zu — @]
) {u,v}eF {u,v}¢F
duy = ST duw
{u,v}eF {u,v}¢F

LetJ={i<n|{i,i+1} e Ftu{n|{n,1} € F}
= Zai:Zai

So J solves Partition instance, contradiction
= DGP is NP-hard, DGP; is NP-complete
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Number of solutions: with congruences

> (G, K):DGP instance

» X C RE™: get of solutions

» Congruence: composition of translations, rotations, reflections
» C = set of congruences in R¥

> z ~ymeansdp € C (y = px):
distancesin x are preserved iny through p

» = if [ X] >0, |X]| = 2%
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Number of solutions: without congruences

» Congruence is an equivalence relation ~ on X
(reflexive, symmetric, transitive)

v

Partitions X into equivalence classes

> X = X/~:sets of representatives of equivalence classes

v

Focus on | X| rather than | X|
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Rigidity, flexibility and | X|

v

infeasible < | X| =0

rigid graph & | X| < R

globally rigid graph < | X| =1

flexible graph < | X| = 2%

| X| = Ng: impossible by Milnor’s theorem

v

v

v

v
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Milnor’s theorem implies | X | # R,

v

System S of polynomial equations of degree 2

Vi<m pi(x1,...,2p5) =0

v

Let X be the set of x € R*¥ satisfying S

v

Number of connected components of X is O(3"K)
[Milnor 1964]

v

If | X| is countably co then G cannot be flexible
= incongruent elts of X are separate connected components
= by Milnor’s theorem, there’s finitely many of them
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Examples

Vli=1{1,2,3}

E' = {{u,v} |u < v}

dt=1

V2=viu{4}

E? = E'U {{1,4},{2,4}}

42 = 1/\d14=\/§

Vi=Vv2

E3 = {{u,u+1}ju <3}U{1,4}
dt=1

x1

T4

T3

x2

p congruence in R2
= pz valid realization
X|=1

p reflects za wrt z1, 72
= px valid realization
x| =2 (49

p rotates 7773, Tiza by 6
= pz valid realization
|X| is uncountable

U, ,7,=,..)
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DGP formulations and methods

v

System of equations

v

Unconstrained global optimization (GO)

v

Constrained global optimization

v

SDP relaxations and their properties

v

Diagonal dominance

v

Concentration of measure in SDP

Isomap for DGP

v
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System of quadratic equations

V{u,v} € E |2y — 20||* = &2, )

Computationally: useless
(less than 10 vertices with K = 3 using Octave)
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Unconstrained Global Optimization

mxin Z (N — | _dfw)2 (9)

{uv}eE

Globally optimal obj. fun. value of (9) is O iff = solves (8)

» GO solvers from 10 years ago
» randomly generated protein data: < 50 atoms

» cubic crystallographic grids: < 64 atoms
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Constrained global optimization

» min, >, |||z — 2> — d2,] exactly reformulates (8)
{uv}erE
> Relax objective f to concave part, remove constant term,

rewrite min — f as max f

» Reformulate convex part of obj. fun. to convex constraints
» Exact reformulation
max, S lww — 22
{uv}eE (10)
V{w,v} € E |z, —z,|* < d3,
Theorem (Activity)

At a glob. opt. z* of a YES instance, all constraints of (10) are active
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Linearization

= Vi, jt € E a3 + llayll; — 22: - x; = d

N V{i,j} € E Xii + X5, —2X;; = dfj
X = zxal
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Relaxation

X = 2z’
= X—zz" =0
(relax) = X—zz" = 0
IK .’L’T
= -
Schur(X, z) ( X ) = 0

If z does not appear elsewhere = get rid of it (e.g. choose = = 0):

replace Schur(X,z) = 0by X > 0

223/246



SDP relaxation

min ' e X
Vi, j} € B Xi+ Xj; —2X;
X

How do we choose F?

ij
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Some possible objective functions

» For protein conformation:

max Z (Xu + Xj; — 2X55)
{ij}eE

with = changed to < in constraints (i a>)
“push-and-pull” the realization

» [Ye,2003], application to wireless sensors localization
min Tr(X)
improve covariance estimator accuracy

» How about “just random”?
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How do you choose?

for want of some better criterion...

TEST!

v

Download protein files from Protein Data Bank (PDB)

they contain atom realizations

v

Mimick a Nuclear Magnetic Resonance experiment

Keep only pairwise distances < 5.5

v

Try and reconstruct the protein shape from those
weighted graphs

v

Quality evaluation of results:

> LDE(z) = (max s = ]l = di|
» MDE(z) = i 3 |l — ] — dij |
{i,j}eE
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Objective function tests

SDP solved with Mosek
SDP + PCA
Instance LDE CPU
Name V| |E| ‘ PP Ye Rnd PP Ye Rnd PP Ye Rnd
€07000dd . 1 15 39 3.31 4.57 444 1.92 2.52 2.50 0.13 0.07 0.08
€07000dd.C 36 242 1061 4.85 4.85 3.02 3.02 3.02 | 0.69 0.43 044
€0700.0dd.G 36 308 4.57 4.77 4.77 241 2.84 284 | 0.86 0.54: 0.54
CO150alter.1 37 335 4.66 4.88 4.86 2.52 3.00 3.00 0.97 0.59 0.58
C0080create.1 60 681 17 4.86 4.86 3.08 3.19 3.19 248 146 146
tiny 37 335 4.66 4.88 4.88 2.52 3.00 3.00 0.97 0.60 0.60
1guu-1 150 959 10.20 4.93 4.93 343 343 343 9.23 5.68 5.70
SDP + PCA + NLP
Instance LDE MDE CPU
Name V| |E| PP Ye Rnd PP Ye Rnd ‘ rp Ye Rnd
1b03 89 456 0.00 0.00 0.00 | 0.00 0.00 0.00 8.69 6.28 9.91
lcrn 138 846 0.81 0.81 0.81 0.07 0.07 0.07 33.33 31.32 44.48
1guu-1 150 959 0.97 4.93 0.92 0.10 343 0.08 56.45 7.89 65.33
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Choice

» Yevery fast but often imprecise

» Random good but nondeterministic

» Push-and-Pull relaxes X;; + X;; — 2X;; = d7; to
X+ Xj; —2X;; > dfj, feasibility easier to satisfy

...will be useful later on

Focus on Push-and-Pull objective
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When SDP solvers hit their size limit

» SDP solver: technological bottleneck

» How can we best use an LP solver?

» Diagonally Dominant (DD) matrices are PSD

» Not vice versa: inner approximate PSD cone Y > 0

» Idea by AA. Ahmadi [Ahmadi & Hall 2015]
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Diagonally dominant matrices

n x nmatrix X is DD if

J#i

1 01  —02 0 004 O

0.1 1 ~0.05 01 0 0

E.g. —0.2  —0.05 101 001 0
0 0.1 0.1 1 0.2 0.3
0.04 0 001 02 1 —03
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DD Linearization

Vi<n X; > Z | X (*)
J#i

v

introduce “sandwiching” variable T’
write | X |as T
add constraints -7 < X < T

by > constraint sense, write () as

Xi> Y Ty

J#i

v

v

v
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DD Programming (DDP)

V{Z,j}EE Xii—f-ij—ZXij = dZZJ
X is DD

V{Z,j} =) Xzz + ij — 2Xz

= i

Vi<n+ K ST, < Xy
= j<n+K
j#i

T<X < T
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DDP formulation for the DGP

min Z (Xn + ij - 2X1]) )
{i,7}€E
V{Z,]} ek X+ ij —2X;; > dfj
Vi<n+ K > Ty < Xi
oy
-T'<X < T
T > 0
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SDP vs. DDP: tests

Using “push-and-pull” objective in SDP

SDP solved with Mosek, DDP with CPLEX

SDP + PCA
SDP DDP
Instance LDE MDE CPUmodl/soln | LDE MDE  CPUmodl/soln
C07000dd. 1 0.79 0.34 0.06/0.12 | 0.38 0.30 0.15/0.15
C0700.0dd.G 238 0.89 0.57116 | 1.86 0.58 1.11/0.95
C0150alter.1 148 045 0.73/1.33 154  0.55 1.23/1.04
C0080create.1 | 249  0.82 1.63/7.86 | 0.98 0.67 3.39/4.07
1guu-1 0.50 0.15 6.67/684.89 | 1.00 0.85 37.74153.17
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Concentration of measure

From [Barvinok, 1997]
The value of a “well behaved” function at a
random point of a “big” probability space X is
“very close” to the mean value of the function.

and
In a sense, measure concentration can be
considered as an extension of the law of large
numbers.
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Concentration of measure

Given Lipschitz function f : X — Rs.t.

Ve,ye X [f(z) = f(y)| < Lllz —yll

for some L > 0, there is concentration of measure if 3
constants ¢, C' s.t.

Ve >0 P,(|f(z) — E(f)] >¢) < ce C=/F

= “discrepancy from mean is unlikely”
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Barvinok’s theorem

Consider:
» for each k < m, manifolds X}, = {z € R" | 2T Q*z = a4}

> afeasibility problemz € N A}

k<m

» its SDP relaxation Vo < m (Q* ¢ X = a;) with soln. X

Let‘ T = factor(X) H y~N"(0,1)and 2’ = Ty‘

Then 3cand ng € Ns.t.if n > ny,
Prob (Vk < mdist(2’, &) < e/ || X2 lnn) >0.9.

IDEA: since 2’ is “close” to each X}, try local descent!
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Application to the DGP

v

Wi jt € B Xy =A{a | lloi — a5 = dj}

v

DGP can be writtenas () X,

{ij}€E
SDP relaxation X;; + Xj; — 2X;; = d;; A X = Owith
soln. X

v

» Difference with Barvinok: » € Rf", tk(X) < K
» IDEA: sample y ~ N"5(0, \/LR)

» Thm. Barvinok’s theorem works in rank K
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The heuristic

1. Solve SDP relaxation of DGP, get soln. X
use DDP+LP if SDP+IPM too slow

2. a.T = factor(X)

b. y ~ N™E(0, \/LE)
c.x' =Ty
3. Use 2’ as starting point for alocal NLP solver on
formulation
) 2
min 3 (o - oyl - &)

{i,j}€FE

and return improved solution
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SDP+Barvinok vs. DDP+Barvinok

SDP DDP
Instance LDE  MDE CPU | LDE MDE CPU
C07000dd. 1 0.00 0.00 0.63 | 0.00 0.00 1.49
C0700.0dd.G 0.00 0.00 21.67 | 0.42 0.01 30.51
CO0150alter.1 0.00 0.00 29.30 | 0.00 0.00 34.13
C0080create.1 | 0.00  0.00 139.52 | 0.00 0.00 141.49
1b03 0.18 0.01 132.16 | 038 0.05 101.04
lcrn 0.78  0.02 800.67 | 0.76 0.04 522.60
lguu-1 0.79 0.01 190048 | 090 0.04 667.03
Most of the CPU time taken by local NLP solver
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Isomap for DG

AN A

Let D’ be the (square) weighted adjacency matrix of G
Complete D’ to approximate sqDM D

Let B = —(1/2)JDJ,where J =1 — (1/n)11"

Find eigenvalivects A, Pso B = PTAP

Keep < K largest nonneg. eigenv. of A to get A (MDS/PCA)

Leti = PTVA

Vary Step 2 to generate Isomap heuristics
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Why it works

» G represented by weighted adjacency matrix D’

v

do not know D, approximate to D not sqEDM

v

= get B, not generally Gram

v

< K largest nonnegative eigenvalues
= “closest PSD matrix” B’ to B having rank < K

Factor it to get 7 € REn

v
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Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm on G

(classic Isomap)

B. Find a spanning tree (SPT) of G and compute a random
realization in # € R¥, use its sqEDM

C. Solve a push-and-pull SDP relaxation to find a realization z € R",
use its sgEDM

D. Solve an SDP relaxation with Barvinok objective to find z € R”

(withr < [(\/8|E|+1 —1)/2]), use its sqEDM

haven’t really talked about this, sorry
Post-processing: & as starting point for NLP descent in GO formulation
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Results

Comparison with dgsol [Moré, Wu1997]

T e A o en S e
i e e
Instance mde Ide CPU
Name n_ |E| |lsomap IsoNLP SPT SDP Barvinok DGSol|lsomap IsoNLP SPT SDP Barvinok DGSol|lsomap IsoNLP SPT SDP Barvinok DGSol
C€07000dd. 1 15 39 0.585 0.001 0.190 0.068 0.000 0.135| 0.989 0.004 0.896 0.389 0.001 0.634/0.002 1.456 1.589 0.906 1.305  1.747
C07000dd . 2 15 39 0.599 0.000 0.187 0.086 0.000 0.128| 0.985 0.002 0.956 0.389 0.009 1.000(0.003 1.376 1.226 1.002 1.063  0.887
C07000dd. 3 15 39 0.599 0.000 0.060 0.086 0.000 0.128| 0.985 0.002 0.326 0.389 0.009 1.000(0.003 1.259 1.256  0.861 1.167  0.877
C07000dd . 4 15 39 0.599 0.000 0.283 0.086 0.001 0.128| 0.985 0.002 2.449 0.389 0.008 1.000(0.003 1.347 1.222 0.976 1.063 1.033
C€07000dd. 5 15 39 0.599 0.000 0.225 0.086 0.000 0.128| 0.985 0.002 0.867 0.389 0.007 1.000(0.003 1.284 1.157 0.987 1.100 0.700
C€07000dd. 6 15 39 0.599 0.000 0.283 0.086 0.000 0.128| 0.985 0.002 1.520 0.389 0.002 1.000|0.002 1.372 1.196 0.998 1.305  0.909
C07000dd. 7 15 39 0.585 0.001 0.080 0.068 0.000 0.135| 0.989 0.004 0.361 0.389 0.001 0.634|0.003 1.469 1.322  0.894 1.093 1.719
C07000dd. 8 15 39 0.585 0.001 0.056 0.068 0.000 0.135| 0.989 0.004 0.275 0.389 0.003 0.634|0.003 1.408 1.306 0.692 1.079  1.744
C€07000dd. 9 15 39 0.585 0.001 0.057 0.068 0.000 0.135| 0.989 0.004 0.301 0.389 0.002 0.634|0.002 1.430 1172 0.791 1.093 1.745
C07000dd. A 15 39 0.585 0.001 0.043 0.068 0.000 0.135| 0.989 0.004 0.316 0.389 0.004 0.634|0.002 1.294 1.269 0.722 1.220 1.523
C07000dd.B 15 39 0.585 0.001 0.151 0.068 0.000 0.135| 0.989 0.004 1.022 0.389 0.004 0.634|0.002 1.297 1.279 0.871 1.111 1.747|
C07000dd.C 15 39 0.835 0.022 0.033 0.039 0.031 0.025| 1.012 0.147 0.393 0.211 0.294 0.167(0.004 6.803 6.369 7.371 7.030  7.000
C07000dd.D 36 242 | 0.835 0.022 0.041 0.039 0.042 0.025| 1.012 0.147 0.423 0.211 0.268 0.167(0.006 6.806 6.575 7.422 7.603  7.095
C07000dd.E 36 242 | 0.835 0.022 0.064 0.039 0.031 0.025| 1.012 0.147 0.894 0.211 0.260 0.167|0.006 6.911 6.638 7.365 6.979  7.008
F

C07000dd. 36 242 | 0.599 0.000 0.047 0.086 0.000 0.128| 0.985 0.002 0.308 0.389 0.005 1.000|0.002 1.299 1.310 1.008 1.100 1.040
CO150alter.1 37 335 | 0.786 0.058 0.066 0.014 0.015 0.010| 0.992 0.571 0.693 0.256  0.285 0.253|0.004 9.492 9.456 10.276 10.120 9.272
C0080create.1 60 681 | 0.887 0.053 0.083 0.024 0.024 0.054| 1.967 0.949 0.789 0.511  0.516 0.718/0.012 18.835 19.720 21.247 20.906 19.962
C0080create.2 60 681 | 0.887 0.053 0.047 0.024 0.024 0.054| 1.967 0.949 0.585 0.511  0.512 0.718/0.008 18.791 20.009 21.728 20.885 19.740

C0020pdb 107 999 | 0.939 0.110 0.119 0.059  0.060 0.103| 1.242 1.113 1.349 1.082 1.138 0.798/0.035 29.024 27.772 35.273 35.486 32.479
1guu 150 955 | 0.986 0.068 0.069 0.057 0.057 0.061| 0.999 0.854 0.830 0.735 0.751 0.768/0.048 30.869 28.784 41.488 41.852 37.848
1guu-1 150 959 | 0.986 0.061 0.063 0.058 0.057 0.060( 1.000 0.711 0.855 0.805 0.829 0.778/0.053 31.322 31.442 42.308 41.590 37.218
1guu-4000 150 968 | 0.974 0.081 0.080 0.072 0.065 0.079| 1.000 0.901 0.728 0.961 0.826/0.050 30.352 29.856 42.330 39.832 42.015
C0030pk1 198 3247| 0.961 0.112 0.160 0.076  0.077 0.137{1.197 1.354 2.230 2.054 1.401(0.091 105.175 104.775 149.192 146.360 111.859|
1PPT 302 3102| 0.984 0.121 0.129 0.128 0.129 0.123/1.000 1.519 1.219 1.956 1.224|0.356 112.448 110.345 185.815 187.182 118.681
100d 488 5741| 0.987 6 0.146 0.155 1.000 _1.577 1.397 = 1.358| 0.828 229.809 213.136 659.638 659.280 233.115
GeoMean 0.74{ 0.00~0.09 0.06 1.07 [ 0.04Y 0.73 0.06\ 0.66/70.! 6.30 6.04 5093 6.63  6.30
Avg 0.76\ 0.04 10.11 0.07 1.09 ( 0.44 | 0.88 04714 0.7 0.06 6.12  25.21  49.69 49.55 27.96
StDev 0.17 .05 /0.07 0.03 0.27 \ 0.55/ 0.57 0.65/ 0.34\ 0.18 /51.69 48.82 135.08 134.97 53.26
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Large instances

Instance mde Ide CPU
Name V| |E| IsoNLP  dgsol | IsoNLP  dgsol IsoNLP dgsol
water 648 11939 | 0.005 0.15 | 0.557 0.81 26.98 15.16
3all 678 17417 0.036 0.007 | 0.884 0.810 170.91 210.25
1hpv 1629 18512 0.074  0.078 0936 0.932 374.01 60.28
i12 2084 45251 0.012 0.035 | 0910 0.932 465.10 139.77
1tii 5684 69800 0.078 0.077 | 0950 0.897 | 740048 454.375




THE END
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