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problem in NP can be polynomially transformed to QPL. In this section we
have argued that there is a polynomial-length certificate for yes-instances ol
QPL, showing that the problem is in NP.

Notice that as a byproduct of this proof we have shown the following
theorem. There seems to be no way to prove this theorem simpler than the
machinery of this section.

THEOREM 4.2. Consider the problem of minimizing a quadratic objective
function f(x) subject to Ax > b. Then the possible outcomes are: (a) The
constraints are infeasible, (b) A global minimum exists, or (¢) The objective
function is unbounded from below in the feasible region. In particular, the
following case is not possible: The objective function is bounded below but
does not achieve its minimum.

PROOE. The preceding argument shows that for a feasible QP that does not
attain its minimum, there must exist a ray such that every point on the ray
is feasible, and the objective function is a decreasing quadratic function on
the ray. Such a function must tend to —oc. i

4.2. Special cases of nonconvex QP

In this section we will list some special cases of nonconvex QF that are
known to be NP-hard. Since the general case of QP was proved to lie in NP
when expressed as a decision problem, all of the examples of this section
are also NP-complete when posed as decision problems.

QP with simple bounds

This is the problem of minimizing ix7 Hx + ¢ x subject to constraints
{; < #; <y fori=1,...,n These constraints are sometimes called “box
constraints.” This problem is NP-hard by polynomial time transformation
from SAT similar to the transformation proposed in the proof of Theorem 2.5.
In that transformation we required simple bounds on the variables, namely,
0 < 4; < 1. We also included constraints of the form a] y > &; to capture the
ith clause. For a setting of the variables corresponding to an assignment that
satisfied the clause, we note from the reduction that afy = b, + v where v
is a nonnegative integer between 0 and 2. We replace this constraint with an
additional term in the objective function. The additional term takes the form
(a”y — b; — v;)> where v; is a new variable bound to lie between 0 and 2.
This new form of QP has only simple-bound constraints on the vari-
ables. It still has the property that the objective function is nonnegative on
the feasible region. One can prove that if the original boolean formula is
satisfiable, then there is a setting of the variables in the quadratic program
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in which the value of the objective function is zero. One can also prove
conversely that setting of the variables to make the objective function zero
must be an assignment to the boolean variables that satisfies all clauses.

Quadratic knapsack problem

The quadratic knapsack problem (QKP) was introduced in Section 3.1. This
problem is NP-hard if the matrix D is not positive semidefinite, i.e., if it has
negative entries on its diagonal.

We transform the subset-sumn problem to QKP. The subset sum problem
was described in Chapter 2 and is NP-complete (this was Theorem 2.4). In
this decision problem, the input is a list of n nonnegative integers ay,...,a,

and an integer . The question is whether there is a subset J C {1,...,n}
such that
ieJ

This is expressed as the following quadratic knapsack problem:

minimize @ (1 —z) + -+ 2ol —2,)
subjectto a1 + -+ @pZp =Y, (4.1)
0 é i S 1.

Note that the objective function is nonnegative on the feasible region. Note
also that the global minimum of the objective function is zero if and only if
cach z; is set to O or 1, i.e., if and only if ¥ can be expressed as a sum of
some subset of the integers ay,..., &y

Problems on a simplex

The standard n-dimensional simplex is defined to be the following subset of
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A™ = {(21y0 ey Bppr) 2T+ oot By = 125 2 0fori= 1y i+ 1}

Fig. 4.1 illustrates A' and A2. This region is specified by one equation
constraint and 7 + 1 inequalities. It has exactly n -+ 1 vertices.

The problem of minimizing $x” Hx + ¢Tx subject to x € A"~ is NP-
hard. This fact was observed by Pardalos, Ye and Han [1989], and the proof
follows a theorem by Motzkin and Straus [1965]. We first recall that the
following problem is NP-hard: Given a graph G, find the largest clique
contained as a subgraph in (. A clique is a graph with all pairs of vertices
interconnected. A clique with m vertices is denoted as K,,,. The NP-hardness
of this problem follows from Theorem 2.3.

We can transform the clique problem to QP on a simplex. The transfor-
mation is as follows, Let ¢ be an undirected graph with 22 vertices numbered
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16, 4.1.  One and two dimensional simplices.

1,...,n. There will be a variable x; for ecach vertex i. Let F{() be the edges
of (3, that is, a set of unordered pairs of the form (i, ) with 1 < 4,5 <n.Let
f be the following quadratic function from R™ to R.

J(x)=— Z L (4.2)

(i.d)€ B}

(only one of the terms z;z; and x;u; occurs in the sum for each edge
(i,7) € F(G).) We claim that the minimum value attained by f(x) is

[
ok 2 (4.3)
where k is the size of the maximum clique in G.

First, suppose there is a clique of size k. Then we can set the variables
corresponding to clique vertices to 1/k. The remaining variables are zero.
Clearly this point is feasible. The objective function in this case will have
E(k — 1)/2 terms each of value —1/&7, so the total objective function value
is —k(k — 1)/(2k?) which is 1/(2k) — 1/2.

Now, we prove that the objective function cannot be lower than p where
p = 1/(2k) — 1/2 and % is the size of the largest clique of (.

We state this as a lemma, which is due to Motzkin and Straus.

LEMMA 4.1. The optimum value of f defined by (4.2) on A"

(4.3).

is given by

PROOF. We have already shown that the minimurn is no more than the value
given by (4.3).

The proof for the other direction is by induction on rn, the number of

vertices of (. First, if n. = 2 and (& has one edge, then the minimum objective
function value is — 1 /4. If & has two vertices and no edges, then the objective
function is identically zero and the maximum clique size is .

Assume that 7 > 2 and examine the optimum value x* of the QP. Let
I* be the size of the largest clique of (/0 We want to prove that f{x")
L/(28Y) — 1 /2, There are three cases,
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Case | For some 1, a7 — 0. In this case we can delete vertex o from
o yield a graph ¢/ with n — 1 vertices. Note that the objective function f’
for this graph " also attains value f(x") (delete the ith entry from x*). Let
x" be the optimum for f’; then we have just argued that f(x*) > f'(x'). By
the induction hypothesis, f/(x’) = 1/(2k') — 1/2, where &' is the size of the
largest clique of G'. But  also contains this same clique, so &* > &'. Thus
we get the chain of inequalities
|

fixX) 2 f)= 55—

tol—
MI
=

*
b

which proves the claim.

Case 2. Forall i, xf >0, and G # K, In this case, we look at the KK'T'
conditions at optimum. The only active constraint is the constraint e’'x = |
where e is the vector of all 1’s. This means that Vf(x*) = Xe for some value
of A, hence the entries of Vf(x*) are equal to one another. Since we arce
assuming that G # K,,, at least one possible edge is absent. Assume withoul
loss of generality that edge (1,2) is not present in &. Then we examine the
lirst two entries of Vf(x*) which are,

of , « ]
duy &)=~ Z 4

(LAerE(d)

and

Of  »y _ L
%(X ) = — Z .I.‘?-.

(2.j)eE(G)

Since these are equal, we conclude that f({a] 41, x5 —¢, E3,...,0, ) s equal to
J(x*) for all choices of ¢ (since there is no cross-term x5, the dependence
on £ is linear). This means that there is some value of £ such that either @y or
2 can be driven to zero and the value of the objective function is preserved,
T'his reduces the problem to Case 1.

Case 3. G = K,,. In this case, we can compute analytically the minimum
value of the objective function. Notice that the objective function in this case
15 equal to

(if toeita2) — (Ty + 02y )?
> :
The second parenthesized term of the numerator is always 1 because of
(he constraint e”x = 1. Therefore, the problem is to minimize (IIxll3 = 1)/2.
Using the KKT conditions, one can show that ||x||5 is minimized on a simplex
when each x; is set to 1/n. This proves the claim.

Thus, we have shown that the minimum of [ is attained when each ay

for the vertices of a maximum clique of size & is setio | /k. W
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4.8 Let 8 be the optimal value of the objective function to (4.4), and
suppose ( is a root to an integer polynomial of degree d with
coefficients at most s in magnitude. Let ¢ be a given rational
number with numerator and denominator of magnitude at most
t. Suppose an approximation #; of ¢ is computed, such that
|6, — 8] < 27%. How large must k be in order to determine from
#, whether # = ¢, 8 < ¢, orf > (?

S
LOCAL OPTIMIZATION

In the last chapter we saw that many versions of nonconvex quadratic
programming are NP-hard. Indeed, practitioners have realized for ycars
that global minimization of nonconvex problems seems computationally
intractable. Accordingly, most well-known optimization packages (¢.g., M1+
NOS by Murtagh and Saunders [1987]) try to produce only local optima,
In this chapter we investigate the problem of local optimization from a
complexity-theoretic point of view. In the first section, we show that the
peneral problem of local optimality for nonconvex QP is an NP-hard prob-
lem. This result seems surprising since it has been tacitly assumed that local
optima are easy to find.

The second section characterizes local minima for QP. In the third,
fourth and fifth sections we address the problem of local minima for quadratic
knapsack problems. We show that this problem can be solved in polynomial
lime.

The practitioner of optimization ought to read this chapter with the
(question, “Is it reasonable to expect that the termination point of an opti
mization algorithm be a local minimum?” The answer to this question is not
fully understood, but in this chapter we provide some positive and negative
results.

5.1. General quadratic local minimization

We define QPLOC to be the following decision problem. Given an instance
(11,¢, A, b) of quadratic programming, and given a point x* ¢ R", is x* a
local minimum of the problem? In other words, (1) does x* satisfy Ax* = b,
and (2) if so, does there exist an ¢ > 0 such that Jx" Hx+e'x > -.-_'ix*"'ffx* |
¢"'x* for all x satisfying |[x — x*||> < ¢ and Ax > b?

The main result of this section is the following theorem. This theorem
iv due to Murty and Kabadi [1987], although our proof is a simplification
hecause we can take advantage of the Motzkin-Strauss results proved in the
lnst chapter,
Tiorem 5.1, Problem QPLOC 1y NP-hard,
ProOE Let ¢ be an undirected praph. We show that the problem ol deter

14
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mining whether ¢ has a clique of size & can be reduced to an instance of

QPLOC. Accordingly, assume L is given. Deline f(x) to be the quadratic
objective function given by (4.2} based on graph (7. Notice that this objec-
tive function may be writien as xT Hyx (no constant or linear term). Define
g(x) to be f(x) — c where

Notice that if the maximum clique size is k, then g(x) will attain a negative
value on A" !; otherwise it will always be positive on A Bl

Next, notice that if x € A" ! then ¢ is the same as c(x) + - + 2, )%,
Therefore, we can introduce objective function h(x) defined to be

h(x) = f(x) —c{zi + -+ z0)%

again, this objective function will attain a negative value on A"~ iff ¢ has
a clique of size at least k.

Notice that h{x) takes the form x" Hx (no constant or linear term).
Therefore, we have produced a matrix H such that xT Hx is negative on
AL if and only if G has a clique of size at least k.

Let () be the orthant {x € R" : x > 0}. Let @ be any positive real number.
Consider the problem of minimizing x” Hx subject to the constraints x € )
and eTx = a, where e is the vector of all 1’s. For & = 1 these constraints
specify A" ', Notice, however, that objective function values scale exactly
proportionally to a?. Therefore, for any fixed choice of a, we can claim that
x” Hx is negative subject to the preceding constraints if and only if G has a
cligue of size at least k.

Now, finally, consider the problem of minimizing x” Hx subject only
to X € ). We claim that 0 is a local (and, in fact, global) minimum of A(x)
on this region if and only il G does not have clique of size at least k. This
result would prove the theorem. If ¢ does not have a clique of size £, then
the preceding argument shows that k(x) is nonnegative at every point of (.
On the other hand, if & has a clique of size &, then there exists a point x € ()
such that h(x) < 0, and e?x may be arbitrarily small (but positive). This
means that 0 cannot be a local minimum. B

5.2. Characterizing local minima for quadratic programs

In this section we provide characterizations of local minima of guadratic
programming problems. These characterizations are useful for the upcoming
sections of this chapter.

We start by giving second order conditions for quadratic programming

BN P Al VP 8 RIVRAE e ALY LA L

problem:
minimize  f(x) = Ix"Hx 4 e'x
' 310 B
subject to Ax = b.

Let x* be a feasible point in [R". Let g denote Hx" - ¢, the gradient of
f at x*. Let (A, b)) denote the subset of constraints active at x*, so that
Agrx® = by, We claim that the following two conditions are necessary and
sufficient for local minimality of (5.1):

[. Forall d such that Aprd > 0, g7d > 0.
2. For all d such that Ayd > 0 and g'd =0, d" Hd > 0.

Observe that d is a feasible direction at x* if and only if Aid > 0. Note that
Condition 1 combined with feasibility is equivalent to the KK'T conditions.
Condition 2 is the additional second order condition.

Recall that a feasible direction for an optimization problem at a feasible
point x* is a vector d such that there is an ¢ > 0 such that x* - {d is [easible
for all t € [0, ¢|. A descent direction is a vector d such that there is an ¢ = 0
such that f(x* + td) < f(x*) for all t € (0,¢). Finally, a vector d is called
a feasible descent direction if it is both a feasible direction and a descent
direction. Clearly, the presence of a feasible descent direction means that x°
is not a local minimum.

Before proving that Conditions 1 and 2 are equivalent to local mini
mality, we first prove the following simpler auxiliary theorem that gives an
alternative characterization of the conditions.

THEOREM 5.2. Conditions | and 2 are equivalent to the condition that there
are no feasible descent directions at x*.

PROOF. First, suppose Conditions 1 and 2 hold. Then we claim that there
are no feasible descent directions. Let d be a feasible direction at x*, so that
Aprd = 0. Then

Fix* +td) — f(x*) =tg"d+t*d" Hd /2. (5.2)

Condition 1 implies that g7d > 0. If g'd > 0, then the first term of the
right-hand side of (5.2) is positive and dominates the second term for
small enough, so d cannot be a descent direction. If g”'d = 0 then the second
term is nonnegative by Condition 2, hence d once again is not a descent
direction.

Conversely, suppose Condition 1 or Condition 2 fail. Then it is casily
seen that the d that violates either condition is a feasible descent direction,

We now prove the main theorem for this section. This theorem is due
to Contesse [ 19801, but our prool s different,



