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Chapter 1

Introduction

This exercise book is meant to go with the course on Software Modelling given at École Polytechnique by
Prof. D. Krob — the current course edition is 1st semester 2009/2010 (code INF556). This book contains
a set of exercises in software modelling and architecture.

1.1 Structure of this book

Software modelling and software architecture are concepts needed when planning complex software sys-
tems. The book will focus on exercises to be carried out by means of the UML language, some notions of
optimization, and a good deal of common sense. One becomes a good software architect by experience.

Chapter 2 motivates to the study and practice of software design and engineering. Chapter 3 focuses
on simple UML exercises. It is split in Sections 3.1 (use case diagrams), 3.2 (sequence diagrams), 3.3
(state diagrams) and 3.4 (class diagrams). Chapter 4 groups various modelling exercises, only some of
which involve UML. Chapters 6 and 7 are “large scale exercises” that should give meaningful examples
on various modelling techniques used in practical settings (these sometimes employ UML-like diagrams,
but are not necessarily based on UML). Since some of these exercises use mathematical programming
techniques, there is a small collection of exercises on mathematical programming in Chapter 5.
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Chapter 2

Software Design and Engineering

Modern software performs complex tasks, and is actually a mixture of several different software modules
working together. Each module might have been created by different people at different times, using dif-
ferent programming languages. Mostly, this complexity is hierarchical: the software modules themselves
consists of software submodules, and so on for several levels. Thus, the complexity of the whole software
system exceeds the sum of the complexities of each part: it is actually this sum plus the complexity
given by the inter-relations. If a software has n modules, its has n2 potential binary relations (sometimes
a module interfaces with another instantiation of itself). Sometimes the relations can range subsets of
modules, yielding 2n relations.

Whereas a module is derived from compiling source code, the relations are abstract notions, occur-
rences of data exchange, temporal orders. Source code can be looked at “statically”; it is more difficult
to “look at” relations without actually simulating or executing them.

With hierarchical complexity, each software module might be the result of the work of one or several
development teams. This human effort must be coordinated. Development precedences must be identi-
fied and enforced. Extensive testing must be performed. Modules must be coded according to precise
requirements. A global design must be put in place for everything to fall exactly into place.

2.1 Good practices

In order to ensure that complex software is well-designed and well-behaved, good software engineering
practices must be put in place. Software engineering consists of the following set of disciplines.

• Software requirements: The elicitation, analysis, specification, and validation of requirements
for software.

• Software design: The design of software is usually done with Computer-Aided Software Engi-
neering (CASE) tools and use standards for the format, such as the Unified Modeling Language
(UML).

• Software development: The construction of software through the use of programming languages.

• Software testing

• Software maintenance: Software systems often have problems and need enhancements for a long
time after they are first completed. This subfield deals with those problems.
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• Software configuration management: Since software systems are very complex, their configu-
ration (such as versioning and source control) have to be managed in a standardized and structured
method.

• Software engineering management: The management of software systems borrows heavily from
project management, but there are nuances encountered in software not seen in other management
disciplines.

• Software development process

• Software engineering tools

• Software quality: verification and validation of software.

2.2 A global software design

A global software design is a formal representation (model) of the whole software system, allowing its
analysis prior to actual deployment. As all models are a simplification of reality, global designs, only
provide the “big picture”, neglecting the details local to each software module composing the system.
Surely we expect local occurrences to have a local effect, right? Let us see the effect of very local
occurrences in the following examples.

2.2.1 Ariane

The Ariane 5 space exploration rocket exploded on June 4, 1996, burning 7 billion dollars along with its
fuselage and its expensive load. Ultimately, the explosion was due to a software module data exchange
error.

1. Explosion due to self-destruct mechanism 39 seconds after launch;

2. self-destruct triggered as aerodynamic forces were ripping the boosters from the rocket’s fuselage

3. the aerodynamic forces were too strong because the rocket swerved off course

4. the rocket swerved off course because its on-board computer ordered it to do so

5. the computer command was issued because it was compensating for a wrong turn, but no wrong

turn had ever taken place

6. the computer was instructed about the wrong turn by the inertial system

7. the inertial system uses gyroscopes and accelerometers to track the rocket’s motion, and reports
the numbers (speeds, angles) to the computer

8. the computer was interpreting as valid numbers what was in fact an error message warning that
the inertial system had shut down

9. the shutdown occurred because the inertial systems’s own computer passed one piece of data written
over 64 bits of RAM — the sideways rocket velocity — to a software module (let’s call it A) only
expecting to be passed a 16 bit wide number

10. upon shutdown the inertial system passed control to an identical system put in place for redundancy

11. the identical system had in fact already shut itself down because of the very same error (it was
running the same software)

CHAPTER 2. SOFTWARE DESIGN AND ENGINEERING 10
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12. module A only expected a 16 bit wide number because the engineers who designed it never thought
the rocket could attain velocities whose numerical representation exceeded 16 bit

13. the engineers thought this because module A was actually designed for the Ariane 4 rocket (less
performant than Ariane 5)

14. Ariane 5’s software designers re-used Ariane 4’s code because one of the principles of software design
is re-use.

Furthermore, that particular software module was only useful during the very early takeoff stages, and
could have safely been deactivated right after takeoff. It was instead decided to leave it active for 40
seconds in case takeoff countdown was stopped and resumed briefly.

Software module relations often consist in data exchanges or data

passing; mistakes in data passing have the potential for erasing mem-

ory containing critical code or data. Every error condition must be

carefully catered for.

2.2.2 Patriot missile

On February 25, 1991, an American Patriot Missile battery failed to intercept an incoming Iraqi Scud
missile, causing 28 deaths and 100 injuries.

1. Time was measured by the system’s internal clock in tenths of seconds

2. this number was divided by 10 to yield the number of seconds

3. the calculation was performed in 24 bit arithmetic

4. the binary representation of 1/10 is nonterminating

5. it was chopped at the 24th bit after the radix point, yielding an error of 0.000000095

6. at crash time, the Patriot had been on for 100 hours; multiplying by 0.000000095 gives 0.34s

7. a Scud flies at 1676 m/s, so it travels more than 500m in 0.34s

8. thus, the Patriot did not manage to track the incoming Scud.

Rounding errors cannot be dispensed with, but must be controlled

carefully.

2.3 Architecture complexity

A software architecture is a map of the software modules and its relations. A hierarchical architecture
extends into mapping each modules into its submodules and their own relations. A relation on a set of
objects can be represented formally by means of a graph. A graph G is an ordered pair of sets (V,E)
where E is a set of subsets of V of cardinality at most 2. The elements of V are called vertices and the
elements of E are called edges. Vertices represent modules and edges represent binary relations on the
modules. If the relation is asymmetric then E is a subset of ordered pairs in V × V and each element of
E is an arc. Edges and arcs can be labelled by colours or numbers (also called weights). In hierarchical
architectures, each v ∈ V is itself a graph (see Fig. 2.1).

CHAPTER 2. SOFTWARE DESIGN AND ENGINEERING 11
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Figure 2.1: A hierarchical software architecture.

Since for n vertices there are n2 potential edges, and since errors can occur both in software modules
and in their inter-relations, one should attempt to reduce the number of relations (perhaps at the expense
of increasing the number of software modules) whilst maintaining the same overall functionality.

2.4 Exercises

2.4.1 Graph complexity

Assuming software modules (vertices) and relations (edges) all have unit complexity, simplify the archi-
tecture represented by the graph given in Fig. 2.2.

1
2

3

4 5

Figure 2.2: Exercise 2.4.1.

2.4.1.1 Architecture complexity

Simplify the architecture given in Fig. 2.3. Black arcs have complexity 1, blue arcs have complexity 3
(two-headed arrows represent two opposite arcs). All vertices (black, yellow, green, blue) have complexity
5.
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2.4.2 Complexity comparison

What is the most complex architecture among the ones given in Fig. 2.4? How can they be simplified?
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Chapter 3

UML exercises

This chapter proposes small to medium scale exercises on UML. Some of them are by the author, whilst
others have been taken from books (credits are made explicit in each exercise: where no explicit citation
is given, the exercise is to be considered the author’s work).

UML is a graphical language consisting of diagrams of many different types, each referring to a
system (be it a software system or otherwise) seen from a specific point of view. Thus, use case diagrams

illustrate actors and actions of a system without any reference to logic or the temporal sequence of events;
sequence diagrams underline the temporal event flow; state diagrams encode the logical relations among
system components; class diagrams are used to represent the system organization into blocks each of
which includes data and actions relative to those data. Of these diagrams, the former two (use case
and sequence diagrams) are not considered as formal languages but rather as an aid tool to thought
and system organization. The latter (state and class) can be considered as formal languages, although,
really, compilers exist mostly just for class diagrams (taking a graphical description and outputting
corresponding C++ or Java header files). Students should therefore aim at clarity for what concerns use
case and sequence diagram and at formal rigourousness for state and (especially) class diagrams.

UML diagrams can be used as a tool in system design. One usually starts with the simplest type of
diagram, i.e. use case diagrams, to make sure the understanding of actors and actions of the system is
clear. One then proceeds to sequence diagrams, adding a temporal scale to the system events. Next come
state diagrams and finally the closest software representation of the system, the class diagram (there are
more than four types of UML diagrams but in this book we shall limit ourselves to these four types).
Each step is likely to underline system design errors in previous steps, so that the whole process is a
continuous backtrack through use case, sequence, state and class diagrams so that in the end the whole
diagram set presents a consistent system picture. Do not eschew backtracking, correcting and re-thinking
current diagrams, for this is one of the main system design values added by UML. The student’s approach
should absolutely not be “it took me three hours to put together the use case diagram and several days
to compose sequence and state diagrams; and now I’m certainly NOT going to change it just because of
one small inconsistency in the class diagram, which is likely to require me to change the whole thing”.
Usually, one small inconsistency in the class diagram is all it takes for the whole system organization to
fall apart. The point is that without UML the error would have gone unnoticed and likely crept in the
system implementation, with catastrophic consequences.

3.1 Use case diagrams

In this section we give some examples of use case diagrams for various situations. In general use case
diagrams consists of a system (represented by a large box), actors (represented by small stylized men out
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of the box), actions (represented by ellipses within the box) and relations (edges or arcs linking actors
with actions, actors with actors, actions with actions).

3.1.1 Simplified ATM machine

Propose a use case diagram for an ATM machine for withdrawing cash. Make the use case simple yet
informative; only include the major features.

3.1.2 Vending machine

Propose a use case diagram for a vending machine that sells beverages and snacks. Make use of inclusion
and extension associations, mark multiplicities and remember that a vending machine may need technical
assistance from time to time.

3.2 Sequence diagrams

In this section we shall present some easy examples of sequence diagrams. These are similar to two-
dimensional Euclidean planes, the horizontal axis marking labels for a finite set of actors and system
components, and the (downward) vertical axis representing time. Actors and components are usually
derived from a use case diagram. Actions are split into messages going back and forth between actors
and components. Messages are represented by horizontal arrows. There are two types of messages:
synchronous (the initiator of the message is blocked until a return value is sent back from the message
recipient) and asynchronous (the initiator is not blocked and any return value must be carried by a later
message where the initiator is the recipient of the asynchronous message).

3.2.1 The norm of a vector

Consider the following algorithm for computing the norm of a vector.

Class Array {

...

public:

// return the size of the array

int size(void);

// return the index-th component of the array

double get(int index);

...

};

double norm(const Array& myArray) {

double theNorm = 0;

double c = 0;

for(int index = 0; index < myArray.size() - 1; index++) {

c = myArray.get(index);

theNorm = theNorm + c*c;

}

theNorm = sqrt(theNorm);

CHAPTER 3. UML EXERCISES 16
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return theNorm;

}

Write down a sequence diagram illustrating the behaviour of the norm() function.

3.2.2 Displaying graphical objects

Write a sequence diagram for a program that displays Fig. 3.1 on the screen in the order left → right.

Figure 3.1:

3.2.3 Vending machine

Draw a sequence diagram for the vending machine of Sect. 3.1.2.

3.2.4 Boy/girl interaction

A boy takes a fancy to a girl, and wants her to become his girlfriend. Draw a sequence diagram for their
interactions (to avoid any accusation of genderwise discrimination, you can also reverse the roles of boy
and girl).

3.3 State diagrams

In this section we present some elementary exercises on state diagrams. State diagrams are similar to
state automata, and are used to describe the logic behind any state change within a system or a system
component. States are represented by rounded-corner boxes with a label (the state name); a change from
state A to state B is represented by an arrow from A to B. Two types of states, “start” and “end”, are
such that there are no incoming arrows into “start” and no outgoing arrows from “end” states. Arrows
are labelled by the name of the activity that caused the state change.

Another type of state diagram, called activity diagram, emphasizes activities rather than states: ac-
tivity names label the round-cornered boxes, and the state names label the arrows. Apart from “start”
and “end” nodes, activity diagrams also have special “test” nodes represented by small rhombi.

3.3.1 Vending machine

Draw state and activity diagrams for the vending machine described in Sections 3.1.2 and 3.2.3.

CHAPTER 3. UML EXERCISES 17
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3.4 Class diagrams

In this section we present some elementary exercises on class diagrams.

3.4.1 Complex number class

Draw a class diagram for the single class Complex. A Complex object has a private real and an imaginary
part (of type double), and can perform addition, subtraction, multiplication and division by another
complex number.

3.4.2 Singly linked list

Draw a class diagram representing a singly linked list.

3.4.3 Doubly linked list

Draw a class diagram representing a doubly linked list.

3.4.4 Binary tree

Draw a class diagram representing a binary tree.

3.4.5 n-ary tree

Draw a class diagram representing an n-ary tree (a tree with a variable number of children nodes).

3.4.6 Vending machine

Draw a class diagram for the vending machine described in Sect. 3.1.2 and 3.2.3.

CHAPTER 3. UML EXERCISES 18



Chapter 4

Modelling

This chapter groups some modelling exercises, only some of which involve UML.

4.1 The vending machine revisited

Consider the vending machine described in Sect. 3.1.2, 3.2.3 and 3.4.6. The proposed use case diagram,
sequence diagram and class diagram make up for a very poor system modelling indeed. The vending
machine is always thought of as a monolitic entity: this makes the external relationships clear but says
nothing about how to plan and build one. In particular, the monolitic view is incompatible with the fact
that a vending machine is composed of different parts. Given the following list of parts:

1. main controller

2. mechanical robot

3. coin acceptor

4. remote messaging system

5. door

and the fact that 2,3,4,5 can only be interfaced with 1, draw a use case diagram and a sequence diagram
to provide an initial blueprint for the inner workings of a vending machine.

4.2 Mistakes in modelling a tree

Fig. 4.1 describes the class diagram of a tree node, which can be used recursively to build an expression
tree.

Generate the header file and implementation code using Umbrello, then add the implementation of
the only non-obvious functions (getNumberOfChildren and getChildType) as follows:

int TreeNode::getNumberOfChildren ( ) {

// number of children

int nc = 0;

switch(m_operatorLabel) {

19
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«datatype»
TreeNodePtr

+leftChild +rightChild

TreeNode
� operatorLabel : int = 0
� level : int = 0
� leftChild : TreeNodePtr
� rightChild : TreeNodePtr
+ getNumberOfChildren() : int
+ getChildType(childIndex : int = 0, theChildLevel : int = 0) : int

Figure 4.1: The UML class diagram for the TreeNode class.

case 0: // sum

nc = 2;

break;

case 1: // difference

nc = 2;

break;

case 2: // multiplication

nc = 2;

break;

case 3: // division

nc = 2;

break;

case 4: // square

nc = 1;

break;

case 5: // cube

nc = 1;

break;

case 6: // sqrt

nc = 1;

break;

case 10: // number

nc = 0;

break;

default:

break;

}

return nc;

}

int TreeNode::getChildType (int childIndex, int theChildLevel) {

int ret = -1;

// increase the level by one unit

theChildLevel++;

if (childIndex == 0) {

// left child

ret = m_leftChild->getOperatorLabel();

} else if (childIndex == 1) {

// right child

ret = m_rightChild->getOperatorLabel();

}

CHAPTER 4. MODELLING 20
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return ret;

}

Now consider the following main function in the file TreeNode main.cxx:

// TreeNode_main.cxx

#include <iostream>

#include "TreeNode.h"

int main(int argc, char** argv) {

int ret = 0;

// expression tree t: number + number^2

TreeNode t;

t.setOperatorLabel(0);

t.setLevel(0);

t.setLeftChild(new TreeNode);

t.setRightChild(new TreeNode);

t.getLeftChild()->setOperatorLabel(10);

t.getLeftChild()->setLevel(1);

t.getRightChild()->setOperatorLabel(4);

t.getRightChild()->setLevel(1);

t.getRightChild()->setLeftChild(new TreeNode);

t.getRightChild()->getLeftChild()->setOperatorLabel(10);

t.getRightChild()->getLeftChild()->setLevel(2);

// get right child type and level

int theLevel = 0;

int theOperatorLabel = -1;

theOperatorLabel = t.getChildType(1, theLevel);

// expect theOperatorLabel = 4, theLevel = 1;

std::cout << theOperatorLabel << ", " << theLevel << std::endl;

// actual output is 4,0

return ret;

}

Compile the project by typing:

c++ -o TreeNode TreeNode main.cxx TreeNode.cpp

and verify whether the output is as expected (4, 1). If not, why? Is this a bug or a modelling error?

We would now like to code in TreeNode main.cxx a new function that accepts a tree node and returns
the number of children of the root node of the expression tree. Convince yourself that you cannot do this
easily, and explain why. How can you fix this modelling error? Change the UML diagram and the code
accordingly.
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Chapter 5

Mathematical programming
exercises

The mathematical programming formulation language is a very powerful tool used to formalize opti-
mization problems by means of parameters, decision variables, objective functions and constraints. Such
diverse settings as combinatorial, integer, continuous, linear and nonlinear optimization problems can
be defined precisely by their corresponding mathematical programming formulations. Its power is not
limited to its expressiveness, but usually allows hassle-free solution of the problem: most general-purpose
solution algorithms solve optimization problems cast in their mathematical programming formulation,
and the corresponding implementations can usually be hooked into language environments which allow
the user to input and solve complex optimization problems easily. This chapter provides an introduction
(by way of examples) to a mathematical programming software system, called AMPL (A Mathematical
Programming Language) [6] which is interfaced with continuous mixed-integer linear (CPLEX [8]) and
nonlinear solvers. See www.ampl.com for details on downloading and installing the student versions of
AMPL and CPLEX.

5.1 Museum guards

A museum director must decide how many guards should be employed to control a new wing. Budget cuts
have forced him to station guards at each door, guarding two rooms at once. Formulate a mathematical
program to minimize the number of guards. Solve the problem on the map below using AMPL.
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I J
E

D
F

CB
A

Also solve the problem on the following map.
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[P. Belotti, Carnegie Mellon University]

5.2 Mixed production

A firm is planning the production of 3 products A1,A2,A3. In a month production can be active for 22
days. In the following tables are given: maximum demands (units=100kg), price ($/100Kg), production
costs (per 100Kg of product), and production quotas (maximum amount of 100kg units of product that
would be produced in a day if all production lines were dedicated to the product).

Product A1 A2 A3

Maximum demand 5300 4500 5400
Selling price $124 $109 $115

Production cost $73.30 $52.90 $65.40
Production quota 500 450 550

1. Formulate an AMPL model to determine the production plan to maximize the total income.

2. Change the mathematical program and the AMPL model to cater for a fixed activation cost on the
production line, as follows:

Product A1 A2 A3

Activation cost $170000 $150000 $100000

3. Change the mathematical program and the AMPL model to cater for both the fixed activation cost
and for a minimum production batch:

Product A1 A2 A3

Minimum batch 20 20 16

[E. Amaldi, Politecnico di Milano]

5.3 Checksum

An expression parser is a program that reads mathematical expressions (input by the user as strings)
and evaluates their values on a set of variable values. This is done by representing the mathematical
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expression as a directed binary tree. The leaf nodes represent variables or constants; the other nodes
represent binary (or unary) operators such as arithmetic (+, -, *, /, power) or transcendental (sin, cos,
tan, log, exp) operators. The unary operators are represented by a node with only one arc in its outgoing
star, whereas the binary operators have two arcs. The figure below is the binary expression tree for
(x + 2)ex.
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The expression parser consists of several subroutines.

• main(): the program entry point;

• parse(): reads the string containing the mathematical expression and transforms it into a binary
expression tree;

• gettoken(): returns and deletes the next semantic token (variable, constant, operator, brackets)
from the mathematical expression string buffer;

• ungettoken(): pushes the current semantic token back in the mathematical expression string
buffer;

• readexpr(): reads the operators with precedence 4 (lowest: +,-);

• readterm(): reads the operators with precedence 3 (*, /);

• readpower(): reads the operators with precedence 2 (power);

• readprimitive(): reads the operators of precedence 1 (functions, expressions in brackets);

• sum(term a, term b): make a tree +
ր a
ց b

;

• difference(term a, term b): make a tree −
ր a
ց b

;

• product(term a, term b): make a tree ∗
ր a
ց b

;

• fraction(term a, term b): make a tree /
ր a
ց b

;

• power(term a, term b): make a tree ∧
ր a
ց b

;

• minus(term a): make a tree − → a;

• logarithm(term a): make a tree make a tree log → a;
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• exponential(term a): make a tree make a tree exp → a;

• sine(term a): make a tree make a tree sin → a;

• cosine(term a): make a tree make a tree cos → a;

• tangent(term a): make a tree make a tree tan → a;

• variable(var x): make a leaf node x;

• number(double d): make a leaf node d;

• readdata(): reads a table of variable values from a file;

• evaluate(): computes the value of the binary tree when substituting each variable with the cor-
responding value;

• printresult(): print the results.

For each function we give the list of called functions and the quantity of data to be passed during the
call.

• main: readdata (64KB), parse (2KB), evaluate (66KB), printresult(64KB)

• evaluate: evaluate (3KB)

• parse: gettoken (0.1KB), readexpr (1KB)

• readprimitive: gettoken (0.1KB), variable (0.5KB), number (0.2KB), logarithm (1KB), exponential
(1KB), sine (1KB), cosine (1KB), tangent (1KB), minus (1KB), readexpr (2KB)

• readpower: power (2KB), readprimitive (1KB)

• readterm: readpower (2KB), product (2KB), fraction (2KB)

• readexpr: readterm (2KB), sum (2KB), difference (2KB)

• gettoken: ungettoken (0.1KB)

Each function call requires a bidirectional data exchange between the calling and the called function.
In order to guarantee data integrity during the function call, we require that a checksum operation be
performed on the data exchanged between the pair (calling function, called function). Such pairs are
called checksum pairs. Since the checksum operation is costly in terms of CPU time, we limit these
operations so that no function may be involved in more than one checksum pair. Naturally though, we
would like to maximize the total quantity of data undergoing a checksum.

1. Formulate a mathematical program to solve the problem, and solve the given instance with AMPL.

2. Modify the model to ensure that readprimitive() and readexpr() are a checksum pair. How
does the solution change?
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5.4 Network Design

Orange is the unique owner and handler of the telecom network in the figure below.
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The costs on the links are proportional to the distances d(i, j) between the nodes, expressed in units of
10km. Because of anti-trust regulations, Orange must delegate to SFR and Bouygtel two subnetworks
each having at least two nodes (with Orange handling the third part). Orange therefore needs to design
a backbone network to connect the three subnetworks. Transforming an existing link into a backbone
link costs c = 25 euros/km. Formulate a mathematical program to minimize the cost of implementing a
backbone connecting the three subnetworks, and solve it with AMPL. How does the solution change if
Orange decides to partition its network in 4 subnetworks instead of 3?

5.5 Error correcting codes

A message sent by A to B is represented by a vector z = (z1, . . . , zm) ∈ R
m. An Error Correcting Code

(ECC) is a finite set C (with |C| = n) of messages with an associated function ρ : C → R, such that for
each pair of distinct messages x, y ∈ C the inequality ||x− y|| ≥ ρ(x) + ρ(y) holds. The correction radius

of code C is given by

RC = min
x∈C

ρ(x),

and represents the maximum error that can be corrected by the code. Assume both A and B know the
code C and that their communication line is faulty. A message xA ∈ C sent by A gets to B as xB 6∈ C
because of the faults. Supposing the error in xB is strictly less than RC , B is able to reconstruct the
original message xA looking for the message x ∈ C closest to xB as in the figure below.

transmission

yy

≥ ρ(x) + ρ(y)

A B
x = xA

x = xA

xB

C = {x, y}
ρ(y)

ρ(x)

nearest message
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Formulate a (nonlinear) mathematical program to build an ECC C of 10 messages in R
12 (where all

message components are in [0, 1]) so that the correction radius is maximized.

5.6 Selection of software components

In this example we shall see how a large, complex Mixed-Integer Nonlinear Programming (MINLP)
problem (taken from [12]) can be reformulated to a Mixed-Integer Linear Programming (MILP) problem.
It can be subsequently modelled and solved in AMPL.

Large software systems consist of a complex architecture of interdependent, modular software compo-
nents. These may either be built or bought off-the-shelf. The decision of whether to build or buy software
components influencese the cost, delivery time and reliability of the whole system, and should therefore
be taken in an optimal way. Consider a software architecture with n component slots. Let Ii be the set
of off-the-shelf components and Ji the set of purpose-built components that can be plugged in the i-th
component slot, and assume Ii ∩ Ji = ∅. Let T be the maximum assembly time and R be the minimum
reliability level. We want to select a sequence of n off-the-shelf or purpose-built components compatible
with the software architecture requirements that minimize the total cost whilst satisfying delivery time
and reliability constraints.
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Chapter 6

Log analysis architecture

Some firms currently handle project management in an innovative way, letting teams interact freely with
each other whilst trying to induce different teams and people to converge towards the ultimate project
goal. In this “liberal” framework, a continual assessment of team activity is paramount. This can be
obtained by performing an analysis of the amount of read and write access of each team to the various
project documents. Read and write document access is stored in the log files of the web server managing
the project database. Such firms therefore require a software package which reads the webserver log files
and displays the relevant statistical analyses in visual form on a web interface.

Propose a detailed software architecture consistent with the definitions, goals and requirements listed
in Sections 6.1, 6.2, 6.3.

6.1 Definitions

An actor is a person taking part in a project. A tribe is a group of actors. A document is an electronic
document uploaded to a central database via a web interface. Documents are grouped according to their
semantical value according to a pre-defined map which varies from project to project. There are therefore
various semantical zones (or simply zones) in each project: a zone can be seen as a semantically related
group of documents.

A visual map of document accesses concerning a set of tribes T and a set of zones Z is a bipartite
graph BZ

T
= (T,Z,E) with edges weighted by a function w : E → N where an edge e = {t, z} exists if the

tribe t has accessed documents in the zone z, and w(e) is the number of accesses. There may be different
visual maps for read or write accesses, and a union of the two is also envisaged.

A timespan is a time interval τ̄ = [s, e] where s is the starting time and e is the ending time. Visual
maps clearly depend on a given timespan, and may therefore be denoted as BZ

T
(τ). For each edge e ∈ E

we can draw the coordinate time graph of w(e) changing in function of time (denoted as we(τ) in this
case).

6.2 Software goals

The log scanning software overall user goals are:

1. given a tribe t and a timespan τ̄ , display a per-tribe visual map BZ

{t}(τ̄);
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2. given a zone z and a timespan τ̄ , display a per-zone visual map B
{z}
T

(τ̄);

3. given a timespan τ̄ , display a global visual map BZ
T

(τ̄);

4. given a timespan τ̄ and an edge e = {t, z} in BZ
T

(τ̄), display a time graph of w(e).

The per-tribe and per-zone visual maps can be extended to the per-tribe-pair, per-tribe-triplet, per-zone-
pair, per-zone-triplet cases.

6.3 Requirements

The technical requirements of the software can be subdivided into three main groups: (a) user interaction,
(b) log file reading, (c) computation and statistics.

6.3.1 User interaction

All user interaction (input and output) occurs via a web interface. This will:

1. configure the desired visual map (or time graph) according to user specification (input action);

2. delegate the necessary computation to an external agent (a log database server) and obtain the
results (process action);

3. present the visual map or time graph in a suitable graphical format (output action).

6.3.2 Log file reading

Log file data will be gathered at pre-definite time intervals by a daemon, parsed according to the log file
format, and stored in a database. The daemon will:

1. find the latest entries added the log files since last access (input action);

2. parse them according to the log file format (process action);

3. write them to suitable database tables (output action).

6.3.3 Computation and statistics

Actually counting the relevant numbers and types of accesses will be carried out by a database engine.
This will receive a query, perform it, and output the desired results.
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Chapter 7

A search engine for projects

This large-scale example comes from an actual industrial need. An industry manager once mentioned to
me how nice it would be to have a search engine for projects, and how easy their work would be if they
were able to come up with relevant past data “at a glance” whenever a decision on a new project has
to be taken. Although this example does not use UML (although it does use some diagrams inspired to
UML), it employs some novel, partially automatic graph reformulation techniques for manipulating the
software architecture graph. This example also shows how optimization techniques and mathematical
programming are useful tools in software architecture.

7.1 The setting

T-Sale is a large multinational firm which is often employed by national governments and other large in-
stitutions to provide very large-scale services. They will secure contracts by responding to the prospective
customers’ public tenders with commercial offers that have to be competitive. The upper management
of T-Sale noticed some inefficiencies in the way these commercial offers are put together, in that very
often the risk analysis are incorrect. They decided that they could improve the situation by trying to
use stored information about past projects. More precisely, T-Sale keeps a detailed project database
which allows one to see how an initial commercial offer became the true service that was eventually sold
to the customer. The management hope that the preliminary customer requirements contained in the
public tender may be successfully matched with the stored initial requirements to draw some meaningful
inference on how the project actually turned out in the past.

T-Sale wants to enter into a contract with a smaller firm, called VirtualClass, to provide the following
service, which was expressed in very vague terms from one senior vice-president of T-Sale to VirtualClass’
sales department.

We want a sort of “Google” for starting projects. We want to find all past projects which were

similar at the initial stage and we want to know how they developed; this should give us some

idea of future development of the current project.

VirtualClass must estimate the cost and time required to complete this task, and make T-Sale a compet-
itive offer. Should T-Sale accept the offer, VirtualClass will then have to actually plan and implement
the system. Note:

1. The commercial offer needs to be drawn quickly. The associated risks should be assessed. It should
be as close as possible to the delivered product.
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2. In general, the software engineering team should follow the “V” development process (left branch)
for planning the system, as shown in Fig. 7.1. We shall limit the discussion to the leftmost branch
of the “V” process.

Analysis of needs
Functional specs

Architecture
Technical specs

Implementation
Integration

Validation
Tests

Deployment
Maintenance

Figure 7.1: The “V” development process.

7.2 Initial offer

7.2.1 Kick-off meeting

Aims of the meeting:

1. Formalize the customer requirements as much as possible

(a) What is the deliverable, i.e. what is actually sold to the customer?

(b) What is the first coarse “common-sense” system breakdown?

2. What data is needed from T-Sale’s databases?

7.2.2 Brainstorming meeting

Aims of the meeting:

1. propose ideas for a system plan with sufficient details for a rough cost estimate;

2. collect these ideas in a formal document;

3. decide on a sexy project name.

7.2.3 Formalization of a commercial offer

Aims of the meeting:

1. write a document (for internal use) which gives a rough overview of the system functionalities and
of the system breakdown into sub-systems and interdependencies;

2. write a document (for internal use) with projected sub-system costs (complexity) and a rough risk
assessment;

3. write a commercial offer to be sent to T-Sale with functionalities and the total cost.
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7.3 System planning

We shall now suppose that T-Sale accepted VirtualClass’ offer and is now engaged in a contract. The
next step is to actually plan the system. The contract clearly states that T-Sale is under obligation to
provide T-Sale with database details, which are shown in Fig. 7.2.

7.3.1 Understanding T-Sale’s database structure

Aims of the meeting: analysis and documentation of T-Sales’ database structure. Note that the project’s
condition contains information about whether the project was a success or a failure, and other overall
properties. Make sure every software engineer understands the database structure by answering the
following questions:

1. How do we find the main occupation of an employee?

2. How do we find the expertises of an employee?

3. How do we find the condition of a project?

4. How do we find how many times a project was changed?

5. How do we find whether a project was paid for on time or late?

6. How do we find whether a customer usually pays on time or late?

7. How do we verify that the cost of all phases in a project sums up to the total project cost?

8. How do we evaluate the cost in function of time during the project’s lifetime?

9. How do we discriminate between the phase cost due to human resources and the cost due to other
reasons?

10. How do we find the expertises (with their levels) that were necessary in a given project?

11. How do we find out the abilities and skills (with their levels) that were necessary in a given project?

12. How do we find out which teams were most successful?

13. How do we find out the most dangerous personal incompatibilities?

7.3.2 Brainstorming: Ideas proposal

The commercial offer quotes: “Given some meaningful key-words or other well-defined indicators in the
description of a new project, we want to classify it by some quantitative indices [. . . ]”. Such concepts as
“meaningful key-words or other well-defined indicators” and “quantitative indices” are not well-defined,
and therefore pose the most difficult problem to be solved in order to arrive at a software architecture.
In order to solve the problem, a brainstorming meeting is called.

Aim of the meeting:

1. find a set of well-defined new project indicators which are suitable for searching similar terms in
the T-Sale database;

2. find a set of quantitative indices to be computed using the T-Sale database information, which
should shed light on the future life cycle of the new project;

3. document all ideas spawned during the meeting in a formal document.
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Figure 7.2: T-Sales’ database structure.
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7.3.3 Functional architecture

Propose a functional architecture for the software. This should include the main software components and
their interconnections, as well as a break-down of the architecture into sub-parts so that development
teams can be formed and assigned to each project part. Since system-wide faults arise from badly
interacting teams, it is naturally wise to minimize the amount of team interaction needed.

7.3.4 Technical architecture

Propose a technical architecture detailing the inner working of each system component, as well as the
system as a whole. This should include a class diagram and component APIs (application programming
interfaces).
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