

INF421, Lecture 2 Queues, BFS Hashing

Leo Liberti

LIX, École Polytechnique, France

Course

- Objective: teach notions AND develop intelligence
- **Evaluation**: TP noté en salle info, Contrôle à la fin. Note: $\max(CC, \frac{3}{4}CC + \frac{1}{4}TP)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
- Books:
 - 1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
 - 2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
 - 3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
 - 4. Ph. Baptiste & L. Maranget, *Programmation et Algorithmique*, Ecole Polytechnique (Polycopié), 2006
- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

Lecture summary

- Queues and BFS: motivating example
- Queues
- BFS
- Hashing

Motivating example

h:50

Bus network with timetables

Α		В		С	
1	h:00	1	h:00	2	h:10
2	h:10	4	h:20	3	h:20
3	h:30	5	h:40	5	h:30
	D		E		F
4	D h:20	2	h:05	3	F h:25
4 5				3 4	<u> </u>

Find a convenient itinerary from 1 to 6, leaving at h:00?

h:30

h:40

The event graph

1/00

1/00←

2/10← **4/20**

4/20 3/20 3/30

4/20← **3/20 3/30**

3/20← 3/30 4/30 5/40

<u>3/30</u>← 4/30 | 5/40 | 3/25 | 5/30

4/30 | 5/40 | 3/25 | 5/30

4/30← **5/40 3/25 5/30**

5/40 | 3/25 | 5/30 | 6/40 | found itinerary $1\rightarrow 6$ arriving at h:40

Retrieving the path

- Duration → actual path?
- Store nodes out of queue with predecessors

pred	node
-	1/00
1/00	2/10
1/00	4/20
2/10	3/20
2/10	3/30
4/20	4/30
4/30	6/40

■ Retrieve path backwards: 6/40→4/30→4/20→1/00

This ain't the fastest

Suppose there is a bus G with timetable $3/25 \rightarrow 6/30$

What did we find?

- Itinerary with fewest changes
- "bus, waiting, bus" counts as two changes, not one
- Proof requires formalization (algorithm)
- Describe "queue" as a data structure

Queues

Queue operations

- Basic queue operations
 - pushBack: insert element at end of queue
 - popFront: retrieve and delete element at front of queue
 - isEmpty: is queue empty?
 - size: return queue size
- Need these operations to be O(1)

Circular arrays

- ullet Implementation using a circular array q [Mehlhorn & Sanders' book]
- Uses modular arithmetic (usually pretty fast)

- $m{g}_t = ot$ tail of queue
- circular array: array with modular index arithmetic

Size and emptiness

• is Empty(): if (t = h) then return true; else return false;

Size and emptiness

- is Empty(): if (t = h) then return true; else return false;
- size(): return $(t h + n) \mod n$;

Read front of queue

```
first() {
  return q_h;
                                 n
                                        q_0
                                                    d_1
                                 q_t
                                               d_2
                                        d_3
```


Read and delete front of queue

```
p = q_h;
h = (h+1) \bmod n;
return p;
}
```


Insert at the end of queue

```
\begin{aligned} & \mathsf{pushBack}(d) \; \{ \\ & \mathsf{assert}(\mathtt{size}() < n) \\ & q_t = d; \\ & t = (t+1) \bmod n; \\ & q_t = \bot; \\ \} \end{aligned}
```


Insert at the end (case t = n)

$$(t = (t+1) \bmod n \land t = n-1) \Rightarrow t = 0$$

BFS

BFS: the idea

Explore nodes of a network starting from s

- start with pushBack(s)
- at any iteration,
 - 1. u = popFront()
 - 2. for each neighbour v of u,
 - 3. if v is the target, stop
 - 4. if v not already seen, pushBack(v)

The BFS algorithm

Input: set V, binary relation \sim on V, and $s \neq t \in V$

```
1: (Q, <) = \{s\}; R = \{s\};
 2: while Q \neq \emptyset do
 3: u = \min_{\boldsymbol{\mathcal{C}}} Q; Q \leftarrow Q \setminus \{u\};
 4: for v \in V \ (v \sim u \land v \not\in R) do
 5: if v=t then
         return "t reachable";
 7: end if
 8: Q \leftarrow Q \cup \{v\}, set v = \max_{Q} Q;
 9: R \leftarrow R \cup \{v\};
10: end for
11: end while
12: return "t unreachable";
```


The order on Q

- The ordered set Q is implemented as a queue
- Every $v \in V$ enters Q as the \max element (i.e., the last)
- We only read (and remove) the minimum element of Q (i.e. the first)
- Every other element of Q is never touched
- The relative order of a consecutive subsequence u_1, \ldots, u_h of Q is unchanged
- Also, by the test $v \notin R$ at Step 4, we have: Thm. 1

No element of V enters Q more than once

A node hierarchy

• Consider function $\alpha: V \to \mathbb{N}$:

at Step 1, let
$$\alpha(s) = 0$$

at Step 8, let
$$\alpha(v) = \alpha(u) + 1$$

- Ranks $v \in V$ by distance from s in terms of "arrows"
- **●** E.g. if $s \to u$, then u's distance from s is 1 if $s \to u \to v$, v's distance from s is 2

The BFS, again

```
1: (Q, <) = \{s\}; R = \{s\};
 2: \alpha(s) = 0;
 3: while Q \neq \emptyset do
 4: u = \min_{\langle Q; Q \leftarrow Q \setminus \{u\};
      for v \in V \ (v \sim u \land v \not\in R) do
        \alpha(v) = \alpha(u) + 1;
 6:
 7: if v=t then
          return "t reachable";
 9: end if
10: Q \leftarrow Q \cup \{v\}, set v = \max_{<} Q;
11: R \leftarrow R \cup \{v\};
12: end for
13: end while
14: return "t unreachable";
```


Basic results

We have the following results (try and prove them):

Thm. 2

If (s, v_1, \ldots, v_k) is any itinerary found by BFS, $\alpha(v_k) = k$

Thm. 3

If $\alpha(u) < \alpha(v)$, then u enters Q before v does

Thm. 4

No itinerary found by BFS has repeated elements

Thm. 5

The function α is well defined

Fewest changes

- Aim to prove that BFS finds an itinerary with fewest changes
- Remark: #changes in an itinerary = #nodes/edges Thm.

BFS finds a path with fewest edges

Idea of proof: by contradiction

 α

Finding all shortest itineraries

- Delete Steps 7-9
- All elements in V enter and exit Q
- ullet Finds shortest itineraries from s to all elements of V

WARNING: BFS will *not* find shortest paths in a weighted graph unless all the arc costs are 1

INF421 2012/2013, Lecture 1 - p. 27/46

Hashing

Motivating example

- The phonebook with n entries
- Each page corresponds to a character
- Page with character k contains all names beginning with k
- Easy to search:
 - 26 chars in alphabet: O(1)
 - L lines per page, L does not depend on n: O(1)
- Search is O(1)

The idea

- lacksquare K a very large set of keys; U: a set of objects; $\tau:K\to U$: a table
- Assume K too large to store, but $dom \tau$ is small
- Find a function $h:K\to I$ with $I=\{0,1,\dots,p-1\}$ and $|I|\approx |U|$, then store $u=\tau(k)$ at $\sigma(i)$ where i=h(k)

The idea

- lacksquare K a very large set of keys; U: a set of objects; $\tau:K\to U$: a table
- Assume K too large to store, but $\operatorname{dom} \tau$ is small
- Find a function $h:K\to I$ with $I=\{0,1,\dots,p-1\}$ and $|I|\approx |U|$, then store $u=\tau(k)$ at $\sigma(i)$ where i=h(k)

The idea

- lacksquare K a very large set of keys; U: a set of objects; $\tau:K\to U$: a table
- **A**ssume K too large to store, but $dom \tau$ is small
- Find a function $h:K\to I$ with $I=\{0,1,\dots,p-1\}$ and $|I|\approx |U|$, then store $u=\tau(k)$ in array element $\sigma(i)$ where i=h(k)

Why not a list?

- Consider list of pairs (key, record)
- Finding is O(n)
- Time-inefficient

Why not an array?

- Consider array of records indexed by keys
- Finding is O(1)
- Suppose keys are {1, 16, 1643, 1094382}
- Need to allocate space for 1094382 records, just need 4
- Space-inefficient

Problem setting

- ullet K=keys, U=records
- Associate some keys with records
- Get an injective table function $\tau: K \to U$, with $\operatorname{dom} \tau \subsetneq K$
- Problem:

Given a key $k \in K$, determine whether $k \in \text{dom } \tau$

Hash tables

- Consider index set I s.t. $|I| \approx |\operatorname{dom} \tau| \ll |K|$
- **•** Hash table: function $\sigma:I\to U$
- **Hash function**: function $h: K \to I$ s.t. $\tau = \sigma \circ h$

- ightharpoonup ightharpoonup Store u in σ at position h(k)
- Get $\sigma(h(k)) = \tau(k) = u$

Collisions

- By above, $k \in \text{dom } \tau \Leftrightarrow h(k) \in I$
- Scheme only works if h is injective
- If not, get collisions (see phonebook)
- If collisions, let $\sigma(h(k)) = \text{all } u$'s with equal h(k)

Last nagging doubt

- Need to store $h: K \to I$ somewhere
- List is time-inefficient
- Array is space-inefficient
- Are we simply shifting the problem?

The magic

No need to store *h* explicitly

- Define h(k) using a "short description"
- A formula applied to the description of k
- E.g. phonebook:
 - let k = Leo
 - ASCII code: L = 76, e = 101, o = 111
 - h(k) = 76 + 101 + 111 = 288 collisions, h(HHHHH) = 288 too
 - $h(k) = 76 \times 113^2 + 101 \times 113 + 111 = 981968$ no collisions

Collisions are likely

- Most functions are not injective
- $|I|^{|K|}$ functions from $K \to I$
- If |I| < |K|, none is injective
- If $|I| \ge |K|$:
 - ullet |I| ways to choose the image of the first element of K,
 - |I| 1 ways to choose the second, and so on
 - ullet get $\left(egin{array}{c} |I| \ |K| \end{array}
 ight)$ injective functions K o I
- If |K| = 31 and |I| = 41, there are around 10^{50} functions, only 10^{43} of which are injective (one in ten million: rare)

This calculation by D. Knuth

Chaining

Deal with collisions

 σ

- ullet Store all records with same hash k in a <u>list</u>
- Store list at h(k)
- Example:

$$h(\mathbf{a}) = h(\mathbf{f}) = 0$$

$$h(\mathbf{p}) = h(\mathbf{b}) = h(\mathbf{h}) = 1$$

$$h(\mathbf{m}) = 2$$

⊥: not_found

Finding with collisions

Finding in a hash table with collisions:

```
\begin{array}{l} & \text{if } |\sigma(h(k))| = 0 \text{ then} \\ & \text{return not_found} \\ & \text{else if } |\sigma(h(k))| = 1 \text{ then} \\ & \text{return } \sigma(h(k)) \\ & \text{else} \\ & \text{return } \sigma(h(k)) \text{.find } (k) \\ & \text{end if} \end{array}
```

Reduce collisions:

Injective or "almost injective" hash functions

Good hash functions

- In general, consider data as number sequences (k_1, \ldots, k_ℓ)
- Consider any number sequence $a = (a_1, \ldots, a_k)$
- Let p be the smallest prime $\geq |U|$
- The following hash function family is almost injective

$$h_a(k) = \sum_{j \le \ell} a_j k_j \pmod{p}$$

Choice of a can make a difference

Complexity: worst-case

Assume :

- length of key k is O(1) w.r.t. $n = |\tau|$
- hash function evaluate in O(1) w.r.t. n

Worst case :

- all keys stored in same sequence $\sigma(i)$: get O(n)

Complexity: average case

Assume

- probability that h(k) = h(k') for $k \neq k'$: $\frac{1}{|I|}$
- this probability is independent of k, k'
- L_k : random variable for $|\sigma(h(k))|$
- Scanning $\sigma(h(k))$: $O(\mathsf{E}(L_k))$
- $X_{k\ell}$: random indicator variable, $X_{k\ell} = 1$ if $h(k) = h(\ell)$, 0 othw.

$$L_k = \sum_{u \in \operatorname{ran} \tau} X_{k\ell}$$

$$\mathsf{E}(L_k) = \sum_{u \in \operatorname{ran} \tau} \mathsf{E}(X_{k\ell})$$

$$= \sum_{u \in \operatorname{ran} \tau} \frac{1}{|I|} = \frac{|\tau|}{|I|} = \alpha$$

Find, insert, remove in $O(1 + \alpha)$

Application: comparing objects

- Objects can occupy lots of memory
- ullet How to test a=b efficiently?
- Byte comparison: $O(\min(|a|,|b|))$, inefficient
- Test a.hashCode() ==b.hashCode() instead, O(1)
- Java's hashCode() function is good
- Small chance of collisions
- ...but chance nonetheless!
- Could have equal hashcodes but different objects
- If hashcodes are different, objects are different

Application: making \$\$

- Finding good hash functions is hard
- Requires lots of CPU time
- This computer work is worth some money

```
http://bitcoin.org/
```

Moreover, it prevents spam

```
http://hashcash.org/
```


End of lecture 2