INF421, Lecture 2
Queues, BFS
Hashing

Leo Liberti

LIX, Ecole Polytechnique, France

o b

Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrble a la fin. Note:
max(CC, 2CC + 1TP)

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de I’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique
(Polycopié), 2006

Website: www.enseignement .polytechnique.fr/informatique/INF421
Blog: inf421.wordpress.com

Contact. liberti@lix.polytechnique. fr (e-mail subject: INF421)

-

|

INF421 2012/2013, Lecture 1 —p. 2/46

Lecture summary

Queues and BFS: motivating example
Queues
BFS

Hashing

© o o o

o |

INF421 2012/2013, Lecture 1 — p. 3/46

Motivating example

Bus network with timetables

h:00
h:10
h:30

D

h:20
h:40
h:50

Find a convenient itinerary from 1 to 6, leaving at h:007?

h:00
h:20
h:40

E

h:05
h:10
h:30

h:10
h:20
h:30

F

h:25
h:30
h:40

-

|

INF421 2012/2013, Lecture 1 —p. 5/46

The event graph

B/20

L

ECOLE
POLYTECHNIQUE

red arrows: waiting for next bus

INF421 2012/2013, Lecture 1 — p. 6/46

1/00

4/20

4/20

3/20

3/20

3/30

A Finding a good itinerary

B/20

. 3/30<]4/30[5/40]3/25[5/30 o

INF421 2012/2013, Lecture 1 —p. 7/46

m Finding a good itinerary

B/20

~ [4/30]5/40(3/25]5/30 -

5/40

Finding a good itinerary

B/20

5/40

found itinerary 1—6 arriving at h:40 J

INF421 2012/2013, Lecture 1

7/46

o

Duration — actual path?

pred

Retrieving the path

® Store nodes out of queue with predecessors

node

1/00
1/00
2/10
2/10
4/20
4/30

1/00
2/10
4/20
3/20
3/30
4/30
6/40

Retrieve path backwards: 6/40—4/30—4/20—1/00

|

INF421 2012/2013, Lecture 1 —p. 8/46

P This ain’t the fastest

f Suppose there is a bus G with timetable 3/25 — 6/30 T

B/20

A/10

3/25 is still in the queue (

G/5

B/20

5/40

3/25

5/30

6/40

D/10

) at termination, can’t reach 6/30

INF421 2012/2013, Lecture 1 —p. 9/46

What did we find?

Itinerary with fewest changes

‘bus, waiting, bus” counts as two changes, not one

Proof requires formalization (algorithm)

© o o @

Describe “queue” as a data structure

o |

INF421 2012/2013, Lecture 1 —p. 10/46

T
pYL
=

ECOLE
POLYTECHNIQUE

Queues

INF421 2012/2013, Lecture 1 —p. 11/46

Queue operations

Basic queue operations T
s pushBack: insert element at end of queue

s popFront: retrieve and delete element at front of
queue

s 1sEmpty: IS queue empty?
s size:return queue size
Need these operations to be O(1)

o |

INF421 2012/2013, Lecture 1 —p. 12/46

Circular arrays

|7.0 Implementation using a circular array ¢ [Mehihom & Sanders’ book] T
Uses modular arithmetic (usually pretty fast)

® ,: head of
queue

® 4 = | tail of
queue

® 4, unused for
0<i< hand
t<i1<n

® circular array: ar-
ray with modular

index arithmetic

INF421 2012/2013, Lecture 1 —p. 13/46

Size and emptiness

-

® isEmpty(): if (t = h) then return true; else return false;

|

INF421 2012/2013, Lecture 1 —p. 14/46

Size and emptiness

-

® isEmpty(): if (t = h) then return true; else return false;

® size(): return (t — h + n) mod n;

INF421 2012/2013, Lecture 1 —p. 14/46

n Read and delete front of queue

=

popFront() {

P = qh;
h = (h+ 1) mod n;
return p;

}

) Insert at the end of queue

POLYTECHNIQUE

pushBack(d) {

assert(size() <n)
gt = d;

t=(t+ 1) mod n;
q = L;

}

n Insert at the end (case ¢t = n)

POLYTECHNIQUE

(t=(t+1)modnAt=n—1)=t=0

e,

ECOLE
POLYTECHNIQUE

BES

INF421 2012/2013, Lecture 1 —p. 19/46

BFS: the idea

Explore nodes of a network starting from s

start with pushBack(s)

at any iteration,
1. u = popFront()
2. for each neighbour v of u,
3. If v is the target, stop
4. If v not already seen, pushBack(v)

o |

INF421 2012/2013, Lecture 1 —p. 20/46

The BEFS algorithm

f.o Input: set V, binary relation ~onV,and s #t eV T

(@, <) ={s}; R={s};
while) 4 @ do
u=mine Q; Q + Q ~{u};
forvreV (v~uAv ¢ R)do
if v =t then
return “t reachable”;
end if
Q < QU {v}, set v = max. Q;
R+ RU{v};
10: end for
11: end while
12: return “¢ unreachable’;

o |

INF421 2012/2013, Lecture 1 —p. 21/46

N RN

©

The order on ()
f.o The ordered set () is implemented as a queue T

#® Every v € V enters Q as the maximum element (i.e. , the
last)

#» We only read (and remove) the minimum element of)
(i.e. the first)

Every other element of) is never touched

The relative order of a consecutive subsequence
ui,...,up of Q is unchanged

o Also, by the test v € R at Step 4, we have:
Thm. 1

No element of V' enters () more than once

o |

INF421 2012/2013, Lecture 1 — p. 22/46

A node hierarchy

Consider function o : V — N: T
at Step 1, let a(s) =0
at Step 8, let a(v) = a(u) + 1
Ranks v € V by distance from s in terms of “arrows”

#® E.g.if s = u, then u’s distance from s is 1
If s = u — v, v's distance from s is 2

o |

INF421 2012/2013, Lecture 1 —p. 23/46

The BEFS, again

10 (Q, <) = {s}; R={s}; N
2: a(s) =0;

3: while) # @ do

4: uw=minc Q; Q + Q ~ {u};

5. forveV (v~uAv ¢ R)do
6: a(v) = a(u) + 1;

7: if v =t then

8: return “t reachable”:

9: end if
10: Q +— QU {v}, set v = max. Q;
11: R+ RU{v};
12: end for

13: end while
. return “¢ unreachable”: J

P

INF421 2012/2013, Lecture 1 — p. 24/46

Basic results

fWe have the following results (try and prove them):
Thm. 2

If (s,v1,...,v) IS @ny itinerary found by BFS, a(v;) = k&
Thm. 3

If a(u) < a(v), then u enters @ before v does

Thm. 4
No itinerary found by BFS has repeated elements

Thm. 5
The function « is well defined

o |

INF421 2012/2013, Lecture 1 — p. 25/46

Fewest changes

f.o Aim to prove that BFS finds an itinerary with fewest changes T

Remark: #changes in an itinerary = #nodes/edges
Thm.

BFS finds a path with fewest edges

Idea of proof:
by contradiction

found by BFS

L Q 0 1 14 h—1 erich

|

INF421 2012/2013, Lecture 1 — p. 26/46

. Finding all shortest itineraries

f’ Delete Steps 7-9 T
o All elements in V enter and exit)

#® Finds shortest itineraries from s to all elements of V

WARNING: BFS will not find shortest paths in a
weighted graph unless all the arc costs are 1

o |

INF421 2012/2013, Lecture 1 —p. 27/46

T
pYL
=

ECOLE
POLYTECHNIQUE

Hashing

INF421 2012/2013, Lecture 1 —p. 28/46

Motivating example

The phonebook with n entries
Each page corresponds to a character

Page with character k contains all names beginning
with &

Easy to search:
s 26 chars in alphabet: O(1)
s L lines per page, L does not depend on n: O(1)

Searchis O(1)

o |

INF421 2012/2013, Lecture 1 — p. 29/46

The idea

® K avery large set of keys; U: a set of objects; 7 : K — U: a table
K

9

|

|

INF421 2012/2013, Lecture 1 — p. 30/46

The idea

ECOLE
POLYTECHNIQUE

=

® K avery large set of keys; U: a set of objects; 7 : K — U: a table

® Assume K too large to store, but dom 7 is small
9

|

|

INF421 2012/2013, Lecture 1 — p. 30/46

The idea

ool

K avery large set of keys; U: a set of objects; 7 : K — U: atable
Assume K too large to store, but dom 7 is small

Find a function h : K — I with I = {0,1,...,p — 1} and |I| = |U|, then store

u = 7(k) in array element o (i) where ¢ = h(k)

|

INF421 2012/2013, Lecture 1 — p. 30/46

Why not a list?

o Consider list of pairs (key, record)
Finding is O(n)
o Time-inefficient

o |

INF421 2012/2013, Lecture 1 —p. 31/46

Why not an array?

Consider array of records indexed by keys

Finding is O(1)

Suppose keys are {1, 16, 1643, 1094382}

Need to allocate space for 1094382 records, just need 4
Space-inefficient

© o o o @

o |

INF421 2012/2013, Lecture 1 —p. 32/46

Problem setting

-

K =keys, U =records
Associate some keys with records
Get an injective table function T : K — U, with dom 7 C K

e o o o

Problem:
Given a key k € K, determine whether k € dom 1

o |

INF421 2012/2013, Lecture 1 —p. 33/46

Hash tables

Consider index set [s.t. |I| ~ |dom 7| < |K]|
Hash table: functiono : I — U
Hash function: function h: K - Ist. r=00h

K 7 U
o,
I
= Store u in ¢ at position h(k)
Geto(h(k)) =7(k) =u

|

INF421 2012/2013, Lecture 1 —p. 34/46

Collisions

By above, £k € domT < h(k) €

Scheme only works if is injective

If not, get collisions (see phonebook)

If collisions, let o(h(k)) = all v's with equal h(k)

© o o o

o |

INF421 2012/2013, Lecture 1 —p. 35/46

Last nagging doubt

Need to store h : K — I somewhere
List is time-inefficient
Array is space-inefficient

© o o o

Are we simply shifting the problem?

o |

INF421 2012/2013, Lecture 1 — p. 36/46

The magic

- No need to store h explicitly -

Define h(k) using a “short description”
A formula applied to the description of &

o E.g. phonebook:
s letk =Leo
s ASCIllcode: L ="76,e =101,0 =111
o h(k) =76+ 101 + 111 = 288
collisions, h(HHHH) = 288 too

o h(k)="76x 1132 + 101 x 113 + 111 = 981968
no collisions

o |

INF421 2012/2013, Lecture 1 —p. 37/46

Collisions are likely

Most functions are not injective

1'% functions from K — T

f|I] <|K|, none is injective

fII| > |K]:

» |I| ways to choose the image of the first element of K,

o o o o

» |I| — 1 ways to choose the second, and so on

1
» get (|) injective functions K — I
K

»# If |[K|=31and |I| = 41, there are around 10°" functions,
only 10*® of which are injective (one in ten million: rare)

This calculation by D. Knuth

INF421 2012/2013, Lecture 1 —p. 38/46

Chaining

f_. Deal with collisions

o Store all records with same hash £ in a list

o Store list at h(k)

Example:

0
1
2
3

|_ ojo] o0

o

a o f
p ® b
m ||

h(a) = h(£) = 0

h(p) = h(b) = h(h) =1

h(m) = 2

1l:not_found

|

INF421 2012/2013, Lecture 1 — p. 39/46

m Finding with collisions

POLYTECHNIQUE

Finding in a hash table with collisions:
if |o(h(k))| = 0 then
return not_found
else if [oc(h(k))| = 1 then
return o(h(k))
else
return o(h(k)).find (k)
end if

Reduce collisions:
Injective or “almost injective” hash functions

o |

INF421 2012/2013, Lecture 1 —p. 40/46

Good hash functions

T
do
A5
POLVTECHNIQUE

In general, consider data as number sequences
(k1,..., k)

o Consider any number sequence a = (ay, ..., ax)

Let p be the smallest prime > |U|

The following hash function family is almost injective

ha(k) = Z a;k; (mod p)

j<t

°

® Choice of a can make a difference

o |

INF421 2012/2013, Lecture 1 —p. 41/46

Complexity: worst-case

PR Assume }
s length of key kis O(1) w.r.t. n = |7
s hash function evaluate in O(1) w.r.t. n

L Worst case |
o JicIVke K h(k)=i
s all keys stored in same sequence o(:): get O(n)

o |

INF421 2012/2013, Lecture 1 — p. 42/46

Complexity: average case

s probability that (k) = h(k') for k # k':

o this probability is independent of &, &’
® [;: random variable for |o(h(k))]
® Scanning o(h(k)): O(E(Lg))
® X,,: random indicator variable, X, = 1if h(k) = h(¥), O othw.

Ly = Z Xke

uEran T

m
=~
N
|
m
>
<

| Find, insert, remove in O(1 + «) .

INF421 2012/2013, Lecture 1 —p. 43/46

P :CHNIQUE

© © o o o o o 0o

°

Application: comparing objects
Objects can occupy lots of memory T
How to test a = b efficiently?

Byte comparison: O(min(|al, [b])), Inefficient

Test a.hashCode () ==b.hashCode () Instead, O(1)
Java’s hashCode () function is good

Small chance of collisions

... but chance nonetheless!

Could have equal hashcodes but different objects

It hashcodes are different, objects are different

|

INF421 2012/2013, Lecture 1 — p. 44/46

¥

Application: making $$

Finding good hash functions is hard

Requires lots of CPU time

This computer work is worth some money
http://bitcoin.org/

Moreover, it prevents spam
http://hashcash.org/

|

INF421 2012/2013, Lecture 1 —p. 45/46

End of lecture 2

