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Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrble a la fin. Note:
max(CC, 2CC + 1TP)

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de I’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique
(Polycopié), 2006

Website: www.enseignement .polytechnique.fr/informatique/INF421
Blog: inf421.wordpress.com

Contact. liberti@lix.polytechnique. fr (e-mail subject: INF421)
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Lecture summary

Queues and BFS: motivating example
Queues
BFS

Hashing

© o o o
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Motivating example



Bus network with timetables

h:00
h:10
h:30

D

h:20
h:40
h:50

Find a convenient itinerary from 1 to 6, leaving at h:007?

h:00
h:20
h:40

E

h:05
h:10
h:30

h:10
h:20
h:30

F

h:25
h:30
h:40

-
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The event graph

B/20

L

ECOLE
POLYTECHNIQUE

red arrows: waiting for next bus
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1/00










4/20




4/20




3/20




3/20




3/30







A Finding a good itinerary

B/20

. 3/30<]4/30[5/40]3/25[5/30 o
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m Finding a good itinerary

B/20

~ [4/30]5/40(3/25]5/30 -




5/40




Finding a good itinerary

B/20

5/40

found itinerary 1—6 arriving at h:40 J
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# Duration — actual path?

pred

Retrieving the path

® Store nodes out of queue with predecessors

node

1/00
1/00
2/10
2/10
4/20
4/30

1/00
2/10
4/20
3/20
3/30
4/30
6/40

# Retrieve path backwards: 6/40—4/30—4/20—1/00

|
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P This ain’t the fastest

f Suppose there is a bus G with timetable 3/25 — 6/30 T

B/20

A/10

3/25 is still in the queue (

G/5

B/20

5/40

3/25

5/30

6/40

D/10

) at termination, can’t reach 6/30
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What did we find?

Itinerary with fewest changes

‘bus, waiting, bus” counts as two changes, not one

Proof requires formalization (algorithm)

© o o @

Describe “queue” as a data structure

o |
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T
pYL
=

ECOLE
POLYTECHNIQUE

Queues
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Queue operations

# Basic queue operations T
s pushBack: insert element at end of queue

s popFront: retrieve and delete element at front of
queue

s 1sEmpty: IS queue empty?
s size:return queue size
# Need these operations to be O(1)

o |

INF421 2012/2013, Lecture 1 —p. 12/46



Circular arrays

|7.0 Implementation using a circular array ¢ [Mehihom & Sanders’ book] T
# Uses modular arithmetic (usually pretty fast)

® ,: head of
queue

® 4 = | tail of
queue

® 4, unused for
0<i< hand
t<i1<n

® circular array: ar-
ray with modular

index arithmetic
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Size and emptiness

-

® isEmpty(): if (t = h) then return true; else return false;

|
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Size and emptiness

-

® isEmpty(): if (t = h) then return true; else return false;

® size(): return (t — h + n) mod n;
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n Read and delete front of queue

=

popFront() {

P = qh;
h = (h+ 1) mod n;
return p;

}




) Insert at the end of queue

POLYTECHNIQUE

pushBack(d) {

assert(size() <n)
gt = d;

t=(t+ 1) mod n;
q = L;

}




n  Insert at the end (case ¢t = n)

POLYTECHNIQUE

(t=(t+1)modnAt=n—1)=t=0



e,

ECOLE
POLYTECHNIQUE

BES
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BFS: the idea

Explore nodes of a network starting from s

# start with pushBack(s)

# at any iteration,
1. u = popFront()
2. for each neighbour v of u,
3. If v is the target, stop
4. If v not already seen, pushBack(v)

o |
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The BEFS algorithm

f.o Input: set V, binary relation ~onV,and s #t eV T

(@, <) ={s}; R={s};
while ) 4 @ do
u=mine Q; Q + Q ~{u};
forvreV (v~uAv ¢ R)do
if v =t then
return “t reachable”;
end if
Q < QU {v}, set v = max. Q;
R+ RU{v};
10: end for
11: end while
12: return “¢ unreachable’;

o |
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The order on ()
f.o The ordered set () is implemented as a queue T

#® Every v € V enters Q as the maximum element (i.e. , the
last)

#» We only read (and remove) the minimum element of )
(i.e. the first)

# Every other element of ) is never touched

# The relative order of a consecutive subsequence
ui,...,up of Q is unchanged

o Also, by the test v € R at Step 4, we have:
Thm. 1

No element of V' enters () more than once

o |
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A node hierarchy

# Consider function o : V — N: T
at Step 1, let a(s) =0
at Step 8, let a(v) = a(u) + 1
# Ranks v € V by distance from s in terms of “arrows”

#® E.g.if s = u, then u’s distance from s is 1
If s = u — v, v's distance from s is 2

o |
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The BEFS, again

10 (Q, <) = {s}; R={s}; N
2: a(s) =0;

3: while ) # @ do

4: uw=minc Q; Q + Q ~ {u};

5. forveV (v~uAv ¢ R)do
6: a(v) = a(u) + 1;

7: if v =t then

8: return “t reachable”:

9: end if
10: Q +— QU {v}, set v = max. Q;
11: R+ RU{v};
12: end for

13: end while
. return “¢ unreachable”: J

P
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Basic results

fWe have the following results (try and prove them):
Thm. 2

If (s,v1,...,v) IS @ny itinerary found by BFS, a(v;) = k&
Thm. 3

If a(u) < a(v), then u enters @ before v does

Thm. 4
No itinerary found by BFS has repeated elements

Thm. 5
The function « is well defined

o |
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Fewest changes

f.o Aim to prove that BFS finds an itinerary with fewest changes T

# Remark: #changes in an itinerary = #nodes/edges
Thm.

BFS finds a path with fewest edges

Idea of proof:
by contradiction

found by BFS

L Q 0 1 14 h—1 erich

|
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. Finding all shortest itineraries

f’ Delete Steps 7-9 T
o All elements in V enter and exit )

#® Finds shortest itineraries from s to all elements of V

WARNING: BFS will not find shortest paths in a
weighted graph unless all the arc costs are 1

o |
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ECOLE
POLYTECHNIQUE

Hashing
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Motivating example

# The phonebook with n entries
# Each page corresponds to a character

# Page with character k contains all names beginning
with &

# Easy to search:
s 26 chars in alphabet: O(1)
s L lines per page, L does not depend on n: O(1)

# Searchis O(1)

o |
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The idea

® K avery large set of keys; U: a set of objects; 7 : K — U: a table
K

9

|

|
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The idea

ECOLE
POLYTECHNIQUE

=

® K avery large set of keys; U: a set of objects; 7 : K — U: a table

® Assume K too large to store, but dom 7 is small
9

|

|
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The idea

ool

K avery large set of keys; U: a set of objects; 7 : K — U: atable
Assume K too large to store, but dom 7 is small

Find a function h : K — I with I = {0,1,...,p — 1} and |I| = |U|, then store

u = 7(k) in array element o (i) where ¢ = h(k)

|
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Why not a list?

o Consider list of pairs (key, record)
# Finding is O(n)
o Time-inefficient

o |
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Why not an array?

Consider array of records indexed by keys

Finding is O(1)

Suppose keys are {1, 16, 1643, 1094382}

Need to allocate space for 1094382 records, just need 4
Space-inefficient

© o o o @
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Problem setting

-

K =keys, U =records
Associate some keys with records
Get an injective table function T : K — U, with dom 7 C K

e o o o

Problem:
Given a key k € K, determine whether k € dom 1

o |
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Hash tables

Consider index set [ s.t. |I| ~ |dom 7| < |K]|
Hash table: functiono : I — U
Hash function: function h: K - Ist. r=00h

K 7 U
o,
I
= Store u in ¢ at position h(k)
Geto(h(k)) =7(k) =u

|
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Collisions

By above, £k € domT < h(k) €

Scheme only works if  is injective

If not, get collisions (see phonebook)

If collisions, let o(h(k)) = all v's with equal h(k)

© o o o

o |
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Last nagging doubt

Need to store h : K — I somewhere
List is time-inefficient
Array is space-inefficient

© o o o

Are we simply shifting the problem?

o |
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The magic

- No need to store h explicitly -

# Define h(k) using a “short description”
# A formula applied to the description of &

o E.g. phonebook:
s letk =Leo
s ASCIllcode: L ="76,e =101,0 =111
o h(k) =76+ 101 + 111 = 288
collisions, h(HHHH) = 288 too

o h(k)="76x 1132 + 101 x 113 + 111 = 981968
no collisions

o |
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Collisions are likely

Most functions are not injective

1'% functions from K — T

f|I] <|K|, none is injective

fII| > |K]:

» |I| ways to choose the image of the first element of K,

o o o o

» |I| — 1 ways to choose the second, and so on

1
» get ( | ) injective functions K — I
K

»# If |[K|=31and |I| = 41, there are around 10°" functions,
only 10*® of which are injective (one in ten million: rare)

This calculation by D. Knuth
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Chaining

f_. Deal with collisions

o Store all records with same hash £ in a list

o Store list at h(k)

# Example:

0
1
2
3

|_ ojo ] o0

o

a o f
p ® b
m ||

h(a) = h(£) = 0

h(p) = h(b) = h(h) =1

h(m) = 2

1l:not_found

|
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m Finding with collisions

POLYTECHNIQUE

# Finding in a hash table with collisions:
if |o(h(k))| = 0 then
return not_found
else if [oc(h(k))| = 1 then
return o(h(k))
else
return o(h(k)).find (k)
end if

# Reduce collisions:
Injective or “almost injective” hash functions

o |
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Good hash functions

T
do
A5
POLVTECHNIQUE

# In general, consider data as number sequences
(k1,..., k)

o Consider any number sequence a = (ay, ..., ax)

Let p be the smallest prime > |U|

# The following hash function family is almost injective

ha(k) = Z a;k; (mod p)

j<t

°

® Choice of a can make a difference

o |
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Complexity: worst-case

PR Assume }
s length of key kis O(1) w.r.t. n = |7
s hash function evaluate in O(1) w.r.t. n

L Worst case |
o JicIVke K h(k)=i
s all keys stored in same sequence o(:): get O(n)

o |
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Complexity: average case

s probability that (k) = h(k') for k # k':

o this probability is independent of &, &’
® [;: random variable for |o(h(k))]
® Scanning o(h(k)): O(E(Lg))
® X,,: random indicator variable, X, = 1if h(k) = h(¥), O othw.

Ly = Z Xke

uEran T

m
=~
N
|
m
>
<

| Find, insert, remove in O(1 + «) .
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P :CHNIQUE

© © o o o o o 0o

°

Application: comparing objects
Objects can occupy lots of memory T
How to test a = b efficiently?

Byte comparison: O(min(|al, [b])), Inefficient

Test a.hashCode () ==b.hashCode () Instead, O(1)
Java’s hashCode () function is good

Small chance of collisions

... but chance nonetheless!

Could have equal hashcodes but different objects

It hashcodes are different, objects are different

|
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¥

Application: making $$

Finding good hash functions is hard

Requires lots of CPU time

This computer work is worth some money
http://bitcoin.org/

Moreover, it prevents spam
http://hashcash.org/

|
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End of lecture 2



