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Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrble a la fin. Note:
max(CC, 2CC + :TP)

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de I'X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique
(Polycopié), 2006

Website: www.enseignement .polytechnique.fr/informatique/INF421
Blog: inf421.wordpress.com

Contact. liberti@lix.polytechnique. fr (e-mail subject: INF421)
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liberti@lix.polytechnique.fr

Today, a ‘‘research seminar’’!



At a glance

Which graph has most symmetries?



. How does a weighted graph look?
-

® Like this? 3



. How does a weighted graph look?

- 1
o Like this? 3
1 ‘;‘ )
A P
4
3 @ ’ °
1
® Perhaps like this? + @ ; ¢

o |



Don’t confuse a graph with its
drawing



Clean energy

Use hydrogen to produce chemical energy
How to produce “pure hydrogen”?

Photosystem |l : complex molecular conglomerate

Molecular function «» 3D shape

© o o o ©

Molecule = graph
s Atoms = vertices
s Known inter-atomic distances = edges

Draw a weighted graph in 3D

o |
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Other applications
-

Applications:

9

°

Clock synchronization, phase retrieval (A. D’Aspremont,
CMAP) — 1D

Wireless sensor network localization — 2D

Molecule conformation (me, LIX) / submarine
localization — 3D

Multidimensional scaling — (whatever)D

|
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Drawing a graph

» Given a simple weighted undirected
graph G = (V, F) with a distance
function d : £ — R, solve the
constraint system:

V{u, U} ck Hﬂju — va = dy, (1)

» Obtain an embedding z : V — R?

-



Global optimization

EEEEE

-

s Reformulate (1) to
mxin Z (Jzy — 2 lI° = d3,)* ()
{uvtek

» (G has an embedding < optimum x* of
(2) has value 0.

» EQ (2) iIs nonconvex in z, many local optima

Try it on Matlab/Octave/Maple/whatever for simple data, you won'’t get

\_ very far (< 10 vertices) J

INF421, Lecture 9 — p. 10/63



The number of embeddings

-

# Uncountably many (incongruent) embeddings
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The number of embeddings

# Uncountably many (incongruent) embeddings
o Finitely many

<
® 4
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The number of embeddings

-

# Uncountably many (incongruent) embeddings
o Finitely many
# At most one

4 3
N 4
| 3
\ 4
1 ]
2 / S o \
A W
Ve g4 ! 2
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K -lateration
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G

Example with K = 3

1. Consider v adjacentto allu € U

iven U = {1,2,3,4} C V and a partial embedding z, z2, z3, 74 € R?

2. Extend z to v by solving a linear system:

o

-

Can do this in O(K?), if K is fixed, this is O(1)

T, —x1]®? = d%v Tyl|? = 22y - k1 + |27 = d%v (3)
T, — Lol = d%v Tol|? = 2@y - 1o + ||za||? = d%v (4)
T, —x3l® = d%v To||? = 2zy - k3 + ||z3||? = d%v (5)
T, — z4ll? = d%v Tyl|? = 2%y - g + |24l = d%v (6)
(6)-(7) 2(z1 — 24) (lz1ll* = llzal®) — (df, — di,)
©)-8) |=|| 2(x2—z4) [|zo=| (JJa2|l* = ||z4l?) — (d3, — d3,)
(6)-(9) 2ws — x4)" (123> = llzal®) = (d5, — d3,)

|
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. Combinatorial iterative approach

K = 2;if 3 vertex order s.t. has enough L T @ el g=Yo [Tel-TXTo I -

3

AN




. Combinatorial iterative approach

K = 2;if 3 vertex order s.t. has enough L T @ el g=Yo [Tel-TXTo I -




POLYTECI

. Combinatorial iterative approach

-

K = 2;if 3 vertex order s.t. has enough L T @ el g=Yo [Tel-TXTo I -
5

3
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. Combinatorial iterative approach

n N




. Combinatorial iterative approach

n N




r Proteins
f.. Proteins: backbone and side chains T

® Decompose the problem: embed the backbone, then plug the side

L chains in
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Protein distances

#® (Covalent bond distances d,,_; ,, are known | H

® Angles between covalent bonds are known | u H

e

= dy_2, ISknownforallv > 3{n="-------- H

°

Distances d,_3 , are always < 6A, so they can be measured using
NMR techniques

® NMR might give other distances too

Atoms may be distant order-wise but
closer than 6A in space
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Discretizable MDGP
-

Protein backbones: 3 consecutive predecessors in 3D

Weaken the condition > K + 1 adjacent predecessors in
R% to:

> K consecutive adjacent predecessors in R&

DMDGP: given z1,...,zx € R?, and a vertex order as
above, find x4, ..., z, satisfying

V{u,v} € E ||xy — 2|| = dun

An NP-hard problem

|
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-

Can we adapt the iterative method?



o Sphere intersection

fFor given v > 3, T

® 1, 3, Ty_2, Ty—1 are known
® dyy_1,dyy—2,dy,—3 are kKnown
find z,

Non-empty intersection of K spheres in R* contains 2
points in general

|
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Failure: collinearity
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Probability 1
-

We can develop a theory “modulo collinearity”

Set of (configurations of n points in R*): all R*

Collinearity in general: all points obey an equation
g(x) =0

{z | g(x) = 0}: lower-dimensional manifold in R”,
volume in R is 0

Probability of sampling collinear embedding z: 0

Results holding “with probability 1” = apart from a set of
cases having volume 0 in the set of all possible cases

|
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Finding the 2 points (/X = 3)

fGiven U ={1,2,3} C V and a partial embedding z1, x5, 3 € R? T

1. Consider v adjacentto allu € U

2. Extend z to v by solving a linear system:

T, —x1]®? = d%v Tyl|? = 22y - k1 + |22 = d%v(7)
T, — xol? = dgv =4 Tyl|? = 2xy - ko + ||za||? = d%U(S)
T, —x3l® = d%v Tol|? = 2@y - 3 + ||z3||? = d%U(Q)
T
O |_ | Aev—ws) (21l = [lzsl?) — (df, — d3,)
T |%v=
(9)-8) 2(x2 — x3) (2l = llzall?) — (d5, — d3,)

3. Diagonalize the 2 x 3 linear system (one pivot)
4. EXpress x,1, T, Iin function of z,3 linearly (%)
5. Replace z,3 in EQ. (9), solve quadratic in z,3
\— 6. Obtain two values for x,3, use (x) to find two points for z, J
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Branch-and-Prune

fv: rank of current atom x_,,: partial embedding to rank v — 1 T
G instance X: current pool of embeddings
S(y,r): RE sphere centered at y with radius r
BRANCHANDPRUNE(V, Ty, G, X):

Let S + ﬂ S(CEU_Z', d’u—i,v) :({81, 82} or @)

for s € Sdo
Extend current embedding to x = (2., s)
if Vu € AdjPred(v) ||z, — x| = du» then
if (v =n) then
Let X «+— X U{x}
else
BRANCHANDPRUNE(v + 1, z, G, X)
end if
end if

\_ end for J
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BP properties

f.o BP: worst-case exponential time T

o With probability 1, find all incongruent embeddings of
G extending initial partial embedding

o Performs very efficiently (speed and accuracy)
Embed 10,000 vertices in a 13 seconds of CPU time

# Two empirical observations:

1. the number of solutions it finds is always a power of two

2. |V| versus CPU time plots are always linear-like for PDB

o |
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Symmetry



2, is a reflection of z4
# w.r.t. the plane defined
by z1, x2, 23

#® = BP tree symmetric
below level 3

# Start branching from
level 4, not 3

BP root node symmetry
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Number of solutions

Instance | |X|
lbrv 2
lagr 4
Instance | X | 2erl 2
lcrn 2
mmorewu—2 2 lahl 16
mmorewu—23 2 lptqg 2
mmorewu—4 4 lbrz 4
mmorewu—>5 2 lhoe %
mmorewu—>6 11fb ;
lpht | 2 For all tested DMDGP in-
lavorl0_0 4 15k2 2
lavorl5.0 | 16 1£39a | 2 stances, 3¢ ¢ N such that
lavor20._0 g lacz g /
lavor25_.0 lpoa p—
lavor30.0 2 1?33 2 |)(’ 2
lavor35_0 64 lmbn 2
lavor40_0 2 lrgs 2
lavor45._0 2 1m40 2
lavor50.0 4096 1bpm 2
lavor55.0 64 1ndw 2
lavor60_0 64 1mgqg 2
1rwh 2
3b34 2
2e7z 2
lepw 2

o |
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ECOLE

A BP search tree example

® Typical BP search tree (embeddings = paths root—leaves)

® Root node symmetry: | X| is even
® No evident reason why | X | should be a power of two

|
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ECOLE
POLYTECHNIQUE

® Typical BP search tree (embeddings = paths root—leaves)

A BP search tree example

v G Go) v

® Root node symmetry: | X| is even

® No evident reason why | X | should be a power of two
(why not symmetric paths to level |V| from nodes 16 and 457)

|
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EEEEE
POLVTECHNIQUE

- N

® let Ep={{u,v}||jlu—v|<K}and Ep = E~\ Ep
® [/p: discretization distances

s they guarantee that the instance is a DMDGP
» they allow the construction of the complete BP tree

s this tree has 2/VI-3 |eaves, 2/VI-4 if we consider root
node symmetry

® [/p: pruning distances
s they allow pruning of the BP tree

s not clear why they should prune branches
symmetrically

o |
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Structure of the BP tree (R?)

-




&
22N

Structure of the BP tree (R?)

ECOLE
POLYTECHNIQUE
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m  Structure of the BP tree (R°)

ECOLE
POLYTECHNIQUE
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Effect of pruning distance d;,4

} )J»sg
ECOLE
POLYTECHNIQUE
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Effect of pruning distance d;,4

} )J»sg
ECOLE
POLYTECHNIQUE
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-

ECOLE
POLYTECHNIQUE

-

Effect of pruning distance d;

-

|
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Effect of pruning distance d;
Lo

} )J»sg
ECOLE
POLYTECHNIQUE




Effect of pruning distance d;;

} )J»sg
ECOLE
POLYTECHNIQUE
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n  Effect of pruning distance d;;




-

n  Effect of pruning distance d;;
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Effect of pruning distance d;;

-

ECOLE
POLYTECHNIQUE

- N

1

- B
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Symmetry by pruning distances

fGiven embedding x, R? = reflection w.r.t. hyperplane z,_x,...,xy_1 T

- 1
- e -
- -~ -
Sm,="

o |
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Given embedding z,

Symmetry by pruning distances

Thm.

RY = reflection w.r.t. hyperplane z, _x,...,x,_1 T

With prob. 1, for each u,v € V withv > K,u < v — K,
Vo' € X wy — x| = ||z, - all & ), = RETE (2)
Moreover, 3 a finite set H“? C R, with |[H"?| = 2074~ & g,

Ve e X ( |2y — o || e H")

Ve

plays the role of pruning dist.

o

|
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Groups fixing the trees

Let Tp be a full BP binary search tree T
Let T'» be the subtree of T, representing only feasible branches

Draw them so Tpr C Tp

Invariant group for T'p: all partial reflections (g1, g2, g3)

Invariant group for T’»: only some partial reflections (g )

INF421, Lecture 9 — p. 35/63



Partial reflections

go(x) = (1, .., Tp_1, Ro(xy), ..., Ro(xp))

Only reflect starting from vertex v



Discretization group

f Group of partial reflections fixing the T
complete BP tree (no pruning distances)

® The following hold with probability 1 Vv > K:
1. g, is injective with probability 1 (by reflection)

2. | g, is idempotent | (by reflection)

3. Yu > K,u # v, g, and g, commute (nontrivial)

® Thus, Gp = (g, | v > K) is an Abelian group under composition

= | isomorphic to C7~X)

°

By previous thm, discretization distances are invariant under Gp

°

The action of Gp on X is transitive,
l.e.Vx, 2’ € Xdg € Gp (' = g(x))

® This action has only one orbit, i.e. X = Gpx

|
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Pruning group

~ Group of partial reflections fixing the actual

BP tree (with pruning distances)

e o0l

® Assume DMDGP instance is YES, consider {u,v} € Ep
® With probability 1, d,., € H*" (otherwise the instance would be NO)

® Notice duv = ||T0 — zu|| # ||gw(T)v — gw(@)u|| forallw € {u+ K +1,...,v}
U

In order to keep invariance we remove such g,,’s from the group

Pruning group: Gp = (g | w > K AV{u,v} € Ep (W& {u+ K +1,...

Gp <GUp

and all distances are invariant w.r.t. the pruning group

Again, | action of Gp on X is transitive | (nontrivial proof)

|
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Power of two

i
ECOLE
POLYTECHNIQUE

m.
3 e N (| X| =2
Proof

With probability 1:
® gp = CS_K = ]QD\ — gn—K

® Gp<Gp=|Gp|||Gp| = I eN|Gp| =2°
#® Action of Gp on X is transitive = Gpx = X
o

ldempotency = for ¢, ¢’ € Gp, if gz = ¢'x then
g=4¢g = |Gpz| = |Gp|

Thus, | X| = |Gpz| = |Gp| = 2°

o |
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Why the ‘“‘probability 1°?

f’ Not all “YES” DMDGP instances have | X| = 2° T

# But the set of such instances (with real data) has
Lebesgue measure zero in the set of all DMDGP
iInstances

5 L1

2
|
(00) .
375 - / : .
/ | : \\
' \
CIZELO) ajgll) : \\
| s a symmetric.
5 01 - ZIJ(OO) :13(01) :13(10) :13(11) : >
ZUlZ.Cl',‘El) xQZxé ):xé ) 5 5 5 5 0000 e e e — -

Happens when > 1 vertices are embedded in the same position
(01) (11)

L 2"V should be infeasible, but z{"" = 2" (event with prob. 0) J

INF421, Lecture 9 — p. 40/63



FPT behaviour



A polynomial BP?

Empirically: never an exponential-time increase T
behaviour in our experiments (instances generated
from PDB files)

Embed 10000-atom protein backbones in 10-15s on
one core

Easy to show that BP has worst-case exponential
complexity

Are proteins a polynomial case of the DMDGP?

o Complexity depends on BP nodes; since height< |V],

only need to consider treewidth

A pruning edge {u,v} with v < v — K reduces the

number of nodes at level v from 2¢—K to 2v—K—(u—1) (py
symmetry) J
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Constant-bounded treewidth

\2A 4 5

oo
—
w

—
@

7

N

BP complexity: O(20|V|)
Sufficient: Jug s.t. every subsequence of s consecutive vertices

> wvg With no incident pruning edge is preceded by a vertex vs
s.t. Jus < vs (vs —us > |s| A{us,vs} € Ep)

“Any path under the constant path”

N

A AAAAA

w
N}

16

INF421, Lecture 9 — p. 45/63



Fixed parameter tractability

-

# We can also allow treewidth growth as long as it’s
logarithmic in n

# This yields a fixed-parameter tractable behaviour for BP
(W.r.t. Uo)

We tested all our protein instances: all display either

constant or const-bounded treewidths with very low vg
(i.e. vg = 4)

BP is polynomial on proteins (?)

o |
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Application to proteomics



Virtual hydrogen backbone

The most accurate NMR distances are between hydrogen atoms only, T
but the actual backbone is a chain of N-C,-C groups

So find a virtual backbone composed of hydrogens only, and such that
its order satisfies the DMDGP requirements

Certain hydrogens must be enumerated twice J
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Listing atoms twice

f.o If a hydrogen is listed twice, thenthere are i £ j € V T
iIndexing the same atom

® Thusz; =x;and d;; =0
# Forall k such that {i,k} € E, we have that {;,k} € F as
djk = d;; + 0, and
dij -+ djk =0+ djk = d;1
SO STRICT TRIANGULAR INEQUALITIES dO not hold for all atom
triplets
# However, it only fails on nonconsecutive triplets
Hence, BP still applies

® Also, zero pruning distances help keeping floating point errors under

L control J
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b Re-orders

ECOLE
POLYTECHNIQUE

o N

A repetition order (re-order) is a finite sequence on V'

® Re-orders generalize “counting vertices more than once”

® They add more flexibility to exploit certain distances as discretization
distances

® Essentially, they provide a tool with which to hand-craft convenient
vertex orders for interesting instance classes

Not immediately
evident how to best
order proteins

Here’s a re-order ap-
plying to all backbones
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Uncertain distances

-

# Typically, NMR provides uncertain distances, modelled
by intervals [d% , dY ]

® Cannot be used for discretization

Two precise distances and an uncertain one
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The actual situation

We know several distances d,,,, precisely because of T
chemical properties

Some distances take values in a finite set D,

The distribution of precise/discrete/uncertain distances on
the protein backbone does not satisfy the DMDGP
requirements

Re-orders provide a solution. use all precise distances for
discretization, plus a few of the discrete whenever
needed; uncertain distances are used for pruning

Pruning with intervals is easy: if the current point z, is
s.t. ||z, — x| € [dX,,dY ] for all u € a(v) accept it,
otherwise prune it

Discrete distances D,,,, simply give rise to BP nodes at
level v — 1 with potentially 2|D,,,,| subnodes J
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ECOLE
POLYTECHNIQUE

N1

H1
H1l
Cz1l
N*1
He 1
Ca*1
(o |
N2 & @...
Ca2
H2
N* 2
Ca* 2
He2 & @
c2
Ca* 2
N2 & @...
c*2
Ce3
H3
N* 3
Cqa* 3
..... He 3
C3
Ca* 3
..... 03
C*3
..... H3

|
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Implementations



Sequential code

-

# The code is available in open source

# Download:
http://www.antoniomucherino.it/en/mdjeep.php

# Any doubt, ask the MASTER (Antonio Mucherino)

o |
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http://www.antoniomucherino.it/en/mdjeep.php

Parallel code

-

Seconds of user CPU on Grid5000 (www.grid5000. fr)

CPUs

V| 1 2 8 64
5000 | 3.21 1.30 0.54 0.36
7500 | 4.73 3.15 1.25 0.93
10000 | 13.38 5.49 249 1.57

Embed subgraphs then glue embeddings (rigidity = exact)

o |
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www.grid5000.fr

A selection of current work

-

® Work with biochemists/bioinformaticians at Institut
Pasteur to access and treat real NMR data

#® Use Gpxr = X result from symmetry to obtain all
solutions from just one

o Extend complexity study to actual problem with
discrete/uncertain distances

# Progress on “MDGP & NP?” question

See http://www.lix.polytechnique.fr/~liberti/publications.html for

more papers

o |
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Surveys

- N

® Survey 1: Liberti, Lavor, Mucherino, Maculan, Molecular
distance geometry methods: from continuous to discrete,
International Transactions in Operational Research,
18:33-51, 2010

® Survey 2: Lavor, Liberti, Maculan, Mucherino, Recent
advances on the discretizable molecular distance geometry
problem, European Journal of Operational Research,
219:698-706, 2012

® Survey 3: Liberti, Lavor, Maculan, Mucherino, Euclidean

distance geometry and applications, SIAM Review, to appear
(meanwhile: arXiv 1205.0349v1)

o |
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End of course



Appendix



Continuous formulation

Solving the system
V{i,j}EE sz’_l'jH:dz’j, (10)

IS numerically challenging
LHS involves ,/arg, floating point ops = arg < 0 = error and abort
= square both sides

Usually, cast as a penalty objective to be minimized

min > (o — )P = d3)*. (11)
{i,j}€FE
Unconstrained minimization of a polynomial of fourth

degree J
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COLE
POLYTECHNIQUE

General-purpose methods

® sBB (exact): OK on small and medium-sized instances
because we know the optimal value of the objective (0), lower bound is

tight at the initial tree levels

® VNS (heur): good for large(ish) instances
® MultiLevel Single Linkage (heur) [Kucherenko et al. '06]: so-so

sBB VNS MLSL

Atoms | Variables | OF Value Time OF Value Time OF Value Time
cube8 24 0 0.22 0 1.21 0 13.56
cube27 81 0 30.39 0 34.01 0 300.285
cube64 192 0 2237.73 0 398.875 0 2765.13
lavor5 15 0 0.02 0 0.48 0 0.57
lavor10 30 0 1.12 0 7.06 0 69.71
lavor20 60 0 2.25 0 49.99 0 411.152
lavor30 90 0 488.87 0 352.06 0 1634.09
lavor40 120 - - 0.0 1258.13 0.547 2376.01
lavor50 150 - - 0 673.48 0 3002.88
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o b

MDGP-specific methods

Smoothing-based: T
#® Continuation method (heur) [Moré, Wu ’97]

® Double VNS with smoothing (heur) [L. et al. '09]

® DC optimization with smoothing (heur) [An et al. ‘03]

® Hyperbolic smoothing (heur) [Xavier ’08]

Alternating projections algorithm (heur) [Glunt et al. 90]:

iterative updating of a dissimilarity matrix
Geometric build-up (exact/heur) [Dong, Wu '03 and ’07]: triangulation
GNOMAD (heur) [Williams et al. ’01]

iterative updating of atomic ordering minimizing error contribution

Monotonic Basin Hopping (heur) [Grosso et al. '09]
funnel-based population heuristic

Self-organization heuristic (heur) [Xu et al. '03]

pairwise atomic position modification heuristic

SDP-based formulation [Ye et al. '09] J
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