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LIX, École Polytechnique, France

INF421 2012/2013, Lecture 1 – p. 1/??



Course
Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrôle à la fin. Note:
max(CC, 3

4CC + 1
4TP )

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
Books:
1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique
(Polycopié), 2006

Website: www.enseignement.polytechnique.fr/informatique/INF421

Blog: inf421.wordpress.com

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)
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Breaking news

Too many students!

No space in salles informatiques

ABSOLUTELY NO CHANGE IS
POSSIBLE — DON’T EVEN ASK!!!
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Other info

Lectures are meant to develop your intelligence, NOT to
prepare you to TDs

⇒ discover links between lectures and TDs yourselves!

Learn theory and algorithmics in lectures, Java in TDs

⇒ not much Java code in lectures

Slides: published online after the lectures
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Lecture summary

Computability

Complexity

Arrays

Lists
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Computability (informal)
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Computer

Central Processing Unit (CPU)

Random-Access Memory (RAM)

Long-term storage:

Hard Disks (HD)

Compact Discs (CD)

Digital Versatile Discs (DVD),
. . .

Input/Output (IO):

Keyboard

Mouse

Ports (network, USB, etc.)

Screen, . . .
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Turing Machine (TM)
A finite alphabet of symbols (e.g. {0, 1,�})
An infinitely long tape divided into cells

A tape “head” that can perform the following actions:

read symbols off a cell

write symbols on a cell

move to the next or
previous cell on the tape

do nothing

An infinite amount of time instants
The head can do one action only at each time instant

A set of instructions for the head
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Simulating in TMs

Would a further action
move to k-th next cell on tape

make the TM “more powerful”?

powerful = able to perform more tasks

simulate the new TM (T ′) using the old TM (T ):
“move to k-th next cell” = repeat k times “move to next cell”

⇒ T can do whatever T ′ can do

⇒ same power
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A task, a TM

Set of instructions is given

Determines the task a TM can do

1. read cell content

2. if 0, write 1

3. else if 1, write 0

4. else if �, do nothing

5. endif

6. move to next cell

7. repeat from (Line ??)

Flip binary digits on

input data

Program makes TM act on input data
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Encode the program

Programs are text

Text can be encoded as a sequence of numbers

Any number sequence can be encoded as a sequence
of binary numbers

⇒ A program can be an input to a TM
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Universality

Consider the following TM U :
Input:

a TM T encoded as a number
a valid input ι for T

Output: the output T (ι)

Program: it must be able to “simulate” any TM

∀T, ι U(T, ι) = T (ι)

U is called a Universal Turing Machine (UTM)

The program of U is known as an interpreter
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Other UTMs

Different models of computations
λ-calculus

RAM machines

(some) Diophantine equations

(some) cellular automata

Let M be a model of computation

M is Turing-complete if it can simulate a UTM

M Turing-complete and can be simulated by a UTM: M
is Turing-equivalent
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Church’s thesis

All Turing-complete models of
computations are also Turing-equivalent

Can’t find anything more powerful than a UTM

I printed “Church’s hypothesis” in the polycopié by mistake: it should be “thesis”
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Programming languages

All programs are expressed in a language

Consider simple language �:
alphabet {0, (, )}
if s is a valid sentence, (0) is valid

0 is a valid sentence

⇒ � = {0, (0), ((0)), . . .}
Question the expressive power of a programming language

If language L can express an interpreter for a UTM,
then L is universal

If L can express concatenation, tests and loops then it is
universal [Böhm and Jacopini, 1966]
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Imperative vs. declarative

Consider input and output for a TM T

I(T ) = set of all valid inputs for T

O(T ) = set of all valid outputs for T

TM can be seen as a function T : I → O
Two possible descriptions of the function x!

Imperative Declarative
input integer x ≥ 1

let y = 1

for z ∈ {1, . . . , x} do
let y ← yz

end for

y =

x∏
z=1

z
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Computable numbers

T = TMs with empty input and output in R

The set
C =

⋃
T∈T
O(T )

is the set of computable numbers [Turing, 1936]

Not all reals are computable

(Proof by cardinality: there are at most countably many TMs, so
countably many computable numbers, but uncountably many reals —
so most reals are uncomputable)
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Decision problems

Problem: a question, parametrized over symbols taking
infinitely many values, with possible answers YES or
NO

Every set of parameter values is an instance

“Is the length of the program of TM T greater than k?”
parameters: T and k

there are infinitely many TMs T and integers k

only possible answers: YES or NO

Given a problem P , is there a TM that solves it?

Solve = TM terminates with correct answer in finite time

If ∃ TM solving P , P is decidable, otherwise undecidable
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Halting problem
Consider the halting problem:
Given a TM T , will it terminate?

Suppose ∃ TM H solving the halting problem

So H(T ) = YES if T terminates, and NO otherwise

Define TM K such that:
if H outputs NO then K halts

if H outputs YES then K loops forever

Consider H(K):
if H(K) = YES then K does not halt

if H(K) = NO then K halts

⇒ H does not solve the halting problem

The halting problem is undecidable
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From TM to computer
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Code and data segments

Computer is an approximate UTM

Must be able to store TM programs

Memory (RAM) holds both data and program code

Certain memory addresses point to instructions

Other addresses point to variable values
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Imperative languages

Variable symbols: x1, x2, x3, . . .

Semantics:
xi → address of memory storing value of xi
type of data stored in xi (boolean, integer, float,
class,. . . )

Logical/arithmetic operators and functions

Flow control: assignments, if, for, while, . . .
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Basic operations
Assignment: write value in memory cell(s) named by
variable (i.e. “variable=value”)

Arithmetic: +,−,×,÷ for integer and floating point
numbers

Test: evaluate a logical condition: if true, change
address of next instruction to be executed

Loop: instead of performing next instruction in memory,
jump to an instruction at a given address (more like a “go to”)

WARNING! In these slides, I use “=” to mean two different things:

1. in assignments, “variable = value” means “put value in the cell whose address is
named by variable”

2. in tests, “variable = value” is TRUE if the cell whose address is named by variable
contains value, and FALSE otherwise

in C/C++/Java “=” is used for assignments, and “==” for tests
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Programs

By [Böhm and Jacopini, 1966], need loops, tests and
concatenation to have a universal language

Programs are concatenations of basic operations

Algorithm: program written in “pseudocode”

Can’t be executed, but easier to understand
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Complexity

INF421 2012/2013, Lecture 1 – p. 25/??



Complexity
Consider a decidable problem P and two different
algorithms to solve it: which is best?

Time/space complexity:
time complexity: time taken to terminate

space complexity: necessary memory

Worst case: max values during execution

Best case: min values during execution

Average case: average values during execution

P : a program
tP : number of basic operations performed by P
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Time complexity (worst case)

∀P ∈ {assignment,arithmetic,test}:
tP = 1

Concatenation: for P,Q programs:
tP ;Q = tP + tQ

Test: for P,Q programs and R a test:
tif (T ) P else Q = tT +max(tP , tQ)

max: worst-case policy

Loop: it’s complicated
(depends on how and when loop terminates)
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Loop complexity example
The complete loop

Let P be the following program:
1: i = 0 ;
2: while (i < n) do
3: A;
4: i = i+ 1;
5: end while

Assume A does not change the value of i

Body of loop executed n times

tP (n) = 1 + n(tA + 3)

t(i<n) = 1, t(i+1) = 1, t(i=·) = 1⇒ (. . .+ 3)

INF421 2012/2013, Lecture 1 – p. 28/??



Orders of complexity
In the above program, suppose tA = 1

2n

Then tP = 1
2n

2 + 3n+ 1

When n is large, tP “behaves like” n2

1
2n

2 + 3 is O(n2)

A function f(n) is order of g(n) (notation: O(g(n))) if:

∃c > 0 ∃n0 ∈ N ∀n > n0 (f(n) ≤ cg(n))

For 1
2n

2 + 3, c = 1 and n0 = 2
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Some examples

Functions Order

an+ b with a, b constants O(n)

polynomial of degree d′ in n O(nd) with d ≥ d′

n+ log n O(n)

n+
√
n O(n)

log n+
√
n O(

√
n)

n log n3 O(n log n)
an+b
cn+d , a, b, c, d constants O(1)

Find the best (most slowly increasing) function g(n)
when saying “f(n) is O(g(n))”

2n+ 1 is O(n4), but it’s best to say O(n)
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Constant complexity

The complexity order is an asymptotic description of
tP (n)

If tP (n) does not depend on n, its order of complexity is
O(1) (i.e. constant)

Example: looping 101000 times over an O(1) code still
yields an O(1) program

In other words, n must appear as a parameter of the
program for the complexity order to be anything other
than constant
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Complexity of easy loops

1: input n;
2: int s = 0;
3: int i = 1;
4: while (i ≤ n) do
5: s = s+ i;
6: i = i+ 1;
7: end while
8: output s;

t(n) = 3 + 5n+ 1 = 4n+ 4

⇒ t(n) is O(n)

1: for i = 0; i < n− 1; i = i+ 1 do
2: for j = i+1; j < n; j = j +1 do
3: print i, j;
4: end for
5: end for

t(n) = 1 +

(5(n− 1) + 6) + . . .+ (5 + 6)
︸ ︷︷ ︸

n−1

= 1 + 5((n− 1) + . . .+ 1) +

6(n−1) = 5
2
n(n−1)+6n−5

= 5
2
n2 + 7

2
n− 5

t(n) is O(n2)
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Arrays

INF421 2012/2013, Lecture 1 – p. 33/??



Like a vector in maths

Array: represents a vector x = (x0, . . . , xn−1)

x : x0 x1 x2 x3 x4

Array allocation: reserving the necessary memory

Size n decided at allocation time

Usually array size does not change
changes are expensive

Array deallocation when no longer useful
can be automatic, e.g. in Java
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Array operations
For an array of size n:

Operations Complexity

Read value of i-th component O(1)

Write value in i-th component O(1)

Size O(1)

Remove element (cell) forget it∗

Insert element (cell) forget it∗

Move subsequence to position i O(n)

Moving (contiguous) subsequence L to position i:
start moving from L1 if i < L1, and from Lm if i > L1

i ii
L1L1L1 L2 L2 L2

∗: can simulate these operations using pointers, or dealloc/realloc
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Incomplete loop

Loop over x ∈ {0, 1}n while xi = 1, setting xi ← 0, stop when xi = 0

1: input x ∈ {0, 1}n;
2: int i = 0;
3: while (i < n ∧ xi = 1) do
4: xi = 0;
5: i = i+ 1;
6: end while
7: if (i < n) then
8: xi = 1;
9: end if

10: output x;

Input Output

(0,0,0,0) (1,0,0,0)

(1,1,0,0) (0,0,1,0)

(0,1,1,0) (1,1,1,0)

(1,1,1,1) (0,0,0,0)

Worst-case complexity with input x = (1, . . . , 1)
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Average case complexity 1/2
Average case analysis needs a probability space:

assume the event xi = b is independent of the events
xj = b for all i �= j

assume each cell xi of the array contains 0 or 1 with equal
probability 1

2
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Average case complexity 1/2
Average case analysis needs a probability space:

assume the event xi = b is independent of the events
xj = b for all i �= j

assume each cell xi of the array contains 0 or 1 with equal
probability 1

2

For any vector having first k+1 components (1, . . . , 1︸ ︷︷ ︸
k

, 0),

the loop is executed k times (for all 0 ≤ k < n)
Event of a binary (k + 1)-vector having given components has probability

(
1
2

)k+1
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Average case complexity 1/2
Average case analysis needs a probability space:

assume the event xi = b is independent of the events
xj = b for all i �= j

assume each cell xi of the array contains 0 or 1 with equal
probability 1

2

For any vector having first k+1 components (1, . . . , 1︸ ︷︷ ︸
k

, 0),

the loop is executed k times (for all 0 ≤ k < n)
Event of a binary (k + 1)-vector having given components has probability

(
1
2

)k+1

If the vector is (1, . . . , 1︸ ︷︷ ︸
n

) the loop is executed n times

Event of a binary n-vector having given components has probability
(
1
2

)n
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Average case complexity 2/2
The loop is executed k times with probability

(
1
2

)k+1, for k < n
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Average case complexity 2/2
The loop is executed k times with probability

(
1
2

)k+1, for k < n

The loop is executed n times with probability
(
1
2

)n
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Average case complexity 2/2
The loop is executed k times with probability

(
1
2

)k+1, for k < n

The loop is executed n times with probability
(
1
2

)n
Average number of executions:

n−1∑
k=0

k2−(k+1) + n2−n ≤
n−1∑
k=0

k2−k + n2−n =

n∑
k=0

k2−k
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Average case complexity 2/2
The loop is executed k times with probability

(
1
2

)k+1, for k < n

The loop is executed n times with probability
(
1
2

)n
Average number of executions:

n−1∑
k=0

k2−(k+1) + n2−n ≤
n−1∑
k=0

k2−k + n2−n =

n∑
k=0

k2−k

Thm.
lim
n→∞

∑n
k=0 k2

−k = 2

Proof
Geometric series

∑
k≥0 q

k = 1
1−q for q ∈ [0, 1). Differentiate w.r.t. q, get∑

k≥0 kq
k−1 = 1

(1−q)2 ; multiply by q, get
∑

k≥0 kq
k = q

(1−q)2 . For q = 1
2 ,

get
∑

k≥0 k2
−k = (1/2)/(1/4) = 2.
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Average case complexity 2/2
The loop is executed k times with probability

(
1
2

)k+1, for k < n

The loop is executed n times with probability
(
1
2

)n
Average number of executions:

n−1∑
k=0

k2−(k+1) + n2−n ≤
n−1∑
k=0

k2−k + n2−n =

n∑
k=0

k2−k

Thm.
lim
n→∞

∑n
k=0 k2

−k = 2

Proof
Geometric series

∑
k≥0 q

k = 1
1−q for q ∈ [0, 1). Differentiate w.r.t. q, get∑

k≥0 kq
k−1 = 1

(1−q)2 ; multiply by q, get
∑

k≥0 kq
k = q

(1−q)2 . For q = 1
2 ,

get
∑

k≥0 k2
−k = (1/2)/(1/4) = 2.

Hence, the average complexity is constant O(1)
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Jagged arrays

Jagged array: components are vectors of possibly
different sizes

E.g. x = ((x00, x01), (x10, x11, x12))

x :
x0 : x00 x01

x1 : x10 x11 x12

Special case: when all subvector sizes are the same, get
a matrix: int x[][] = new int [2][3];

x =

(
x00 x01 x02

x10 x11 x12

)
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Representing relations

Jagged arrays represent a relation

Let V = {v1 . . . , vn} and E a relation on V
E is a set of ordered pairs (u, v)

Representation:
jagged array with n components
i-th array contains all vj ’s related to vi

Example: V = {1, 2, 3},
E = {(1, 1), (1, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

E :

1 1 2

2 3

3 1 2 3
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Application: Networks
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Array shortcomings

Fixed size known in advance

Inserting/removing is inefficient

Changing relative positions of elements is inefficient
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Lists
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Doubly linked list

A node
pointers

⊥ x1 x2 x3

Node N : a list element

N.prev = address of previous node in list
N.next = address of next node in list
N.datum = the data element stored in the node

Placeholder node ⊥: before the first element, after the last
element, no stored data

Every node has two pointers, and is pointed to by two nodes
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Remove a node

Remove current node (this)

⊥ x1 x2 x3

In the example, this= x2

1: this.prev.next = this.next ;
2: this.next.prev = this.prev ;

Worst case complexity: O(1)
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Insert a node
Insert current node (this) after node x1

⊥

x1 x2N

In the example, this= N

1: this.prev = x1 ;
2: this.next = x1.next ;
3: x1.next = this ;
4: this.next.prev = this ;

Worst case complexity: O(1)
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Find next
Given a list L and a node x, find next occurrence of
element b

If b ∈ L return node where b is stored, else return ⊥

1: while (x.datum �= b ∧ x �= ⊥) do
2: x = x.next
3: end while
4: return x

Warning: every test costs 2 basic operations
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Find next
Given a list L and a node x, find next occurrence of
element b

If b ∈ L return node where b is stored, else return ⊥

1: while (x.datum �= b ∧ x �= ⊥) do
2: x = x.next
3: end while
4: return x

Warning: every test costs 2 basic operations

1: ⊥.datum = b
2: while (x.datum �= b) do
3: x = x.next
4: end while
5: return x

Now ttest = 1
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List operations
For a doubly-linked list of size n:

Operations Complexity

Read/write value of i-th node O(n)

Find next O(n)

Sizea O(n)

Is it empty? O(1)

Read/write value of first/last node O(1)

Remove element O(1)

Insert element O(1)

Move subsequence to position i O(1)

Pop from front/back O(1)

Push to front/back O(1)

Concatenate O(1)

aSome implementations are O(1) by storing and updating size
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End of Lecture 1
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