INF421, Lecture 3
Graphs

Leo Liberti

LIX, Ecole Polytechnique, France

o b

Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrble a la fin. Note:
max(CC, 2CC + 1TP)

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de I’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique
(Polycopié), 2006

Website: www.enseignement .polytechnique.fr/informatique/INF421
Blog: inf421.wordpress.com

Contact. liberti@lix.polytechnique. fr (e-mail subject: INF421)

-

|

INF421, Lecture 3 —p. 2/54

Lecture summary

Graph definitions

Operations on graphs
Combinatorial problems on graphs
Easy and hard problems

© o o o 0

Modelling problems for a generic solution method

o |

INF421, Lecture 3 — p. 3/54

The minimal knowledge

Operations on graphs: complement, line graph,
contraction

Decision/optimization problems: finding subgraphs with
given properties

Easy problems: solvable in polynomial time (P),
e.g. minimum cost spanning tree, shortest paths,
maximum matching

Hard problems: efficient method for solving one would
solve all of them (NP-hard), e.g. maximum clique,
maximum stable set, vertex colouring

Mathematical Programming: a generic model-and-solve
approach

|

INF421, Lecture 3 —p. 4/54

Graph definitions

Motivation

The ultimate data structure

Most data structures can be represented by graphs

|

INF421, Lecture 3 —p. 6/54

Graphs and digraphs

Digraph G = (V, A): relation AonsetV

7
——
» V: set of nodes y > /4,\/
» A:setofarcs (u,v) withu,v e V <6 N 713
1 2
® Graph G = (V, E): symmetric relation £ on set V
7
——
o V' set of vertices 0 /4/
/ AN
» F:setofedges {u,v} withu,v eV 0 N / i
1 — 2

Simple (di)graphs: relation is irreflexive

(l.e., v not related to itself for all v € V')

INF421, Lecture 3 —p. 7/54

Remarks

Mainly, results for undirected graphs
Many trivial extensions to digraphs
#® Warning: not all trivial

Example
® (G agraph: V(G) set of vertices, F(G) set of edges

® Extension to digraphs:
V(G) set of nodes, A(G) set of arcs

|

INF421, Lecture 3 —p. 8/54

Stars

Stars: vertices or edges adjacent to a given vertex

Vv € V(G),
o if G Is undirected, neighbourhood

7
_—
5 4 /
/ AN
6 3
AN /
1] —— 2

INF421, Lecture 3 —p. 9/54

Stars

Stars: vertices or edges adjacent to a given vertex

Vv € V(G),
o if G Is undirected, neighbourhood

s Nw)={ueV |[{uv} € EG)}

INF421, Lecture 3 —p. 9/54

Stars

YTI QUE

|7 Stars: vertices or edges adjacent to a given vertex
Vv € V(G),
o if G Is undirected, neighbourhood
s Nw)={ueV |[{uv} € EG)}
s Cutset 0(v) = {{u,v} | u € N(v)}

INF421, Lecture 3 —p. 9/54

Stars

YTI QUE

|7 Stars: vertices or edges adjacent to a given vertex
Vv € V(G),
o if G Is undirected, neighbourhood
s Nw)={ueV |[{uv} € EG)}
s Cutset 0(v) = {{u,v} | u € N(v)}
if G is directed,

7
5%/
4 N
C 6 3
N\ N
1 9

INF421, Lecture 3 —p. 9/54

Stars

YTI QUE

|7 Stars: vertices or edges adjacent to a given vertex
Vv € V(G),
o if G Is undirected, neighbourhood
s Nw)={ueV |[{uv} € EG)}
s Cutset 0(v) = {{u,v} | u € N(v)}
if G is directed,
s NT(v)={ueV|(v,u) € BE(G)}

INF421, Lecture 3 —p. 9/54

Stars

|7 Stars: vertices or edges adjacent to a given vertex T
Vv € V(G),
if G i1s undirected, neighbourhood
s Nw)={ueV |[{uv} € EG)}
s Cutset 6(v) = {{u,v} |u e N(v)}
if G is directed,
s NT(v)={ueV|(v,u) € E(G)}
s 67 (v) ={(v,u) [u€NT(v)}

INF421, Lecture 3 —p. 9/54

Stars

|7 Stars: vertices or edges adjacent to a given vertex
Vv € V(G),
o if G Is undirected, neighbourhood
s Nw)={ueV |[{uv} € EG)}
s Cutset 0(v) = {{u,v} | u € N(v)}
if G is directed,
s NT(v)={ueV|(v,u) € E(G)}
s 07 (v)={(v,u)|ue NT(v)}
s N"(v)={ueV|(uv) e E(G)}

INF421, Lecture 3 —p. 9/54

Stars

|7 Stars: vertices or edges adjacent to a given vertex
Vv € V(G),
o if G Is undirected, neighbourhood
s Nw)={ueV |[{uv} € EG)}
s Cutset 0(v) = {{u,v} | u € N(v)}
if G is directed,
s NT(v)={ueV|(v,u) € E(G)}
s 07 (v)={(v,u)|ue NT(v)}
s N (v)={ueV|(u,v) € EG)}
s 0 (v)={(u,v) |ue N (v)}

)

/

4 N
—_ —s
i
i\{/
N
wo

6

|

INF421, Lecture 3 —p. 9/54

Stars

Stars: vertices or edges adjacent to a given vertex

Vv € V(G),
if G Is undirected, neighbourhood

s Nw)={ueV |[{uv} € EG)}
s Cutset 6(v) = {{u,v} | u € N(v)}
if G is directed,
s NT(v)={ueV|(v,u) € BE(G)}
s 07 (v) ={(v,u) |ue NT(v)}
s N (v)={ueV|(u,v) e EG)}
s 0 (v)={(u,v) |ue N (v)}
|N(v)| =degree, | N (v)| =outdegree, | N~ (v)| =indegree of v
If vin both G, H write Ng(v) and Ng(v)

(similarly for other star notation)

INF421, Lecture 3 —p. 9/54

| I

Subgraphs

f.’ Subgraph H = (U, F)of G = (V,E)if Hagraphst. UCVAFCE T

5

|

‘ 3
/

1

2

® Spanning subgraph H = (U, F)of G=(V,E): U=V

® Subgraph H = (U, F') of G = (V, E) induced by U:
Vu,v € U {u,v} € E — {u,v} € F)

/
5/

_—

Induced subgraph notation: H = G|U]

INF421, Lecture 3 — p. 10/54

Cutsets

H = (U, F) asubgraph of G = (V, F)

Cutset: /(H) = (U 5(u)) N F

uelU
edge set “separating” U and V ~ U

E.g.U =1{1,2,6} and H = G|U], then §(H) shown in red

Similar definitions for directed cutsets
Thm.

If G is undirectedthenV U C V(G) 6(U)=46(V \U)

|

INF421, Lecture 3 —p. 11/54

Connectedness

7 7
5 4 / 5 \4 /
/ N N\
6 3 6 T 3
N / N
1 2 1 2
Connected Not connected: 6({1,2,6}) = @

Connected component: maximal connected subgraph

Most algorithms assume connected graphs
If not, apply alg. to each connected component

o |

INF421, Lecture 3 — p. 12/54

e o o @

Paths and cycles

G a graph and u,v € V(G) T
A simple path P from u to v in G: connected subgraph of G s.t.:

1. Vvwe V(P) (w#uAw#v— |[Nw)| =2)

2. ifu £ wvthen |[N(u)| = |N(v)|=1

3. ifu=wvthen |N(u)| = |N(v)| =2

Notation: path fromutov: P:u — v
In P:u — v, u,v are endpoints

A simple cycle is a simple path with equal endpoints
Mostly, say paths/cycles to mean simple ones

5%7 5%7
6/ \3/ 6/ \3/
\1 2/ \1 /

2 |

INF421, Lecture 3 — p. 13/54

Complete graph

|7.. Complete graph Or n-clique K,, on n vertices: T

all possible edges

L’ Clique on vertex set U: denote by K (U) J

INF421, Lecture 3 — p. 14/54

Complement graph

EEEEE
ppppppp

® Graph G = (V, F') with n vertices
® Complement of G: G = (V,E(K,) \ F)

® K, empty graph on n vertices

o |

INF421, Lecture 3 — p. 15/54

Complement graph

® Graph G = (V, F') with n vertices
® Complement of G: G = (V,E(K,) \ F)

Y
\\
N\

1/
1
® K,: empty graph on n vertices

o |

INF421, Lecture 3 — p. 15/54

Forests and trees

f.o Forest: graph with no cycles T
7
5 4
/ N\
6 3
N\
1 — 2

Spanning tree subgraph of a graph G: spanning tree of G

o |

INF421, Lecture 3 — p. 16/54

Graph isomorphism

|7.. V| = n, S, symmetric group of order n
w € S, permutes V, get new graph H = nG = («V,7F)

7 1
/ /
5 4 / 7=(1,2,3,4,5,6,7) 6 5 /
Y N\ — N\
6 3 7 4
AN / AN /
G = 1 2 2 3 — H

® dre S, (G=wH)= G, H isomorphic, m graph isomorphism

® |[f (G = G), then 7 is an automorphism of G
Automorphism group of G is Aut(G) = ((1,5), (4,7)) = Cy x Cs

N(1) ={2,3,5,6}, N(2) = {1,3,5} N(5) ={2,3,1,6}, N(2) = {5,3,1}
N(@3)=1{1,2,4,5,7}, N(4) = {3,6,7} _|NB3) =1{5,2,7,1,4}, N(7) = {3,6,4}
N(5) ={1,2,3,6}, N(6) = {1,4,5,7} N1 =1{5,2,3,6}, N(6) = {5,7,1,4}
N(7) = {3,4,6} N(4) = {3,7,6}

-

|

INF421, Lecture 3 —p. 17/54

Graphs modulo symmetry

-

#® Symmetries act on vertex labels

Ignore labels: equivalence classes of graphs modulo symmetry

/] \//
N

Unlabelled graphs

o |

INF421, Lecture 3 — p. 18/54

m Line graphs

. ® Graph G = (V,E) with E = {e1, ... e} o
® Line graph of G:

L(G) = (B, e ey | eiNej # D))

Vertex of L.(G) < edge of G

® ¢;,e; € V(L(G)) are adjacent & Jv € V s.t. e;,e; € 0g(v)

Property: the degree |Np) (e)|
of a vertex e = {u,v} of L(G)
IS |Ng(u)| + |Ng(v)| — 2.

Property: L(G) can be con-
structed from G in polynomial

L time (how?) J

INF421, Lecture 3 — p. 19/54

Operations on graphs

Addition and removal

#® Add a vertex v:
update V < V U {v}

Add an edge ¢ = {u,v}:
add vertices u, v, update E < E U {e}

#® Remove an edge e = {u,v}:
update £ + E ~ {e}

® Remove a vertex v:
update V «+ V ~ {v} and E + E \ (v)

QOperations on sets of vertices/edges:
apply operation to each set element

o |

INF421, Lecture 3 — p. 21/54

Subdivision and contraction
|7.D Subdivide an edge e = {u, v}: T

remove e, let z € V', add edges {u, z} and {z,v}

® Contract an edge e = {u, v}:
contract(G,e):

Let N(e) = (N(u) UN(v)) \ {u,v}

Let z be a vertex ¢ V;

. Add vertex z;

: forv € N(e) do

Add edge {v, z};

. end for

: Remove edge ¢;

el .

INF421, Lecture 3 — p. 22/54

No g N =

Subgraph contraction

|7.. letG = (V,F),U CV and H = G|U] T
® Contraction G/U: “G modulo H”
contract(G,U):

1:
2:
. for {u,v} € 6(H) (assume WLOG u € U,v € V \ U) do

Let z be a new vertex £ V
Add vertex z

Add edge {v, z}
Remove edge {u, v}

. end for
: Remove G[U]
8:

return G;

® At termination, subgraph H replaced by single vertex z
® (/U is formally defined to be contract(G,U)

Thm.

Subgraph contraction is equivalent to a sequence of edge contractions

INF421, Lecture 3 — p. 23/54

A Subgraph contraction algorithm

f“

6

AN

—
/

-

U=1{1,2,3,5}, G|U] inred
7

D

1

A Subgraph contraction algorithm

f Add z

A Subgraph contraction algorithm

f“

6

0 (G [U]) In blue (edges with just one endpoint in U)

AN

—
4

-

7

D

1

A Subgraph contraction algorithm

- B

Add {v, z} and remove {u, v}

7
5 4/
/
v ="0 2
uw=1 - 2

EEEEE

-

Remove G|U] (end)

Minors

oy
/%.-"4\
ECOLE
POLYTECHNIQUE

F minor of GG: F isomorphic to a contracted GG
® Useful to underline “essential structure”

Contract some triangles

Combinatorial problems on graphs

-

The subgraph problem

-

® Decision problem: YES/NO question parametrized over symbols
representing the instance (i.e. the input)

o |

INF421, Lecture 3 — p. 27/54

The subgraph problem

-

® Decision problem: YES/NO question parametrized over symbols
representing the instance (i.e. the input)

® G =all graphs, P(G) valid sentence about some G € G

o |

INF421, Lecture 3 — p. 27/54

The subgraph problem

f ® Decision problem: YES/NO question parametrized over symbols T
representing the instance (i.e. the input)

® G =all graphs, P(G) valid sentence about some G € G

® A class of decision problems in graph theory:
SuBGRAPH PROBLEM SCHEMA (SPSp). Given a graph G, does it have
a subgraph H with property P?

o |

INF421, Lecture 3 — p. 27/54

The subgraph problem

-

f ® Decision problem: YES/NO question parametrized over symbols
representing the instance (i.e. the input)

°

G =all graphs, P(G) valid sentence about some G € G

°

A class of decision problems in graph theory:
SuBGRAPH PROBLEM SCHEMA (SPSp). Given a graph G, does it have
a subgraph H with property P?

® |n SPSp, get a decision problem for each P

o |

INF421, Lecture 3 — p. 27/54

o o

L I

The subgraph problem
-

Decision problem: YES/NO question parametrized over symbols
representing the instance (i.e. the input)

G =all graphs, P(G) valid sentence about some G € G

A class of decision problems in graph theory:
SuBGRAPH PROBLEM SCHEMA (SPSp). Given a graph G, does it have
a subgraph H with property P?

In SPSp, get a decision problem for each P

Decision problem = set of all its instances

|

INF421, Lecture 3 — p. 27/54

o o

e o o

The subgraph problem
-

Decision problem: YES/NO question parametrized over symbols
representing the instance (i.e. the input)

G =all graphs, P(G) valid sentence about some G € G

A class of decision problems in graph theory:
SUBGRAPH PROBLEM ScHEMA (SPSp). Given a graph G, does it have
a subgraph H with property P?

In SPSp, get a decision problem for each P
Decision problem = set of all its instances

Require solution YES or NO with certificate (proof that certifies the
answer)

|

INF421, Lecture 3 — p. 27/54

o o

e o o

The subgraph problem
-

Decision problem: YES/NO question parametrized over symbols
representing the instance (i.e. the input)

G =all graphs, P(G) valid sentence about some G € G

A class of decision problems in graph theory:
SuBGRAPH PROBLEM SCHEMA (SPSp). Given a graph G, does it have
a subgraph H with property P?

In SPSp, get a decision problem for each P
Decision problem = set of all its instances

Require solution YES or NO with certificate (proof that certifies the
answer)

E.g.if P(H) = (H is a cycle) the certificate is the cycle

|

INF421, Lecture 3 — p. 27/54

Complexity classes

&
¥
£
POLYTECHNIQUE

P: decision problems whose YES/NO certificates can be
found in polynomial time (of the instance size)

I M E.g. Given p,q,n € Z,is pg = n?

NP: class of decision problems whose YES certificates
can be verified in polynomial time

r 3 E.g. Given graphs G, H, are they isomorphic?

o |

INF421, Lecture 3 — p. 28/54

Algorithms, problems, classes

-

Consider worst-case complexity

o [R aaul: asymptotic performance on

ooly many instances parametrized by n, as n — oo
#® Problem: ~ly many instances

o [[ofelpglellsYUVAeIE=Nolgelo]clngl: best algorithm for all

iInstances in problem

Problem class: all problems with similar complexity

o (Ll XUVACEEEEEY: classification of problems into

“easy” and “hard”

o |

INF421, Lecture 3 — p. 29/54

Graph optimization problems

Given a decision problem, 3 a corresponding
optimization problem

o Consider scalar function u: G - R
E.g. u: number of vertices/edges

Class of optimization problems on graphs:

SUBGRAPH OPTIMIZATION PROBLEM ScHemA (SOPSp).

Given a graph G, does it have a subgraph H with
property P and min./max. p value?

Given a property P and a function u, the set of
instances of SOPSp, , is an optimization problem

o |

INF421, Lecture 3 — p. 30/54

Easy problems

f.o P = decision or optimization problems that can be T
solved in polynomial time = “easy problems ”

® MiNnIMuM SPANNING TREE (MST)
To be seen in Lecture 4

® SHoRTEST PATH PROBLEM (SPP) from a vertex v to all other vertices
To be seen in Lecture 9

$ MaAXIMUM MATCHING problem (MATCHING)
Discussed in INF550

Matching: subgraph given by set ///

of mutually non-adjacent edges

A maximum matching M ,

p(M) = |E(M)

INF421, Lecture 3 — p. 31/54

Hard(er) problems

Maximum clique

CLiQuE ProBLEM (CLiQue). Given a graph G, what is the
largest n such that G has K, as a subgraph?

® Incuaug, P(H) = [H=K(V(H))] and u(H) = [V (H)|

5 /4// 5 4/
/ A / N\
6 3 6 3
AN / AN /
1 2 1 2
A clique in G The largest clique in G

Applications to social networks and bioinformatics

o |

INF421, Lecture 3 — p. 33/54

Clique and NP-completeness

-

o Decision version of CLIQUE:
k-CLiQuE ProBLEM (k-CLiQuE). Given a graph G and an
integer k& > 0, does G have K. as a subgraph?

Consider the following result (which we won'’t prove)
Thm.
[Karp 1972] If CLique € P then P = NP

Any decision problem for which such a result holds is
called NP-complete

It is not known whether NP-complete problems can be
solved in polynomial time; the current guess is NO

o |

INF421, Lecture 3 — p. 34/54

Solving NP-complete problems

-

Decision problem P is NP-complete = “P is hard”

Intuition: if P easy, every problem in NP is easy = all computer scientists to date
are idiots — hopefully unlikely

o |

INF421, Lecture 3 — p. 35/54

Solving NP-complete problems

-

Decision problem P is NP-complete = “P is hard”

Intuition: if P easy, every problem in NP is easy = all computer scientists to date
are idiots — hopefully unlikely

Solving an NP-complete decision problem:
s exact but exponential-time algorithms

s heuristic algorithms
provide YES certificates, may not terminate on NO

o |

INF421, Lecture 3 — p. 35/54

Solving NP-complete problems

-

Decision problem P is NP-complete = “P is hard”

Intuition: if P easy, every problem in NP is easy = all computer scientists to date
are idiots — hopefully unlikely

Solving an NP-complete decision problem:
s exact but exponential-time algorithms

s heuristic algorithms
provide YES certificates, may not terminate on NO

o Optimization problem P s.t. P € P — P = NP:
P is NP-hard

o |

INF421, Lecture 3 — p. 35/54

Solving NP-complete problems

-

Decision problem P is NP-complete = “P is hard”

Intuition: if P easy, every problem in NP is easy = all computer scientists to date
are idiots — hopefully unlikely

Solving an NP-complete decision problem:
s exact but exponential-time algorithms

s heuristic algorithms
provide YES certificates, may not terminate on NO

o Optimization problem P s.t. P € P — P = NP:
P is NP-hard

P NP-complete & P NP-hard AP € NP

o |

INF421, Lecture 3 — p. 35/54

Solving NP-complete problems

-

Decision problem P is NP-complete = “P is hard”

Intuition: if P easy, every problem in NP is easy = all computer scientists to date
are idiots — hopefully unlikely

Solving an NP-complete decision problem:
s exact but exponential-time algorithms

s heuristic algorithms
provide YES certificates, may not terminate on NO

o Optimization problem P s.t. P € P — P = NP:
P is NP-hard

P NP-complete & P NP-hard AP € NP

® f-Approximation algorithm: heuristic s.t.u-value of YES
L certificate no worse than f(|G|) times optimal . value J

°

INF421, Lecture 3 — p. 35/54

Stables

® Stable (Or independent set) in G = (V, E): subsetU C V

st.Vu,veU ({u,v} € F)
Thm.

U is a stable in G if and only if G|U] is a clique

a stable in G 4 \\

® Decision problem: k-STaBLE
Given GG and k € N, is there a stable U C V(G) of size k£?

® Optimization problem: StasLE
Given G, find the stable of G of maximum size

|

INF421, Lecture 3 — p. 36/54

Stables

® Stable (Or independent set) in G = (V, E): subsetU C V

st.Vu,veU ({u,v} € F)
Thm.

U is a stable in G if and only if G|U] is a clique

G|U] is a clique g

)/

2

7

® Decision problem: k-STaBLE
Given GG and k € N, is there a stable U C V(G) of size k£?

® Optimization problem: StasLE
Given G, find the stable of G of maximum size

|

INF421, Lecture 3 — p. 36/54

NP-completeness of k-STABLE

b
e
ECOLE
POLVTECHNIQUE

k-STABLE IS NP-complete
Proof

Consider an instance (G, k) of k-CLique

The complement graph G can be obtained in polynomial time ()
It is easy to show that G = G (xx)

By (xx) and previous thm.,

(G, k) is a YES instance of k-Criauk iff (G, k) is a YES instance of k-StasLE

By (), if k-StaBLE € P then k-CLiQue € P (transform to k-STABLE, solve, transform back)
By NP-completeness of k-CLique, k-STABLE € P implies P = NP

Hence k-StaBLE is NP-complete

® How to show that a problem P is NP-complete:
» Take another NP-complete problem Q “similar” to P
» Reduce (in polytime) an instance of Q to an instance of P
_ » Show reduction preserves the YES/NO property J

INF421, Lecture 3 — p. 37/54

Stable heuristic

~® The following greedy method will find a maximal stable
1. U = J;
2: order V by increasing values of |N(v)|;
3: while V £ @ do
4: v =minV;
S
6

U<+ UU{v};
V+—V~N({vtUN(Ww))
7: end while
o Worst-case: O(n) (given by an empty graph)

degree sequence
/ AN
(3,3,3,3,4,5,5) ° °
AN /

\—.o STaBLE heuristic = CLique heuristic J

INF421, Lecture 3 — p. 38/54

Stable heuristic

~® The following greedy method will find a maximal stable
1. U = J;
2: order V by increasing values of |N(v)|;
3: while V £ @ do
4: v =minV;
S
6

U<+ UU{v};
V+—V~N({vtUN(Ww))
7: end while
o Worst-case: O(n) (given by an empty graph)
° //.

selectmin V' Y N
put it in U ° °
N /

L’ STaBLE heuristic = CLique heuristic J

INF421, Lecture 3 — p. 38/54

Stable heuristic

~® The following greedy method will find a maximal stable
1. U = J;
2: order V by increasing values of |N(v)|;
3: while V £ @ do
4: v =minV;
S
6

U<+ UU{v};
V+—V~N({vtUN(Ww))
7: end while
o Worst-case: O(n) (given by an empty graph)

remove v and its star from 'V . // N

N

L’ STaBLE heuristic = CLique heuristic J

INF421, Lecture 3 — p. 38/54

Stable heuristic

~® The following greedy method will find a maximal stable
1. U = J;
2: order V by increasing values of |N(v)|;
3: while V £ @ do
4: v =minV;
S
6

U<+ UU{v};
V+—V~N({vtUN(Ww))
7: end while
o Worst-case: O(n) (given by an empty graph)
- //
select min y
put itin U ® / >

L’ STaBLE heuristic = CLique heuristic J

INF421, Lecture 3 — p. 38/54

Stable heuristic

~® The following greedy method will find a maximal stable
1. U = J;
2: order V by increasing values of |N(v)|;
3: while V £ @ do
4: v =minV;
S
6

U<+ UU{v};
V+—V~N({vtUN(Ww))
7: end while
o Worst-case: O(n) (given by an empty graph)
//.

remove v and its star from 'V

L’ STaBLE heuristic = CLique heuristic J

INF421, Lecture 3 — p. 38/54

Stable heuristic

~® The following greedy method will find a maximal stable
1. U = J;
2: order V by increasing values of |N(v)|;
3: while V £ @ do
4: v =minV;
S
6

U<+ UU{v};
V+—V~N({vtUN(Ww))
7: end while
o Worst-case: O(n) (given by an empty graph)
"7
select min V' /

put it in U ®

L’ STABLE heuristic = CLiQue heuristic J

INF421, Lecture 3 — p. 38/54

Stable heuristic

~® The following greedy method will find a maximal stable
1. U = J;
2: order V by increasing values of |N(v)|;
3: while V £ @ do
4: v =minV;
S
6

U<+ UU{v};
V+—V~N({vtUN(Ww))
7: end while
o Worst-case: O(n) (given by an empty graph)
[

remove v and its star from'V

stop: maximal stable ®

L’ STABLE heuristic = CLiQue heuristic J

INF421, Lecture 3 — p. 38/54

Heuristic fails

#® Heuristic fails to find a maximum stable

o When choosing second element of U, take

Algorithm stops with a stable of cardinality 2

o |

INF421, Lecture 3 — p. 39/54

Polynomial cases

f.o P an NP-complete decision problem T
® Polynomialcase: C' C Ps.t.C €P

® Eg.L={HeG|3IGeG (H=L(G))}

[= graphs that are line graphs of another graph

Proof
Thm. s
A maximum matching)2(]gk
In G is a stable in L(G)
—Ba—

MaTcHING € P and finding L(G) is polytime = StaBLE; € P

o |

INF421, Lecture 3 — p. 40/54

Vertex colouring

Decision problem

VERTEX k-CoLOURING ProBLEM (k-VCP). Given a graph G = (V, F)
and an integer k£ > 0, find a functionc: V — {1,...,k} such that

V{u,v} € E (c(u) # c(v))

o Optimization problem
VERTEX CoLOURING ProBLEM (VCP). Given a graph G = (V, E),

find the minimum k£ € N such that there is a function ¢ : V —
{1,...,k} with V{u,v} € E (c(u) # c(v))
Applications to scheduling and wireless networks

In general, allocate resources to minimum number of
classes without conflicts

o |

INF421, Lecture 3 — p. 41/54

3 Vertex colouring example

POLYTECHNIQUE

7

L

N\ -

1

Vertex colouring heuristic

Each colorset C, = {v e V | ¢c(v) = k} IS a stable

#® Use stable set heuristic as a sub-step
1: k= 1;
U=V,
while U # () do
Cr = maximalStable(G|U));
U+ U\ Cyg;
k<+ k+1;
7: end while

T

o Worst-case: O(n) (given by an empty or complete
graph)

o |

INF421, Lecture 3 — p. 43/54

Model-and-solve

Mathematical programming

Take e.g. the STaBLE problem T

Input (also called parameters):
s set of vertices V
s setofedges E

Output: z : V — {0, 1}

1 if v emaximum stable
0 otherwise

YvoeV x(v){

We also write =, = x(v)

We'd like z = (z, | v € V) € {0,1}V] to be the
characteristic vector of the maximum stable 5*

z1,...,x)y| are also called decision variables J

INF421, Lecture 3 — p. 45/54

Objective function

T
do
A5
POLVTECHNIQUE

If wetake x =(0,0,0,0,0,0,0), S* =g and |S*| =0
(minimum possible value)

o lfwetakex=(1,1,1,1,1,1,1) =1, |S*| = |V| =7 has
the maximum possible value

o Characteristic vector x should satisfy the objective

function
max E Ty
€T

o |

INF421, Lecture 3 — p. 46/54

Constraints

~» Consider the solution z = 1 o
1 certainly maximizes the objective

® ...but S* =V is not a stable!
x = 1 1S an infeasible solution

#® The feasible set is the set of all vectors in {0, 1}V which
encode stable sets

Defining property of a stable:
Two adjacent vertices cannot both belong to the stable
[n other words,
choose at most one vertex adjacent to each edge

Written formally,

_ V{u,v} € B x4+ 1, <1 J

INF421, Lecture 3 — p. 47/54

Verify the constraints

r=(0,1,0,0,0,0,1,1) encodes S* = {2,6,7} T
Ty + 2y = 2 0nly for {u,v} € FF={{2,6},{2,7},{6,7}

Notice FNE = o

Hence, z, + x, < 1 for all {u,v} € E

INF421, Lecture 3 — p. 48/54

So what?

OK, so the Mathematical Programming (MP) formulation

max, Y Ty
veV

V{iu,v} e £ zy+z, < 1
r e {0, 1}Vl

describes STaBLE correctly
Aslong as we can'’t solve it, why should we care?

o |

INF421, Lecture 3 — p. 49/54

The magical method

f.o But WE CAN!
o Use generic MP solvers

These algorithms can solve ANY MP formulation
expressed with linear forms, or prove that there is no
solution

Based on Branch-and-Bound (BB)

® The YES certificate is the characteristic vector of a
feasible solution

o The NO certificate is the whole BB tree, which implicitly
(and intelligently) enumerates the feasible set

YES certificate lengths are polynomial, NO certificates
L may have exponential length J

INF421, Lecture 3 — p. 50/54

CLIQUE and MATCHING

~» Clique (use complement graph): o

max, Y Xy
veV

V{iu,v} € Eu#v xy+x, < 1
r € {0,111Vl

Matching:

{uw}ekE

YVu eV Yoo T <1
vEN (u)

r € {0,1}F

Warning: although MatcHingeP, solving the MP formulation with

L BB is exponential-time J

INF421, Lecture 3 — p. 51/54

How to

i
X
e
POLYTECHNIQUE

Come see me, I'll give you a personal demo

® Goto www.ampl.com and download the AMPL
software, student version

AMPL is for modelling, i.e. writing MP formulations

o Still from www.ampl . com, you can download a student
version of the I[LOG CPLEX BB implementation

o |

INF421, Lecture 3 — p. 52/54

And tomorrow?

-

If you’re interested in modelling problems as MPs

o Mi1:
s MAP557 (Optimization: Theory and Applications)

® M2:

s MPRO (Master Parisien en Recherche
Operationnelle)
http://uma.ensta-paristech.fr/mpro/

o |

INF421, Lecture 3 — p. 53/54

pYL
=

ECOLE
POLYTECHNIQUE

The end

INF421, Lecture 3 — p. 54/54

