

INF421, Lecture 9 Shortest paths

Leo Liberti

LIX, École Polytechnique, France

ÉCOLE POLYTECHNIQUE

Course

- Objective: to teach you some data structures and associated algorithms
- **Evaluation**: TP noté en salle info le 16 septembre, Contrôle à la fin. Note: $\max(CC, \frac{3}{4}CC + \frac{1}{4}TP)$
- Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books:

- 1. Ph. Baptiste & L. Maranget, *Programmation et Algorithmique*, Ecole Polytechnique (Polycopié), 2009
- 2. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
- 3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
- 4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

Lecture summary

- Shortest Path Problems (SPP) and variants
- Dijkstra's algorithm
- Floyd-Warshall's algorithm
- Modelling shortest paths: flows
- A dual "algorithm"

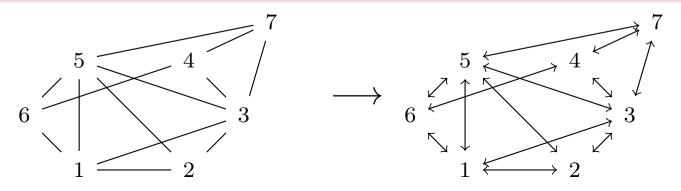
Minimal knowledge

- Main SPP variants: Point-To-Point Shortest Path (P2PSP), Shortest Path Tree (SPT), unit / nonnegative arc costs, Negative Cycle detection (NC), All Shortest Paths (ASP)
- SPT on unit costs: use BFS (Lecture 2)
- Dijkstra's algorithm: like Graph Scanning (Lecture 6) but with a priority queue; requires nonnegative arc costs
- Floyd-Warshall's algorithm: solves ASP and NC
- Flows: assignment of values to arcs so that some conservation constraints hold at each node, can be used to model SPPs with Mathematical Programming (MP)
- Duality: the dual MP formulation for P2PSP yields a surprising solution method!

Shortest path problems

Graphs or digraphs?

- In most applications, the correct model for SPPs is given by arcs and digraphs rather than edges and graphs
- SPPs also occur as sub-problems in complicated algorithms: we may need to solve SPPs on graphs
- Although directed paths are also called **walks** (Lectures 6, 8), we still use the term **path** for historical reasons
- Similarly, we use the term cycle to also mean circuits
- An SPP on a graph is equivalent to an SPP on the digraph where each edge is replaced two antiparallel arcs
 - Conversely, replacing each arc (or pair of antiparallel arcs) of a digraph with an edge gives rise to the underlying graph



Motivation

Several SP problems can be solved in polynomial time

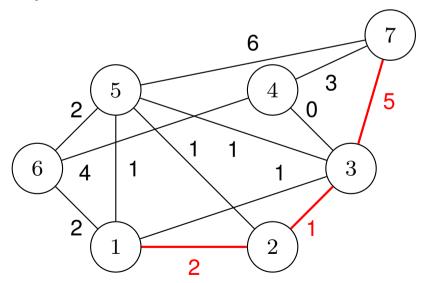
Cost of a path

- ullet We consider a weighted digraph G=(V,A) with arc costs
- **•** I.e. we are given a function $c:A\to\mathbb{Q}$
- If $P \subseteq G$ is a path $u \to v$ in G then

$$c(P) = \sum_{(u,v)\in P} c_{uv},$$

where $c_{uv} = c((u, v))$

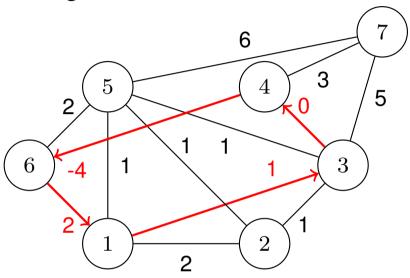
● For example, the path $1 \rightarrow 2 \rightarrow 3 \rightarrow 7$ has cost 2 + 1 + 5 = 8



Shortest path = path P having minimum cost c(P)

Negative cycles

The red cycle has negative cost 1+0-4+2=-1<0



Thm.

If G = (V, A) has a cycle C with c(C) < 0, \exists no SP in G

Proof

Suppose P is SP $u \to v$ with cost c^* . Let $w \in V(C)$, consider path $Q = Q_1 \cup Q_2 \cup Q_3$ where $Q_1 \ u \to w$, $Q_2 = Q_1^{-1}$, and Q_3 consists of $k = \lceil \frac{c(Q_1) + c(Q_2) + c^*}{|c(C)|} \rceil + 1$ tours around C. Then $c(Q) = c(Q_1) + c(Q_2) + kc(C) < c^* \Rightarrow Q$ shorter than P (contradiction)

 \Rightarrow Need to assume c yields no negative cycles

Negative cycles: comments

- ullet If c yields no negative cycles, call c conservative
- In order to construct Q in proof of above thm., we toured several times around negative cycle C
- ightharpoonup Q is not a simple path
- If we look for the shortest simple path in graphs then we don't have this unboundedness problem
- The Shortest Simple Path (SSP) problem, however, is NP-hard on general non-conservatively weighted graphs
- Solving the Longest Path problem is also NP-hard (Prove this by polynomially transforming SSP to Longest Path, see Lecture 8 for an example of polynomial transformation)

Assumptions

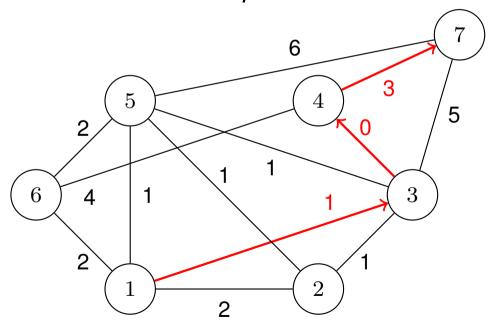
For the rest of these slides, if not otherwise specified, assume:

- G is connected (graph) or strongly connected (digraph)
- The arc costs c are conservative

Point-to-point shortest path

Point-To-Point Shortest Path (P2PSP). Given a digraph G=(V,A), a function $c:A\to \mathbb{Q}$ and two distinct nodes $s,t\in V$, find a SP $s\to t$

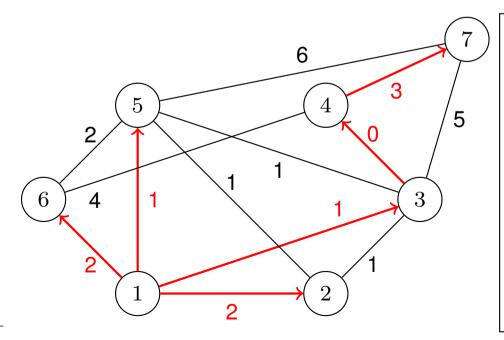
A shortest path $1 \rightarrow 7$



Shortest path tree

Shortest Path Tree (SPT). Given a digraph G=(V,A), a function $c:A\to \mathbb{Q}$ and a source node $s\in V$, find SPs $s\to v$ for all $v\in V\smallsetminus \{s\}$

- **Proof** Remark: there may be more than one SP $s \rightarrow v$
- Consistency: one can always choose SP P_{sv} $u \to v$ so that $T = \bigcup_{v \neq s} P_{sv}$ is a spanning oriented tree ($\Leftrightarrow \forall v \neq s \ (N_T^-(v) = 1)$)
- **Thm.** A If c is conservative, every initial subpath of a SP is a SP (e.g. subpath $1 \rightarrow 4$ of SP $1 \rightarrow 7$ below is a SP $1 \rightarrow 4$)



Let P be a $SPs \to w$ and Q a $SPs \to v$ through w; if the **predecessor of** w **in** P **is** $\mathsf{p}_P(w) = z_1$ and $\mathsf{p}_Q(w) = z_2$ with $z_1 \neq z_2$, then no sp. or. tree T can contain $P \cup Q$. By Thm. A above, the initial subpath P' to w of Q is also a SP $s \to w$, so replace P with P' and obtain $|N_{P' \cup Q}^-(w)| = 1$ as required.

All shortest paths

ALL SHORTEST PATHS (ASP). Given a digraph G=(V,A) and a function $c:A\to \mathbb{Q}$, find SPs $u\to v$ for all pairs u,v of distinct nodes in V

Variants

- Unit costs: for all $(u,v) \in A$ we have $c_{uv} = 1$
- ▶ Non-negative costs: for all $(u, v) \in A$ we have $c_{uv} \ge 1$
- Several others, too many to list them all
- *A remarkable one*: SPT on undirected graphs with $c: E \to \mathbb{N}$ can be solved in linear time [Thorup 1997]
- SPT on unit costs: use BFS (see Lectures 2, 6), O(m+n)

Dijkstra's algorithm

The problem it targets

Dijkstra's algorithm solves the SPT on weighted digraphs G=(V,A) with non-negative costs (with a given source node $s\in V$)

- If $c \ge 0$ then c is conservative (why?)
- ▶ Worst-case complexity: $O(n^2)$ on general digraphs, $O(m + n \log n)$ on sparse graphs, where n = |V| and m = |A|
- Used as a sub-step in innumerable algorithms
- Main application: routing in networks (usually transportation and communication)

Data structures

We maintain two functions

- $d:V \to \mathbb{Q}_+$ $d_v = d(v) \text{ is the cost of a SP } s \to v \text{ for all } v \in V$
- $\mathbf{p}:V\to V$ $\mathbf{p}_v=\mathbf{p}(v) \text{ is the predecessor of } v \text{ in a SP } s\to v \text{ for all } v\in V$

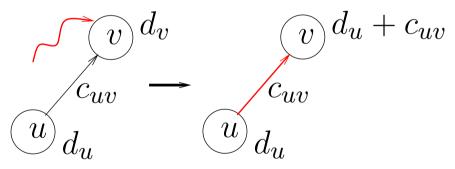
Initialization

- $d_s = 0$ and $d_v = \infty$ for all $v \in V \setminus \{s\}$
- p(v) = s for all $v \in V$

Settle and Relax

- A node $v \in V$ is settled when d_v no longer changes
- Relaxing an arc $(u, v) \in A$ consists in:

if
$$d_u + c_{uv} < d_v$$
 then Let $d_v = d_u + c_{uv}$; Let $\mathbf{p}_v = u$; end if

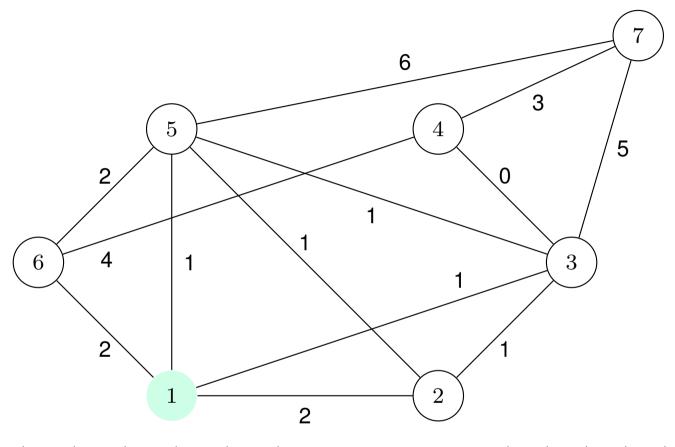


• When (u,v) is relaxed and v is not settled yet, d_v might change

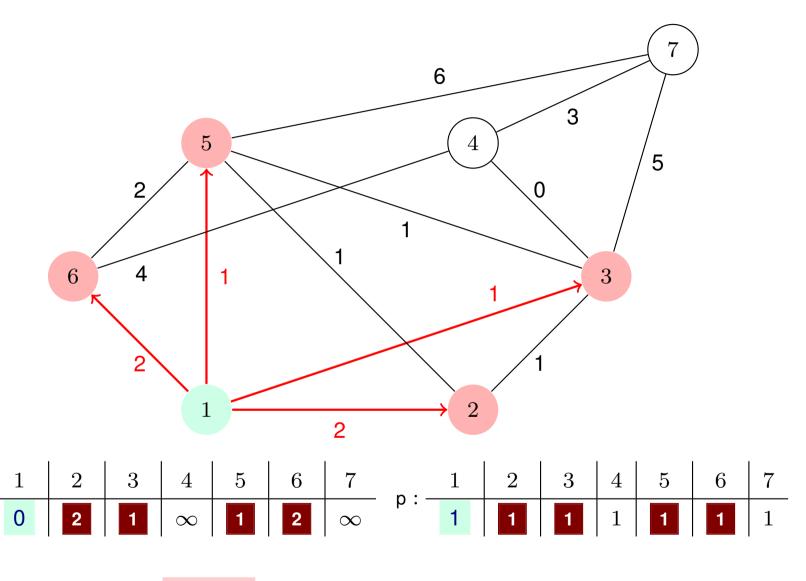
Description

Dijkstra's algorithm :

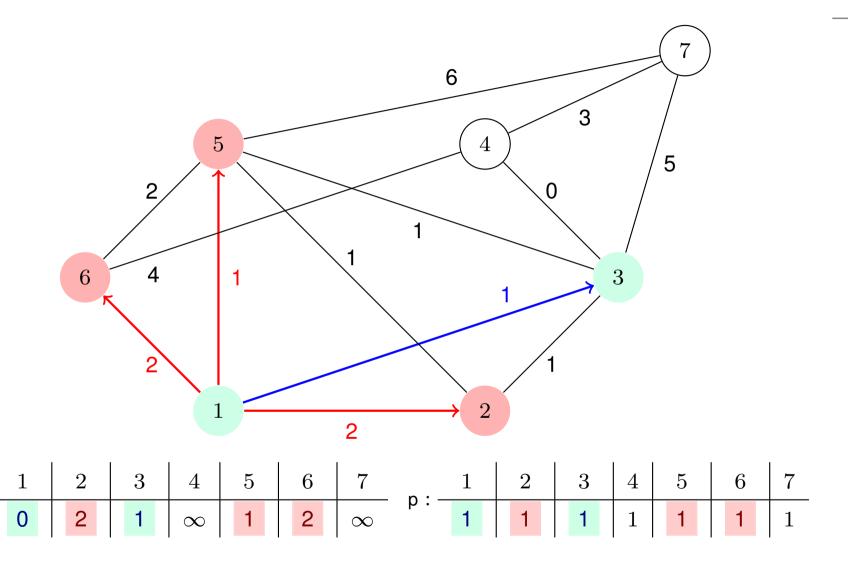
- 1: **while** ∃ unsettled nodes **do**
- 2: Let u be an unsettled node with minimum d_u ;
- 3: Settle u;
- 4: for $(u, v) \in A$ do
- 5: Relax (u, v);
- 6: end for
- 7: end while
- If $d_v = \infty$ at Step 4, relaxing (u, v) will necessarily change d_v (why?)
- Nodes $v \in V$ such that $d_v < \infty$ are reached
- A simple implementation is $O(n^2)$



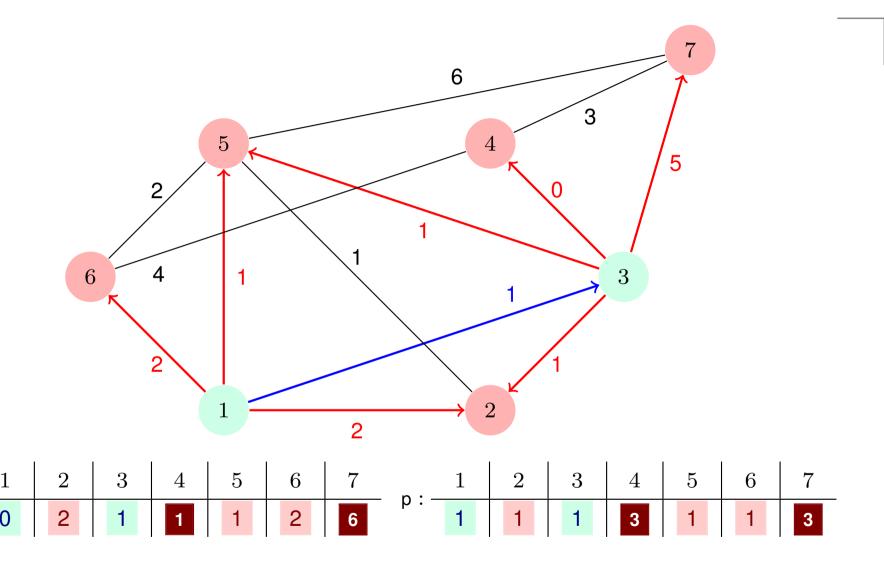
initialize (settle) s = 1



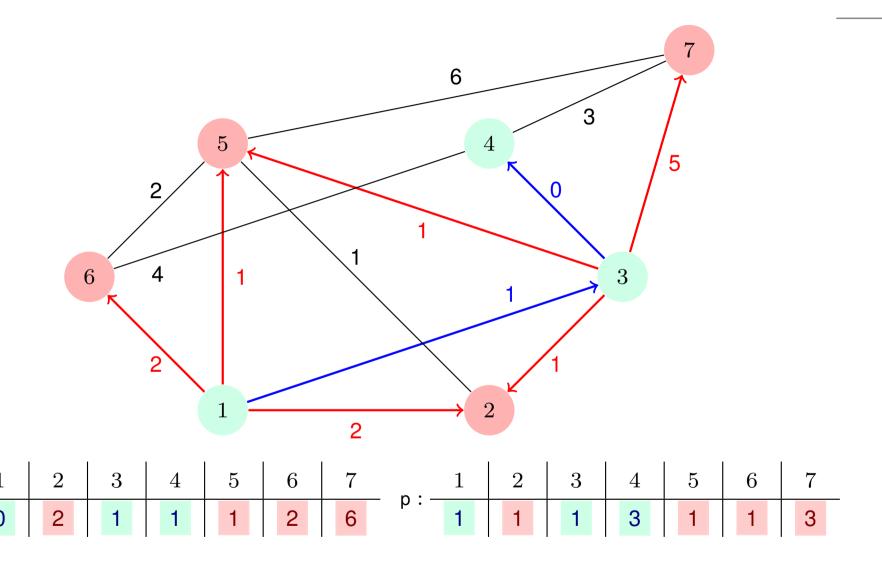
relax $\delta^{+}(1)$, update 2, 3, 5, 6



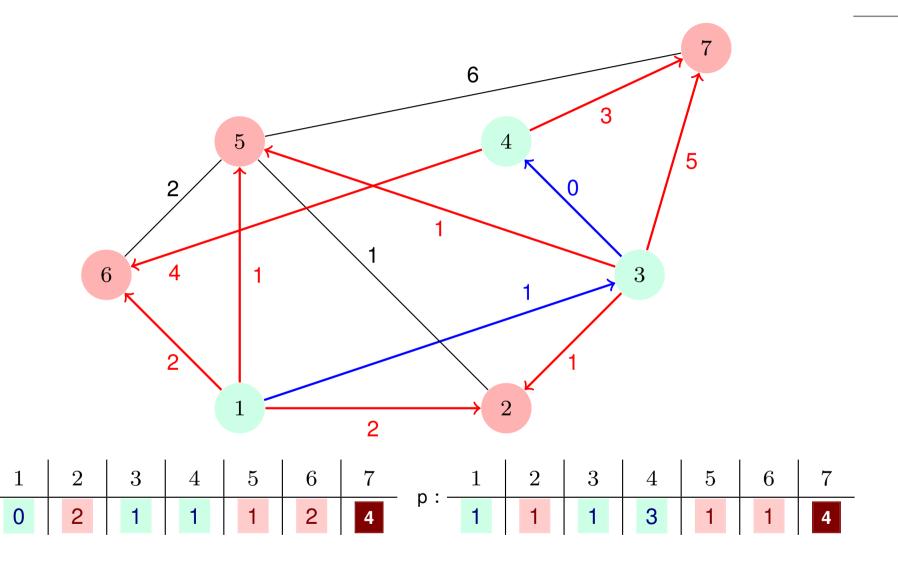
settle 3 ($d_3 = 1$ is minimum)



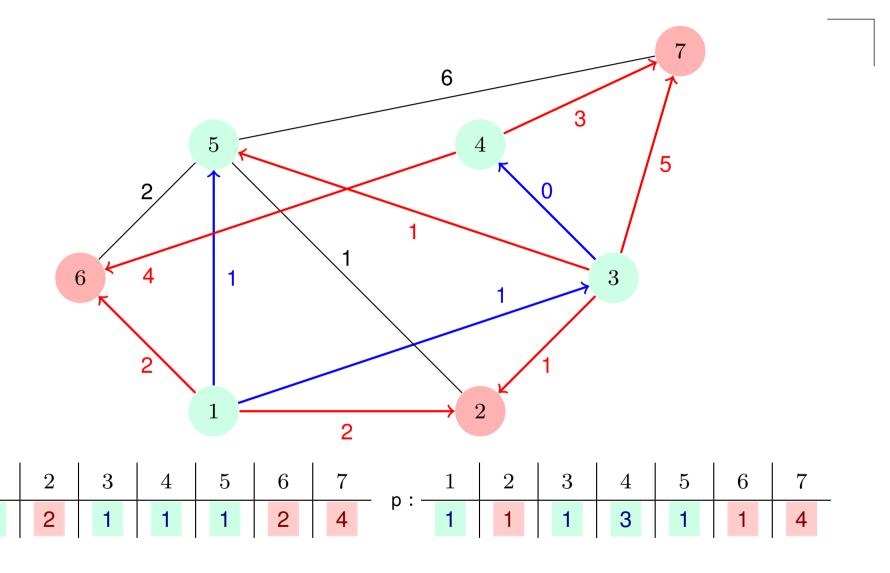
relax $\delta^+(3)$, update 4,7



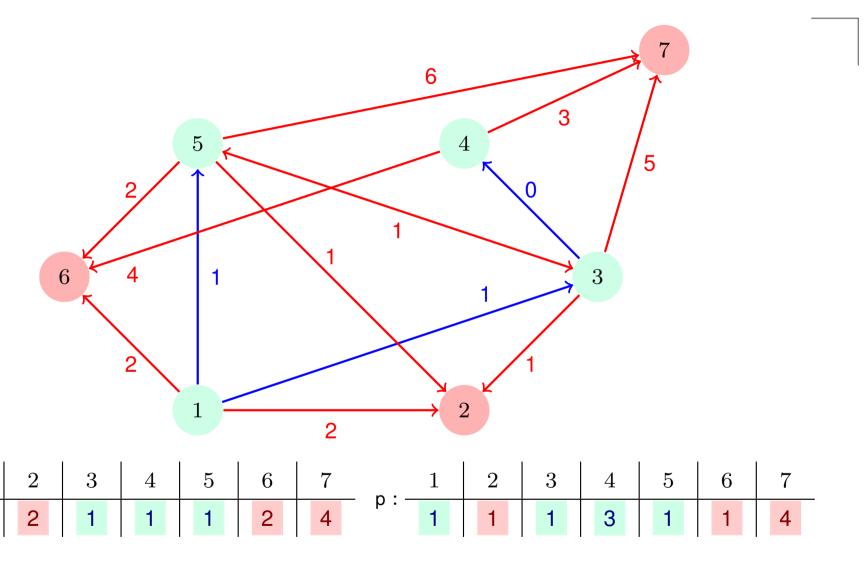
settle 4 ($d_4 = 1$ is minimum)



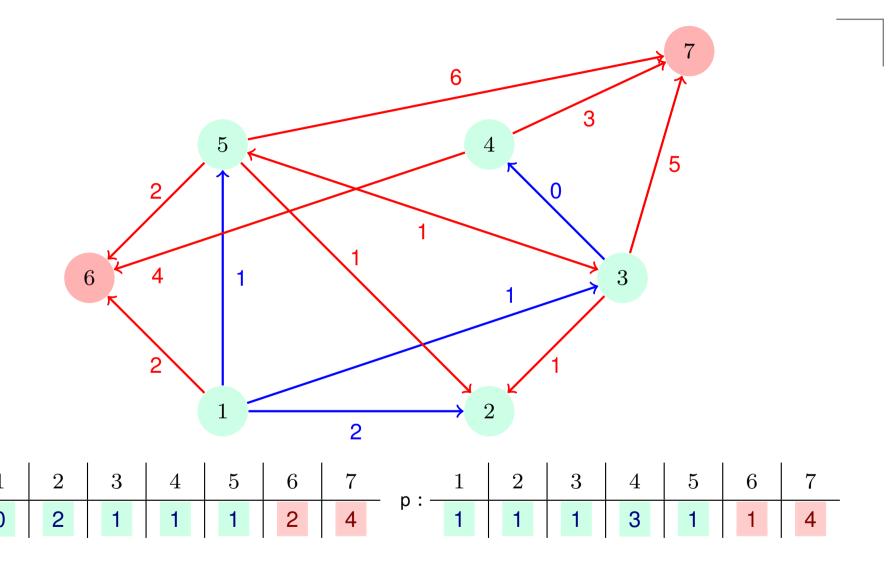
relax $\delta^+(4)$, update 7



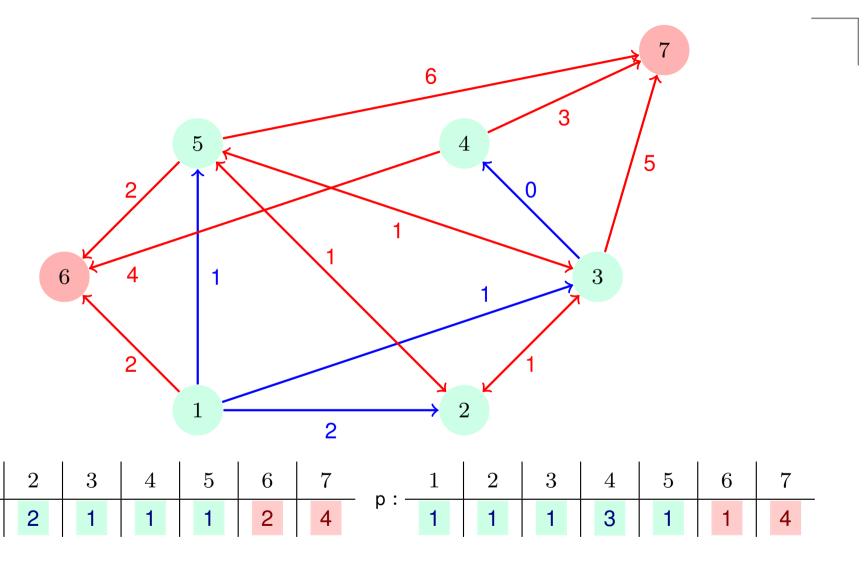
settle 5 ($d_5 = 1$ is minimum)



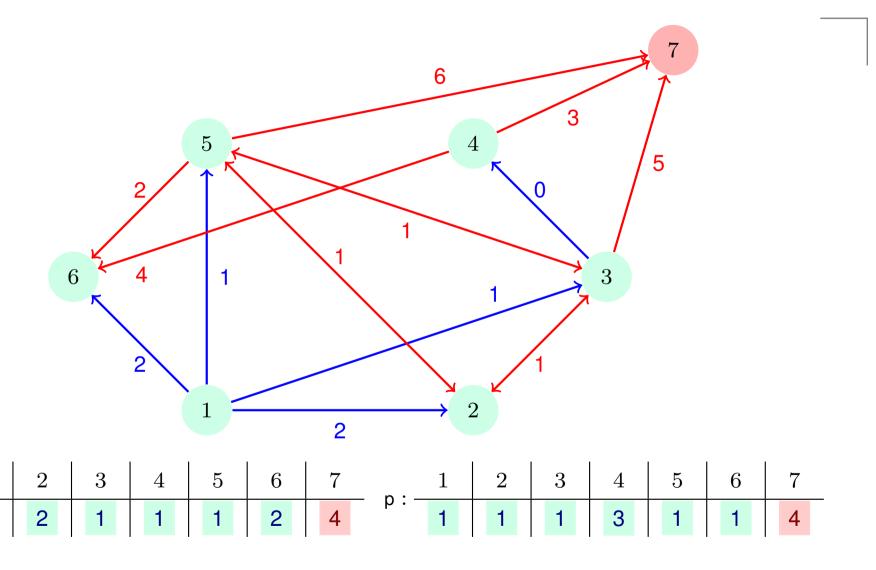
relax $\delta^+(5)$



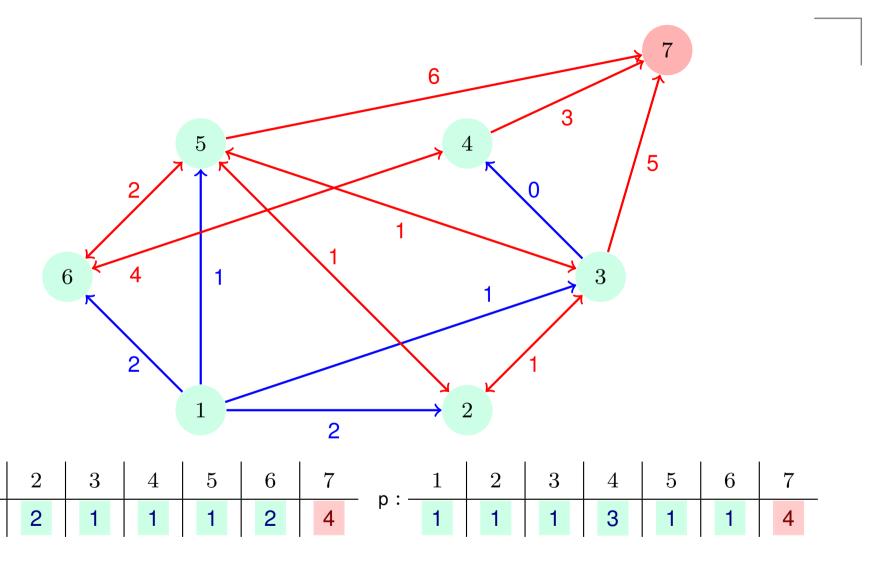
settle $2 (d_2 = 2 \text{ is minimum})$



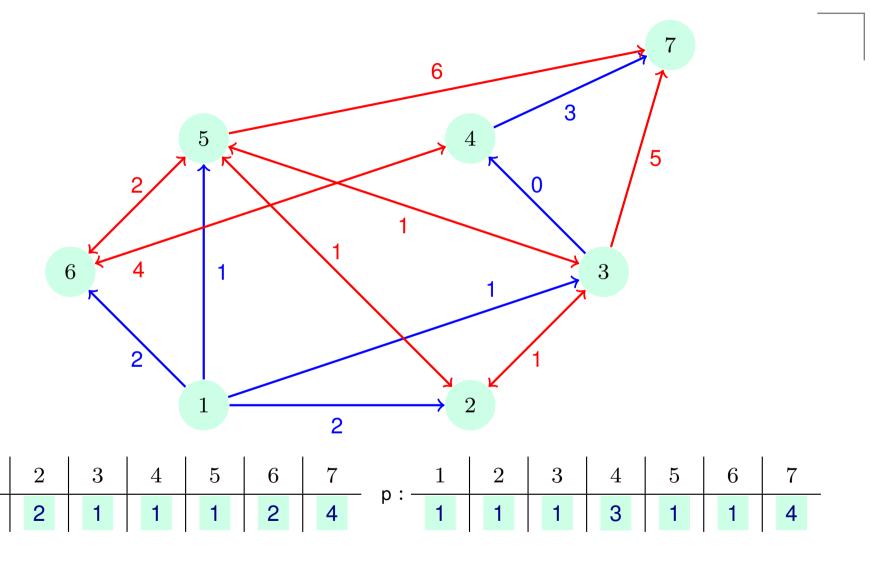
relax $\delta^+(2)$



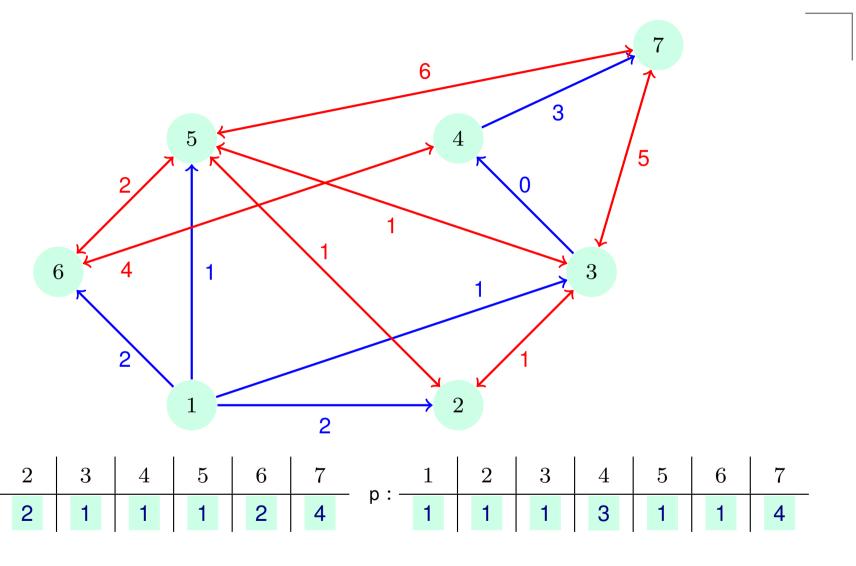
settle 6 ($d_6 = 2$ is minimum)



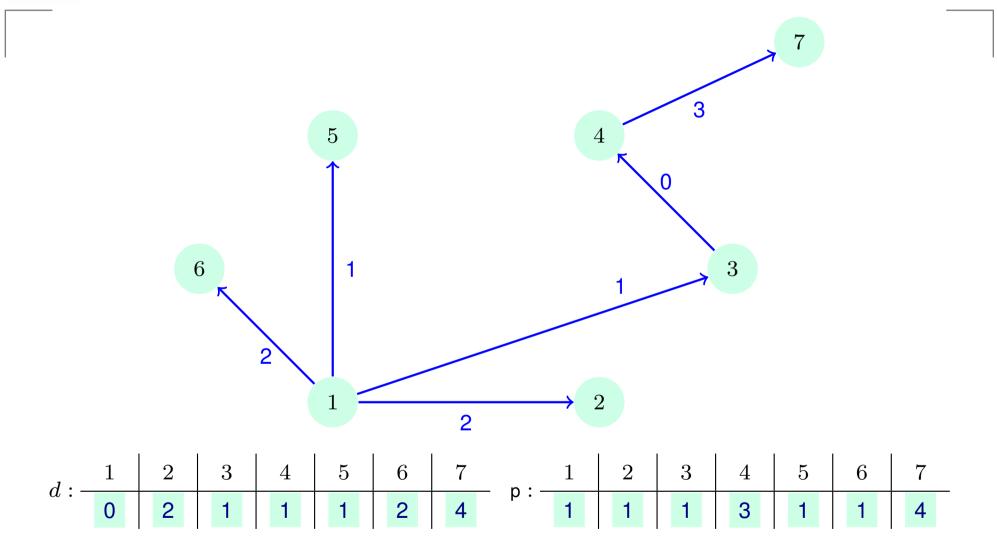
relax $\delta^+(6)$



settle 7 ($d_7 = 4$ is minimum)



relax $\delta^+(7)$

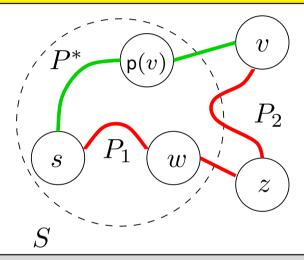


An optimal SPT solution

The algorithm is correct 1/2

Thm.

At any iteration and for each $v \in V$, d_v is the cost of a SP $s \to v$ where all predecessors of v are settled



Proof

By induction on itn. index k. Let S be the set of settled nodes at itn. k-1, let u be chosen at Step 2 of itn. k, and P^* be the path $s \to v$ determined by the alg. Suppose \exists another path P from s to v with cost c(P). Since $v \not\in S$, there must be $(w,z) \in A$ with $w \in S$ and $z \not\in S$ s.t. $P = P_1 \cup \{(w,z)\} \cup P_2$, where $V(P_1) \subseteq S$. Then $c(P) = c(P_1) + c_{wz} + c(P_2) \ge c(P_1) + c_{wz}$ (because we subtracted $c(P_2)$) $= d_w + c_{wz}$ (by induction) $= d_z \ge d_v$ (because otherwise d_v would not be minimum, contradicting the choice of v at Step 2) $= c(P^*)$, so that P^* is a SP $s \to v$

The algorithm is correct 2/2

- Remains to prove: at the end of the algorithm, every node is settled
- Similar to proof that Graph Scanning reaches all vertices in a graph (Lecture 6)
- Left as an exercise

Implementation

- No unreached node v can ever have minimum d_v at Step 2 since $d_v = \infty$ if v unreached
- The minimum choice at Step 2 occurs over unsettled, reached nodes ⇒ maintain a data structure containing unsettled, reached nodes
- Data structure that provides minimum in constant time:
 priority queue
- When arc (u, v) is relaxed and v is already reached, the priority d_v might be updated
- We update a priority by deleting then re-inserting the element with the new priority (can implement delete in $O(\log n)$)

Pseudocode

```
1: \forall v \in V \ d_v = \infty, d_s = 0;
 2: \forall v \in V \; \mathsf{p}_v = s;
 3: Q.insert(s, d_s);
 4: while Q \neq \emptyset do
 5: Let u = Q.popMin();
    for (u,v) \in \delta^+(u) do
 7: Let \Delta = d_u + c_{uv};
 8: if \Delta < d_v then
 9: Let d_v = \Delta;
10:
         Let p_{i} = u;
         Q.\mathtt{delete}(v); // if v \not\in Q this does nothing
11:
12: Q.insert(v, d_v);
13: end if
14: end for
15: end while
```


Worst-case complexity

- Each node is settled exactly once (why? argue by contradiction) ⇒
 - 1. popMin() is called O(n) times $\Rightarrow O(n \log n)$
 - 2. each arc is relaxed exactly once $\Rightarrow O(m \log n)$
- This yields an $O((n+m)\log n)$ algorithm
- Worse than $O(n^2)$ if graph is dense, however graphs in practice are usually sparse: competitive
- Can improve to $O(m + n \log n)$ with more refined data structures

Point-to-point SPs

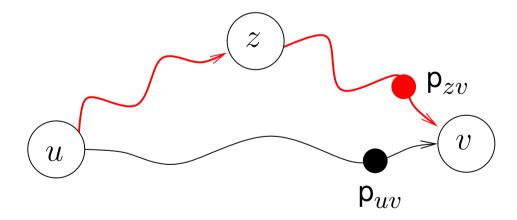
- The P2PSP from s to t on nonnegatively weighted digraphs can be solved by Dijkstra's algorithm
- Simply terminate as soon as v is settled
- Insert the following code between Step 5 and 6:

```
if u = t then exit; end if
```


Floyd-Warshall's algorithm

Solves ASP

- Solves the ASP with conservative arc costs c
- **D**ata structures: two $n \times n$ matrices d, p
 - $d_{uv} = cost of SP u \rightarrow v$
 - p_{uv} =predecessor of v in SP from u
- For each node z and pair u,v of nodes, see if SP $u\to v$ can be improved by passing through z



• If so, update d_{uv} to $d_{uz}+d_{zv}$ and p_{uv} to p_{zv}

The simplest algorithm!

```
1: \forall u, v \in V \ d_{uv} = \begin{cases} c_{uv} & \text{if } (u, v) \in A \\ \infty & \text{otherwise} \end{cases}
 2: \forall u, v \in V \; \mathsf{p}_{uv} = u
 3: for z \in V do
 4: for u \in V do
 5: for v \in V do
 6: \Delta = d_{uz} + d_{zv};
            if \Delta < d_{uv} then
            d_{uv} = \Delta;
 9:
               \mathsf{p}_{uv}=\mathsf{p}_{zv};
              end if
10:
      end for
11:
        end for
12:
13: end for
```


Remarks

- **■** Worst-case complexity: clearly $O(n^3)$
- Algorithm is correct: every possible triangulation was tested
- Also solves Negative Cycle (NC):
 - ullet Assume there is a negative cycle through u
 - When u = v, triangulations will eventually yield $d_{uu} < 0$
 - Whenever that happens, terminate: a negative cycle was found
 - After Step 6, insert code:

```
if \Delta < 0 then exit; end if
```


Flows

Definitions

Defn.

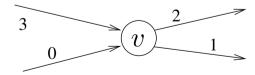
A flow is a pair of functions $(x:A\to\mathbb{R},b:V\to\mathbb{R})$ s.t.:

$$\forall u \in V \quad \sum_{(u,v)\in A} x_{uv} - \sum_{(v,u)\in A} x_{vu} = b_u$$

ullet Whenever $b_v=0$ for some $v\in V$, then the above becomes

$$\forall v \in V \quad b_v = 0 \to \sum_{(u,v) \in A} x_{uv} = \sum_{(v,u) \in A} x_{vu} \tag{1}$$

lacksquare The entering flow in v is equal to the exiting flow



Eq. (1) are the flow conservation equations

Mathematical Programming

Flow equations help define connected subgraphs:

- Can use flow equations in Mathematical Programs (MP)
- E.g. a SP $s \rightarrow t$ is the connected subgraph of minimum cost containing s, t:

$$\min_{x:A\to\mathbb{R}} \sum_{(u,v)\in A} c_{uv} x_{uv}$$

$$\forall u\in V \quad \sum_{(u,v)\in A} x_{uv} - \sum_{(v,u)\in A} x_{vu} = \begin{cases} 1 & u=s\\ -1 & u=t\\ 0 & \text{othw.} \end{cases}$$

$$\forall (u,v)\in A \qquad \qquad x_{uv} \in \{0,1\}$$

Test this with AMPL

A dual algorithm

MP in flat form

Every MP involving linear forms only can be written in the form

$$\min_{x} \quad \gamma^{\mathsf{T}} x \\
Ax \leq \beta \\
x \in X$$

$$[P]$$

- ▶ For P2PSP on our usual graph with s = 1 and t = 7 we have:

$$\blacksquare$$
 $A =$

Transpose

 $(reflect) \longrightarrow$

 $(turn) \longrightarrow$

```
0 0 1 1
0 0 0
0 0 0 0
0 0
\frac{1}{0}
0 0 0
\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
0 0 0
0
0
1
0
0
```


A dual view

- Turn rows into columns (constraints into variables)
- ... and columns into rows (variables into constraints)

ÉCOLE POLYTECHNIQUE

LP Dual

- For each constraint define a variable y_i ($i \le 7$)
- The Linear Programming Dual is

$$\max_{y} -y\beta \\
 yA \le \gamma$$

$$D[D]$$

In the case of the SP formulation, the dual is:

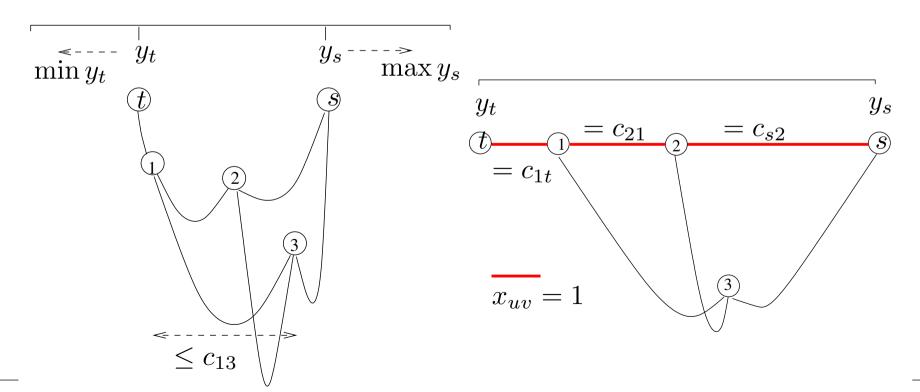
$$\max_{y} y_t - y_s \\
\forall (u, v) \in A \quad y_v - y_u \leq c_{uv}$$
 \[DSP \]

Dual solution encodes the same solution as the "primal" (test with AMPL)

How the hell is this an SP formulation?

A mechanical algorithm

- Weighted arcs = strings as long as the weights
- Nodes = knots
- lacksquare Pull nodes s,t as far as you can
- At maximum pull, strings corresponding to arcs (u, v) in SP have horizontal projections whose length is exactly c_{uv}



Open question

What is the worst-case complexity of the mechanical algorithm?

End of Lecture 9

AND END OF COURSE! Thanks for your attention