INF421, Lecture 9
Shortest paths

Leo Liberti

LIX, Ecole Polytechnique, France

°

R

Course

Objective: to teach you some data structures and associated
algorithms

Evaluation: TP noté en salle info le 16 septembre, Contrble a la fin.
Note: max(CC, 3CC + 1TP)

Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books:
1. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique
(Polycopié), 2009
2. G. Dowek, Les principes des langages de programmation, Editions de I'X, 2008
3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

Website: www.enseignement .polytechnique.fr/informatique/INF421

Contact. liberti@lix.polytechnique. fr (e-mail subject: INF421)

-

|

INF421, Lecture 9 —p. 2

Lecture summary

-

Shortest Path Problems (SPP) and variants
Dijkstra’s algorithm

Floyd-Warshall's algorithm

Modelling shortest paths: flows

© o o o 0

A dual “algorithm”

o |

INF421, Lecture 9 —p. 3

°

°

Minimal knowledge

-

Main SPP variants: POINT-TO-POINT SHORTEST PATH (P2PSP),
SHORTEST PATH TREE (SPT), unit / nonnegative arc costs,
NEGATIVE CycLE detection (NC), ALL SHORTEST PaTHS (ASP)

SPT on unit costs: use BFS (Lecture 2)

Dijkstra’s algorithm: like GRAPH ScANNING (Lecture 6) but
with a priority queue; requires nonnegative arc costs

Floyd-Warshall’s algorithm: solves ASP and NC

Flows: assignment of values to arcs so that some
conservation constraints hold at each node, can be
used to model SPPs with Mathematical Programming
(MP)

Duality: the dual MP formulation for P2PSP yields a
surprising solution method! o

INF421, Lecture 9 —p. 4

2

g

em
A
a (e
*

=
o

=

"

Shortest path problems

Graphs or digraphs?

|7_. In most applications, the correct model for SPPs is given by arcs T
and digraphs rather than edges and graphs

SPPs also occur as sub-problems in complicated algorithms: we
may need to solve SPPs on graphs

Although directed paths are also called walks (Lectures 6, 8), we
still use the term path for historical reasons

® Similarly, we use the term cycle to also mean circuits

An SPP on a graph is equivalent to an SPP on the digraph where
each edge is replaced two antiparallel arcs

Conversely, replacing each arc (or pair of antiparallel arcs) of a
digraph with an edge gives rise to the underlying graph

6 3 H6)/‘ \3
L N % N % J

INF421, Lecture 9 —p. 6

Motivation

g
ECOLE
POLYTECHNIQUE

Several SP problems can be solved in
polynomial time

Cost of a path

f.. We consider a weighted digraph G = (V, A) with arc costs T
® |.e.wearegivenafunctionc: A — Q
® [f PC Gisapathu — vin G then

c(P) = Z Cuvs

(u,v)EP

where ¢, = ¢((u,v))
® Forexample,thepathl -2 —+3 —>7hascost2+1+5=28

L Shortest path = path P having minimum cost ¢(P) J

INF421, Lecture 9 —p. 8

Negative cycles

Thm.
If G = (V,A) has a cycle C with ¢(C') < 0,3no SPin G

Proof
Suppose P is SP u — v with cost ¢*. Let w € V(C), consider path Q@ = Q1 U Q2 U Q3

where Q1 ©v — w, Qo = Ql_l, and Q3 consists of k£ = [C(Ql)rg(cg’)?ch*] + 1 tours

around C. Then ¢(Q) = ¢(Q1) +c(Q2) + kc(C) < c* = @ shorter than P (contradiction)

L — Need to assume c yields no negative cycles J

INF421, Lecture 9 —p. 9

Negative cycles: comments

If ¢ yields no negative cycles, call ¢ conservative T

In order to construct @ in proof of above thm., we toured
several times around negative cycle C

= () Is not a simple path

If we look for the shortest simple path in graphs then we
don’t have this unboundedness problem

The SHoORTEST SimPLE PATH (SSP) problem, however, is
NP-hard on general non-conservatively weighted graphs

Solving the LoNgEST PATH problem is also NP-hard
(Prove this by polynomially transforming SSP to LongesT PATH, see Lecture 8 for an

example of polynomial transformation)

|

INF421, Lecture 9 —p. 10

Assumptions

"
X
T
ECOLE
POLYTECHNIQUE

For the rest of these slides, if not otherwise specified,
assume:

(is connected (graph) or strongly connected (digraph)
The arc costs ¢ are conservative

o |

INF421, Lecture 9 —p. 11

Point-to-point shortest path
K -

PoINT-TO-PoINT SHORTEST PATH (P2PSP). Given a digraph
G = (V,A), a function ¢ : A — Q and two distinct nodes
s,t eV, findaSP s —t

A shortest path1 — 7

INF421, Lecture 9 —p. 12

Shortest path tree

SHORTEST PaTH TREE (SPT). Given a digraph G = (V, A), a function c : —‘
A — Qand a source node s € V, find SPs s — v forall v € V \ {s}

® Remark: there may be more than one SP s — v

® Consistency: one can always choose SP P,, u — v so that
T = U,», Psv Is @ spanning oriented tree (< Vv # s (Nr (v) = 1))

® Thm. A|If cis conservative, every initial subpath of a SP is a SP
(e.g. subpath1 — 4 0of SP 1 — 7 belowisa SP 1 — 4)

Let PbeaSPs — wand(@) aSPs — v

through w; if the predecessor of w in P
is pp(w) = 21 andpg(w) = z2 with
z1 F#£ z2, then no sp. or. tree 'T' can con-
tain P U). By Thm. A above, the ini-
tial subpath P’ to w of Q is also a SP

s — w, so replace P with P’ and obtain

‘N;’UQ (w)| = 1 as required.

INF421, Lecture 9 —p. 13

All shortest paths

ALL SHORTEST PaTHs (ASP). Given a digraph G = (V, A) and
a function ¢ : A — Q, find SPs u — v for all pairs u, v of
distinct nodes in VV

|

INF421, Lecture 9 —p. 14

© o o @

°

Variants

-

Unit costs: for all (u,v) € A we have ¢, =1
Non-negative costs: for all (u,v) € A we have ¢, > 1
Several others, too many to list them all

A remarkable one: SPT on undirected graphs with
¢: E — N can be solved in linear time [Thorup 1997]

SPT on unit costs: use BFS (see Lectures 2, 6),
O(m + n)

|

INF421, Lecture 9 —p. 15

2
Se
=m
A
(D
*
=
o
=
"

Dijkstra’s algorithm

The problem it targets

-

Dijkstra’s algorithm solves the SPT on weighted digraphs
G = (V, A) with non-negative costs (with a given source
node s € V)

® |f ¢ > 0then cis conservative (why?)

» Worst-case complexity: O(n?) on general digraphs,
O(m + nlogn) on sparse graphs, where n = |V| and
m = | A

Used as a sub-step in innumerable algorithms

Main application: routing in networks (usually
transportation and communication)

o |

INF421, Lecture 9 —p. 17

Data structures

"
X
e
ECOLE
POLYTECHNIQUE

» We maintain two functions
s d:V — @_|_
d, = d(v) is the costofa SPs — v forallv € V
s p: V>V
p, = p(v) is the predecessor of vina SPs — v forallv € V

Initialization
s dg=0andd, =ocoforallveV < {s}
s p(v)=sforallveV

o |

INF421, Lecture 9 —p. 18

Settle and Relax

#® A node v € V is settled when d,, no longer changes
Relaxing an arc (u,v) € A consists in:

if d, + cyp < d, then dy, + Cuw
Letd, = dy, + cyp; @/@ @/@
Let p, = u;

end if

#® When (u,v) is relaxed and v is not settled yet, d, might
change

o |

INF421, Lecture 9 —p. 19

Description

Dijkstra’s algorithm :

1: while 3 unsettled nodes do

2: Let u be an unsettled node with minimum d,;
3: Settle u;

4: for (u,v) € Ado
5 Relax (u,v);
6: end for
7: end while

® If d, = o at Step 4, relaxing (u, v) will necessarily
change d, (why?)

® Nodes v € V such that d, < oo are reached
A simple implementation is O(n?)

o |

INF421, Lecture 9 — p. 20

Example with s = 1

1 [2]3]4a|5]6]7

d :

L initialize (settle) s =1 J

INF421, Lecture 9 —p. 21

Example with s = 1

3
5 (4
S 5

// O
S 1 |

%) 4 1 ; 3

\ /

1 > 2
2

2 fslalsfelr al2[s|a]s |67
o AH ~ABA~ " HHA"Hl:

L relax 67 (1), update 2,3,5,6 J

INF421, Lecture 9 —p. 21

1| 2|3 |4] 5|6 |7

BRI ERENE

1
p:

1
2

Example with s = 1

12| 3|45 |6 |7
02 |1 |oo| 1] 2o

d :

|

INF421, Lecture

settle 3 (d3 = 1 is minimum)

o

9-p. 21

Example with s = 1

w
=
=
H
=
<& |
S
20
cp
-

123]als]|6]7
HENEN : IENENI : |

relax 67(3), update 4,7

p:

1|23]als]|6]7
o 2|1 ||z @

d:

o

9-p. 21

INF421, Lecture

Example with s = 1

L settle 4 (ds = 1 1s minimum) J

INF421, Lecture 9 —p. 21

7 .
W

7
3

5 | 6 1 2] 3] 4|56
1 | 2 BN

2
Se
=m
A
e
*
=
o
=
"

Example with s = 1

INF421, Lecture 9 —p. 21

3
Se
=m
-
(D
*
=
o
=
"

Example with s = 1

5 | 6 | 7 1\23
p:
12\4 1\11

settle 5 (ds = 1 is minimum)

4
3

5
1

6
]

7
4

|

INF421, Lecture 9 —p. 21

Example with s = 1

w

=

g

H

=
gl 1

Z

S
20
CD.

-

123]a|s5]6]|7
11131 | 1]4

p:

12| 3]a|s5]6 |7
0|2 1|1 |1]2]a4

d:

|

INF421, Lecture

relax 67(5)

9-p. 21

3
Se
=m
-
O
*
=
o
=
"

Example with s = 1

5 | 6 | 7 1\23
p:
12\4 1\11

settle 2 (ds = 2 Is minimum)

4
3

5
1

6
]

7
4

|

INF421, Lecture 9 —p. 21

Example with s = 1

w

=

g

H

=

gl 1
S

20

CD.

-

123]a|s5]6]|7
11131 | 1]4

p:

12| 3]a|s5]6 |7
0|2 1|1 |1]2]a4

d:

|

INF421, Lecture

relax 67 (2)

9-p. 21

3
Se
=m
-
O
*
=
o
=
"

Example with s = 1

5 | 6 | 7 1\23
p:
12\4 1\11

settle 6 (dg = 2 Is minimum)

4
3

5
1

6
1

7
4

|

INF421, Lecture 9 —p. 21

Example with s = 1

w
=
g
H
=
~ |
s
20
cp
-

123]a|s5]6]|7
11131 | 1]4

p:

12| 3]a|s5]6 |7
0|2 1|1 |1]2]4

d:

|

INF421, Lecture

relax 67 (6)

9-p. 21

3
Se
=m
-
e
*
=
o
=
"

Example with s = 1

5 | 6 | 7 1\23
p:
12\4 1\11

settle 7 (dv = 4 is minimum)

4
3

5
1

6
1

7
4

|

INF421, Lecture 9 —p. 21

Example with s = 1

w
=
g
H
=
~ |
s
20
cp
-

123]a|s5]6]|7
11131 |14

p:

12| 3]a|s5]6 |7
0|2 1|1 |1]2]a4

d:

|

INF421, Lecture

relax 67 (7)

9-p. 21

Example with s = 1

5 4
AN\ \
6 1 3
1
\/
1 s 92
2
1‘2‘3‘4‘5‘6‘7 1‘2‘3‘4‘5‘6‘7
d: P
0\2\1\1\1\2\4 1\1\1\3\1\1\4

L An optimal SPT solution J

INF421, Lecture 9 —p. 21

The algorithm is correct 1/2

‘COLE
POLYTECHNIQUE

[hm.
At any iteration and for each v € V, d, is the cost of a SP s — v where T
all predecessors of v are settled

Proof
By induction on itn. index k. Let S be the set of settled nodes at itn. £ — 1, let u be

chosen at Step 2 of itn. &, and P* be the path s — v determined by the alg. Suppose
3 another path P from s to v with cost ¢(P). Since v ¢ S, there must be (w,z) € A
with w € Sand z ¢ Sst. P = P U{(w,2)} U P2, where V(P;) C S. Then ¢(P) =
c(P1) 4+ cwz + c¢(P2) > ¢(P1) + cwz (because we subtracted ¢(P2)) = dw + cwz (by induction)

= d, > dy (because otherwise d, would not be minimum, contradicting the choice of v at Step [2)
= c¢(P*),sothat P*isa SP s —» v

INF421, Lecture 9 — p. 22

The algorithm is correct 2/2
-

Remains to prove: at the end of the algorithm, every
node is settled

Similar to proof that Graph Scanning reaches all vertices
in a graph (Lecture 6)

Left as an exercise

|

INF421, Lecture 9 — p. 23

Implementation

-

No unreached node v can ever have minimum d,, at
Step 2 since d, = o if v unreached

The minimum choice at Step [2/ occurs over unsettled,
reached nodes = maintain a data structure containing
unsettled, reached nodes

Data structure that provides minimum in constant time:

priority queue

When arc (u,v) is relaxed and v is already reached, the
priority d,, might be updated

We update a priority by deleting then re-inserting the
element with the new priority (can implement delete in O(log n))

|

INF421, Lecture 9 —p. 24

Pseudocode

"
X
T
ECOLE
POLYTECHNIQUE

1: Vo e Vdy = oo, d = 0; -
2: Vv eV p, =s;
3: @).insert(s,ds);
4: while @) # o do
5. Letu = Q.popMin();
6: for (u,v) € " (u)do
7: Let A = d, + cuu;
8: If A <d, then
9: Let d, = A;
10: Letp, = u;
11: (Q.delete(v); // if v€Q this does nothing
12: Q.insert(v,d,);
13: endif
14: end for

. end while J

r

INF421, Lecture 9 — p. 25

Worst-case complexity

-

Each node is settled exactly once (why? argue by
contradiction) =

1. popMin() is called O(n) times = O(nlogn)
2. each arc is relaxed exactly once = O(mlogn)
This yields an O((n + m)logn) algorithm

Worse than O(n?) if graph is dense, however graphs in
practice are usually sparse: competitive

Can improve to O(m + nlogn) with more refined data
structures

|

INF421, Lecture 9 — p. 26

Point-to-point SPs

"
X
T
ECOLE
POLYTECHNIQUE

o The P2PSP from s to t on nonnegatively weighted
digraphs can be solved by Dijkstra’s algorithm

Simply terminate as soon as v is settled
Insert the following code between Step B and [6/:

if w =t then
exit;
end if

|

INF421, Lecture 9 —p. 27

3
Se
=m
A
(D
*
=
o
=
"

Floyd-Warshall’s algorithm

Solves ASP

f.o Solves the ASP with conservative arc costs ¢ T

#® Data structures: two n x n matrices d, p
s d,, =costof SP u — v
s p,, =predecessor of v in SP from u

For each node z and pair u, v of nodes, see if SP u — v
can be improved by passing through =

@/‘\/.\pzv

©)

Puwv
o If SO, Update Ay 10 dyy + d oy and P to P2v

o |

INF421, Lecture 9 — p. 29

The simplest algorithm!
-

1: Yu,v € Vdy, = Cyp | (u,v)IE
oo otherwise

2! Yu,v € V py, = u

3: forz €V do

4. forueV do

5. forveVdo
6: A = duz T dzvs
& if A < d,, then
8: dyy = A\
9! Puv = Pzus

10: end if

11: end for

12: end for

L13: end for J

INF421, Lecture 9 — p. 30

Remarks

f.o Worst-case complexity: clearly O(n3) T

Algorithm is correct: every possible triangulation was
tested

o

Also solves NecaTIVE CycLE (NC):

9

9

Assume there is a negative cycle through u

When u = v, triangulations will eventually yield
Ay < 0

Whenever that happens, terminate: a negative cycle
was found

After Step |6, insert code:

if A < 0then
exit;

end if J

INF421, Lecture 9 —p. 31

z

38

m
i
O
p =

=

o2

s

m

Flows

Definitions

OLE
POLYTECHNIQUE

fDefn.

A flow is a pair of functions (z: A - R, b: V — R) s.t.:

YueV Z Lyv — Z xvu:bu

(u,v)EA (v,u)€A

® Whenever b, = 0 for some v € V, then the above becomes

YvoeV b,=0— Z Lo = Z Lo (1)

(u,v)EA (v,u)€A
® The entering flow in v is equal to the exiting flow
-0 =l
e 1

® Eq. (@ are the flow conservation equations

o |

INF421, Lecture 9 — p. 33

Mathematical Programming

|7.. Flow equations help define connected subgraphs:

-

G connected = Yu # v € V() a unit of flow entering u will exit u as long

asb, = 0 forall z # w,v. Conversely: Yu # v € V(G) 3 a flow (x,
where b, = 1,b, = —1,Vz £ u,v(b, = 0) = G connected
® (Can use flow equations in Mathematical Programs (MP)
® E.g.aSP s — tisthe connected subgraph of minimum cost
containing s, t:
\
min Z CuvLyv
r:A—R (u,’U)EA
(1 u=s
VueV Yo XTuw— Y Ty = —1 u=t
(u,v)EA (v,u)EA
. 0 othw.
V(u,v) € A Ty € 40,1})

)

Test this with AMPL

INF421, Lecture 9 —p. 34

2
Se
=m
A
e
*
=
o
=
"

A dual algorithm

ECOLE

3 MP in flat form

|7.. Every MP involving linear forms only can be written in the form T
min,, ’yTx \
Az < g ¢ |P]

r € X

/

® v rxreR" geR™ Aism x n, X is the set where variables range

® For P2PSP on our usual graph with s =1 and ¢t = 7 we have:
s v=(1,...,1),8=(1,0,0,0,0,0,1), X = {0,1}13

s A=
(1 1 1 1 0 0 0 0 0 0 0 0 0)
-1 0 o0 O 1 1 0 0 0 0 0 0 0
o -1 0o o0 -1 0 1 1 1 0 0 0 0
o o o O O O -1 0 0 1 1 0 0
o o -1 0 0 -1 0 -1 0 0 0 1 1
o 0o 0o -1 0 0 0 0 0 -1 0 -1 0
_ \ o 0o 0o 0 o0 0 O 0 -1 0 -1 0 -1} J

INF421, Lecture 9 — p. 36

o
=

; Transpose

ECOLE
POLYTECHNIQUE

1 1 1 0 0 0 0 0 0 0 0 0

-1 0 0 0 1 1 0 0 0 0 0 0 0

0 -1 0 0 —1 0 1 1 1 0 0 0 0

c 0o 0o 0 0 0 -1 0 0 1 1 0 0 (’[UI’I’])H

0 0 —1 0 0 -1 0 -1 0 0 0 1 1

0 0 0 -1 0 0 0 0 0 -1 0 -1 0

0 0 0 0 0 0O -1 0 -1 0 -1/
c c oo o | - - | o o o o o

— —

c o oo | o - 4 o | o o o o

o —
o o 'L o o o ~ e == l‘ o o
o !, oo o o~ - o o o o | o
o oc o o | = o o =4 | oo o o

— —
oo |, oo ro ©c = oo | oo
o o o 'L - = o (reﬂect) H == J‘ o o o
oo L or oo © o = o | oo
l & o o = o o c o = o o o |
= —
ol o~ o oo ©c o o = o |l o
|, oo oo o o oo = o o [l
oL m oo oo © o oo« | o
l & =~ o o o o c oo o = o |
= —

INF421, Lecture 9 —p. 37

A dual view

1 =1 0 0 0 0 0) T

1 0 -1 0 0 0 0

1 0 0 0 -1 0 0

1 0 0 0 0 -1 0

0o 1 -1 0 0 0 0

o 1 0 0 -1 0 0
® letal=| 0 0o 1 -1 0 0 0

o 0 1 0 -1 0 0

o 0 1 0 0 0 -1

o 0 0 1 0 -1 0

o 0 0 1 0 0 -1

o 0 0 0 1 -1 0

\o 0 0o 0o 1 0 -1

® Turn rows into columns (constraints into variables)

® .. .and columns into rows (variables into constraints)

INF421, Lecture 9 — p. 38

LP Dual

f.p For each constraint define a variable y; (i < 7) T
® The Linear Programming Dual IS

max, —Yyp D
yA < ~

#® In the case of the SP formulation, the dual is:

maxy Yt — Ys

D
Viu,v) €A Yy —Yu < Cup }[SP]

Dual solution encodes the same solution as the “primal”
(test with AMPL)

L How the hell is this an SP formulation? J

INF421, Lecture 9 — p. 39

A mechanical algorithm

|7.l Weighted arcs = strings as long as the weights T
® Nodes = knots

® Pull nodes s,t as far as you can

® At maximum pull, strings corresponding to arcs (u, v) in SP have
horizontal projections whose length is exactly ¢,

Yt Ys

= C21 — Cg2
@ D ©) S
t

|

INF421, Lecture 9 — p. 40

Open question

@
ECOLE
POLYTECHNIQUE

What is the worst-case complexity of
the mechanical algorithm?

2
Se
=m
A
e
*
=
o
=
"

End of Lecture 9

AND END OF COURSE!

Thanks for your attention

	Course
	Lecture summary
	Minimal knowledge
	Shortest path problems
	Graphs or digraphs?
	Motivation
	Cost of a path
	Negative cycles
	Negative cycles: comments
	Assumptions
	Point-to-point shortest path
	Shortest path tree
	All shortest paths
	Variants
	Dijkstra's algorithm
	The problem it targets
	Data structures
	Settle and Relax
	Description
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$
	Example with $s=1$

	The algorithm is correct 1/2
	The algorithm is correct 2/2
	Implementation
	Pseudocode
	Worst-case complexity
	Point-to-point SPs
	Floyd-Warshall's algorithm
	Solves ASP
	The simplest algorithm!
	Remarks
	Flows
	Definitions
	Mathematical Programming
	A dual algorithm
	MP in flat form
	Transpose
	A dual view
	LP Dual
	A mechanical algorithm
	Open question
	End of Lecture 9
	Large AND END OF COURSE! \ [1em] Thanks for your attention

