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Course
Objective : to teach you some data structures and associated
algorithms

Evaluation : TP noté en salle info le 16 septembre, Contrôle à la fin.
Note: max(CC, 3

4CC + 1
4TP )

Organization : fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books :
1. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2009

2. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

Website : www.enseignement.polytechnique.fr/informatique/INF421

Contact : liberti@lix.polytechnique.fr (e-mail subject: INF421)
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Lecture summary

Shortest Path Problems (SPP) and variants

Dijkstra’s algorithm

Floyd-Warshall’s algorithm

Modelling shortest paths: flows

A dual “algorithm”
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Minimal knowledge

Main SPP variants : POINT-TO-POINT SHORTEST PATH (P2PSP),
SHORTEST PATH TREE (SPT), unit / nonnegative arc costs,
NEGATIVE CYCLE detection (NC), ALL SHORTEST PATHS (ASP)

SPT on unit costs : use BFS (Lecture 2)

Dijkstra’s algorithm : like GRAPH SCANNING (Lecture 6) but
with a priority queue; requires nonnegative arc costs

Floyd-Warshall’s algorithm : solves ASP and NC

Flows : assignment of values to arcs so that some
conservation constraints hold at each node, can be
used to model SPPs with Mathematical Programming
(MP)

Duality : the dual MP formulation for P2PSP yields a
surprising solution method!
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Shortest path problems
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Graphs or digraphs?
In most applications, the correct model for SPPs is given by arcs

and digraphs rather than edges and graphs

SPPs also occur as sub-problems in complicated algorithms: we
may need to solve SPPs on graphs

Although directed paths are also called walks (Lectures 6, 8), we
still use the term path for historical reasons

Similarly, we use the term cycle to also mean circuits

An SPP on a graph is equivalent to an SPP on the digraph where
each edge is replaced two antiparallel arcs

Conversely, replacing each arc (or pair of antiparallel arcs) of a
digraph with an edge gives rise to the underlying graph
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Motivation

Several SP problems can be solved in
polynomial time
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Cost of a path
We consider a weighted digraph G = (V,A) with arc costs

I.e. we are given a function c : A → Q

If P ⊆ G is a path u → v in G then

c(P ) =
∑

(u,v)∈P

cuv,

where cuv = c((u, v))

For example, the path 1 → 2 → 3 → 7 has cost 2 + 1 + 5 = 8
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Shortest path = path P having minimum cost c(P )
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Negative cycles

The red cycle has negative cost 1 + 0− 4 + 2 = −1 < 0
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Thm.
If G = (V,A) has a cycle C with c(C) < 0, ∃ no SP in G

Proof
Suppose P is SP u → v with cost c∗. Let w ∈ V (C), consider path Q = Q1 ∪ Q2 ∪ Q3

where Q1 u → w, Q2 = Q−1
1 , and Q3 consists of k = ⌈

c(Q1)+c(Q2)+c∗

|c(C)|
⌉ + 1 tours

around C. Then c(Q) = c(Q1)+c(Q2)+kc(C) < c∗ ⇒ Q shorter than P (contradiction)

⇒ Need to assume c yields no negative cycles

INF421, Lecture 9 – p. 9

Negative cycles: comments

If c yields no negative cycles, call c conservative

In order to construct Q in proof of above thm., we toured
several times around negative cycle C

⇒ Q is not a simple path

If we look for the shortest simple path in graphs then we
don’t have this unboundedness problem

The SHORTEST SIMPLE PATH (SSP) problem, however, is
NP-hard on general non-conservatively weighted graphs

Solving the LONGEST PATH problem is also NP-hard
(Prove this by polynomially transforming SSP to LONGEST PATH, see Lecture 8 for an

example of polynomial transformation)
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Assumptions

For the rest of these slides, if not otherwise specified,
assume:

G is connected (graph) or strongly connected (digraph)

The arc costs c are conservative
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Point-to-point shortest path

POINT-TO-POINT SHORTEST PATH (P2PSP). Given a digraph
G = (V,A), a function c : A → Q and two distinct nodes
s, t ∈ V , find a SP s → t

A shortest path 1 → 7
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Shortest path tree
SHORTEST PATH TREE (SPT). Given a digraph G = (V,A), a function c :

A → Q and a source node s ∈ V , find SPs s → v for all v ∈ V r {s}

Remark: there may be more than one SP s → v

Consistency : one can always choose SP Psv u → v so that
T =

⋃

v 6=s Psv is a spanning oriented tree (⇔ ∀v 6= s (N−
T (v) = 1))

Thm. A If c is conservative, every initial subpath of a SP is a SP

(e.g. subpath 1 → 4 of SP 1 → 7 below is a SP 1 → 4)
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Let P be a SP s → w and Q a SP s → v

through w; if the predecessor of w in P

is pP (w) = z1 and pQ(w) = z2 with

z1 6= z2, then no sp. or. tree T can con-

tain P ∪ Q. By Thm. A above, the ini-

tial subpath P ′ to w of Q is also a SP

s → w, so replace P with P ′ and obtain

|N−
P ′∪Q

(w)| = 1 as required.
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All shortest paths

ALL SHORTEST PATHS (ASP). Given a digraph G = (V,A) and
a function c : A → Q, find SPs u → v for all pairs u, v of
distinct nodes in V
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Variants

Unit costs : for all (u, v) ∈ A we have cuv = 1

Non-negative costs : for all (u, v) ∈ A we have cuv ≥ 1

Several others, too many to list them all

A remarkable one: SPT on undirected graphs with
c : E → N can be solved in linear time [Thorup 1997]

SPT on unit costs: use BFS (see Lectures 2, 6),
O(m+ n)
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Dijkstra’s algorithm
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The problem it targets

Dijkstra’s algorithm solves the SPT on weighted digraphs
G = (V,A) with non-negative costs (with a given source
node s ∈ V )

If c ≥ 0 then c is conservative (why?)

Worst-case complexity: O(n2) on general digraphs,
O(m+ n log n) on sparse graphs, where n = |V | and
m = |A|

Used as a sub-step in innumerable algorithms

Main application: routing in networks (usually
transportation and communication)
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Data structures

We maintain two functions
d : V → Q+

dv = d(v) is the cost of a SP s → v for all v ∈ V

p : V → V

pv = p(v) is the predecessor of v in a SP s → v for all v ∈ V

Initialization
ds = 0 and dv = ∞ for all v ∈ V r {s}

p(v) = s for all v ∈ V
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Settle and Relax

A node v ∈ V is settled when dv no longer changes

Relaxing an arc (u, v) ∈ A consists in:
if du + cuv < dv then

Let dv = du + cuv;
Let pv = u;

end if uu

vv

dudu

dv

cuvcuv

du + cuv

When (u, v) is relaxed and v is not settled yet, dv might
change
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Description

Dijkstra’s algorithm :

1: while ∃ unsettled nodes do
2: Let u be an unsettled node with minimum du;
3: Settle u;
4: for (u, v) ∈ A do
5: Relax (u, v);
6: end for
7: end while

If dv = ∞ at Step 4, relaxing (u, v) will necessarily
change dv (why?)

Nodes v ∈ V such that dv < ∞ are reached

A simple implementation is O(n2)
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Example with s = 1 (1/15)
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d :
1 2 3 4 5 6 7

0 ∞ ∞ ∞ ∞ ∞ ∞
p :

1 2 3 4 5 6 7

1 1 1 1 1 1 1

initialize ( settle ) s = 1
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Example with s = 1 (2/15)
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d :
1 2 3 4 5 6 7

0 2 1 ∞ 1 2 ∞
p :

1 2 3 4 5 6 7

1 1 1 1 1 1 1

relax δ+(1), update 2, 3, 5, 6
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Example with s = 1 (3/15)
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d :
1 2 3 4 5 6 7

0 2 1 ∞ 1 2 ∞
p :

1 2 3 4 5 6 7

1 1 1 1 1 1 1

settle 3 (d3 = 1 is minimum)
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Example with s = 1 (4/15)
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d :
1 2 3 4 5 6 7

0 2 1 1 1 2 6
p :

1 2 3 4 5 6 7

1 1 1 3 1 1 3

relax δ+(3), update 4, 7
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Example with s = 1 (5/15)
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1 2 3 4 5 6 7

0 2 1 1 1 2 6
p :

1 2 3 4 5 6 7

1 1 1 3 1 1 3

settle 4 (d4 = 1 is minimum)
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Example with s = 1 (6/15)
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d :
1 2 3 4 5 6 7

0 2 1 1 1 2 4
p :

1 2 3 4 5 6 7

1 1 1 3 1 1 4

relax δ+(4), update 7
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Example with s = 1 (7/15)
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1 2 3 4 5 6 7

0 2 1 1 1 2 4
p :

1 2 3 4 5 6 7

1 1 1 3 1 1 4

settle 5 (d5 = 1 is minimum)
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Example with s = 1 (8/15)
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relax δ+(5)
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Example with s = 1 (9/15)
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1 2 3 4 5 6 7

0 2 1 1 1 2 4
p :

1 2 3 4 5 6 7

1 1 1 3 1 1 4

settle 2 (d2 = 2 is minimum)
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Example with s = 1 (10/15)

1 2

3

45

6

7

2

1
1

2 1

1

0

1

5

4

3

2

6

d :
1 2 3 4 5 6 7

0 2 1 1 1 2 4
p :

1 2 3 4 5 6 7

1 1 1 3 1 1 4

relax δ+(2)
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Example with s = 1 (11/15)
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d :
1 2 3 4 5 6 7

0 2 1 1 1 2 4
p :

1 2 3 4 5 6 7

1 1 1 3 1 1 4

settle 6 (d6 = 2 is minimum)
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Example with s = 1 (12/15)
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1 2 3 4 5 6 7
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p :
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relax δ+(6)
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Example with s = 1 (13/15)
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d :
1 2 3 4 5 6 7

0 2 1 1 1 2 4
p :

1 2 3 4 5 6 7

1 1 1 3 1 1 4

settle 7 (d7 = 4 is minimum)
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Example with s = 1 (14/15)
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relax δ+(7)
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Example with s = 1 (15/15)
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An optimal SPT solution
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The algorithm is correct 1/2
Thm.
At any iteration and for each v ∈ V , dv is the cost of a SP s → v where
all predecessors of v are settled

P ∗

s

v

w
z

p(v)

P1

P2

SProof
By induction on itn. index k. Let S be the set of settled nodes at itn. k − 1, let u be

chosen at Step 2 of itn. k, and P ∗ be the path s → v determined by the alg. Suppose

∃ another path P from s to v with cost c(P ). Since v 6∈ S, there must be (w, z) ∈ A

with w ∈ S and z 6∈ S s.t. P = P1 ∪ {(w, z)} ∪ P2, where V (P1) ⊆ S. Then c(P ) =

c(P1) + cwz + c(P2) ≥ c(P1) + cwz (because we subtracted c(P2)) = dw + cwz (by induction)

= dz ≥ dv (because otherwise dv would not be minimum, contradicting the choice of v at Step 2)

= c(P ∗), so that P ∗ is a SP s → v
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The algorithm is correct 2/2

Remains to prove: at the end of the algorithm, every
node is settled

Similar to proof that Graph Scanning reaches all vertices
in a graph (Lecture 6)

Left as an exercise
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Implementation

No unreached node v can ever have minimum dv at
Step 2 since dv = ∞ if v unreached

The minimum choice at Step 2 occurs over unsettled,
reached nodes ⇒ maintain a data structure containing
unsettled, reached nodes

Data structure that provides minimum in constant time:
priority queue

When arc (u, v) is relaxed and v is already reached, the
priority dv might be updated

We update a priority by deleting then re-inserting the
element with the new priority (can implement delete in O(logn))
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Pseudocode
1: ∀v ∈ V dv = ∞, ds = 0;
2: ∀v ∈ V pv = s;
3: Q.insert(s, ds);
4: while Q 6= ∅ do
5: Let u = Q.popMin();
6: for (u, v) ∈ δ+(u) do
7: Let ∆ = du + cuv;
8: if ∆ < dv then
9: Let dv = ∆;

10: Let pv = u;
11: Q.delete(v); // if v 6∈ Q this does nothing

12: Q.insert(v, dv);
13: end if
14: end for
15: end while
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Worst-case complexity

Each node is settled exactly once (why? argue by
contradiction) ⇒
1. popMin() is called O(n) times ⇒ O(n log n)

2. each arc is relaxed exactly once ⇒ O(m log n)

This yields an O((n+m) log n) algorithm

Worse than O(n2) if graph is dense, however graphs in
practice are usually sparse: competitive

Can improve to O(m+ n log n) with more refined data
structures
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Point-to-point SPs

The P2PSP from s to t on nonnegatively weighted
digraphs can be solved by Dijkstra’s algorithm

Simply terminate as soon as v is settled

Insert the following code between Step 5 and 6:

if u = t then
exit;

end if
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Floyd-Warshall’s algorithm
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Solves ASP

Solves the ASP with conservative arc costs c

Data structures: two n× n matrices d, p

duv =cost of SP u → v

puv =predecessor of v in SP from u

For each node z and pair u, v of nodes, see if SP u → v

can be improved by passing through z

u v

z

puv

pzv

If so, update duv to duz + dzv and puv to pzv
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The simplest algorithm!

1: ∀u, v ∈ V duv =

{

cuv if (u, v) ∈ A

∞ otherwise
2: ∀u, v ∈ V puv = u

3: for z ∈ V do
4: for u ∈ V do
5: for v ∈ V do
6: ∆ = duz + dzv;
7: if ∆ < duv then
8: duv = ∆;
9: puv = pzv;

10: end if
11: end for
12: end for
13: end for
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Remarks

Worst-case complexity : clearly O(n3)

Algorithm is correct : every possible triangulation was
tested

Also solves NEGATIVE CYCLE (NC):
Assume there is a negative cycle through u

When u = v, triangulations will eventually yield
duu < 0

Whenever that happens, terminate: a negative cycle
was found
After Step 6, insert code:

if ∆ < 0 then
exit;

end if
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Flows
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Definitions

Defn.
A flow is a pair of functions (x : A → R, b : V → R) s.t.:

∀u ∈ V
∑

(u,v)∈A

xuv −
∑

(v,u)∈A

xvu = bu

Whenever bv = 0 for some v ∈ V , then the above becomes

∀v ∈ V bv = 0 →
∑

(u,v)∈A

xuv =
∑

(v,u)∈A

xvu (1)

The entering flow in v is equal to the exiting flow

3

0

2

1v

Eq. (1) are the flow conservation equations
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Mathematical Programming
Flow equations help define connected subgraphs:

G connected ⇒ ∀u 6= v ∈ V (G) a unit of flow entering u will exit u as long

as bz = 0 for all z 6= u, v. Conversely: ∀u 6= v ∈ V (G) ∃ a flow (x, b)

where bu = 1, bv = −1, ∀z 6= u, v(bz = 0)⇒G connected

Can use flow equations in Mathematical Programs (MP)

E.g. a SP s → t is the connected subgraph of minimum cost
containing s, t:

min
x:A→R

∑

(u,v)∈A

cuvxuv

∀u ∈ V
∑

(u,v)∈A

xuv −
∑

(v,u)∈A

xvu =















1 u = s

−1 u = t

0 othw.

∀(u, v) ∈ A xuv ∈ {0, 1}











































[SP]

Test this with AMPL

INF421, Lecture 9 – p. 48



A dual algorithm
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MP in flat form
Every MP involving linear forms only can be written in the form

minx γTx

Ax ≤ β

x ∈ X















[P ]

γ, x ∈ Rn, β ∈ Rm, A is m× n, X is the set where variables range

For P2PSP on our usual graph with s = 1 and t = 7 we have:

γ = (1, . . . , 1), β = (1, 0, 0, 0, 0, 0, 1), X = {0, 1}13

A =






























1 1 1 1 0 0 0 0 0 0 0 0 0

−1 0 0 0 1 1 0 0 0 0 0 0 0

0 −1 0 0 −1 0 1 1 1 0 0 0 0

0 0 0 0 0 0 −1 0 0 1 1 0 0

0 0 −1 0 0 −1 0 −1 0 0 0 1 1

0 0 0 −1 0 0 0 0 0 −1 0 −1 0

0 0 0 0 0 0 0 0 −1 0 −1 0 −1
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Transpose

(turn)−→

(reflect)−→
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A dual view

Let AT =

































































1 −1 0 0 0 0 0

1 0 −1 0 0 0 0

1 0 0 0 −1 0 0

1 0 0 0 0 −1 0

0 1 −1 0 0 0 0

0 1 0 0 −1 0 0

0 0 1 −1 0 0 0

0 0 1 0 −1 0 0

0 0 1 0 0 0 −1

0 0 0 1 0 −1 0

0 0 0 1 0 0 −1

0 0 0 0 1 −1 0

0 0 0 0 1 0 −1

































































Turn rows into columns (constraints into variables)

. . . and columns into rows (variables into constraints)
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LP Dual
For each constraint define a variable yi (i ≤ 7)

The Linear Programming Dual is

maxy −yβ

yA ≤ γ

}

[D]

In the case of the SP formulation, the dual is:

maxy yt − ys

∀(u, v) ∈ A yv − yu ≤ cuv

}

[DSP]

Dual solution encodes the same solution as the “primal”
(test with AMPL)

How the hell is this an SP formulation?
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A mechanical algorithm
Weighted arcs = strings as long as the weights

Nodes = knots

Pull nodes s, t as far as you can

At maximum pull, strings corresponding to arcs (u, v) in SP have
horizontal projections whose length is exactly cuv

1
2

3

ysyt
min yt max ys

st

≤ c13

1 2

3

ysyt

st
= c1t

= c21 = cs2

xuv = 1
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Open question

What is the worst-case complexity of

the mechanical algorithm?
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End of Lecture 9
END OF COURSE
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