INF421, Lecture 9 Shortest paths

Leo Liberti

LIX, École Polytechnique, France

Lecture summary

- Shortest Path Problems (SPP) and variants
- Dijkstra's algorithm
- Floyd-Warshall's algorithm
- Modelling shortest paths: flows
- A dual "algorithm"

Course

- **Objective**: to teach you some data structures and associated algorithms
- Evaluation: TP noté en salle info le 16 septembre, Contrôle à la fin. Note: $max(CC, \frac{3}{4}CC + \frac{1}{4}TP)$
- Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)
- Books:
 - 1. Ph. Baptiste & L. Maranget, *Programmation et Algorithmique*, Ecole Polytechnique (Polycopié), 2009
 - 2. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
 - 3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
 - 4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
 - Website: www.enseignement.polytechnique.fr/informatique/INF421
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

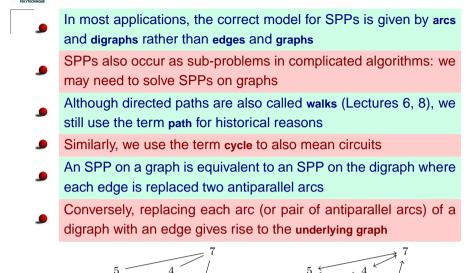
INF421, Lecture 9 - p. 2

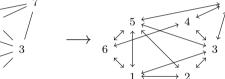
Minimal knowledge

- Main SPP variants: POINT-TO-POINT SHORTEST PATH (P2PSP), SHORTEST PATH TREE (SPT), unit / nonnegative arc costs, NEGATIVE CYCLE detection (NC), ALL SHORTEST PATHS (ASP)
- SPT on unit costs: use BFS (Lecture 2)
- Dijkstra's algorithm: like GRAPH SCANNING (Lecture 6) but with a priority queue; requires nonnegative arc costs
- Floyd-Warshall's algorithm: solves ASP and NC
- Flows: assignment of values to arcs so that some conservation constraints hold at each node, can be used to model SPPs with Mathematical Programming (MP)
- Duality: the dual MP formulation for P2PSP yields a surprising solution method!

Shortest path problems

Graphs or digraphs?





INF421, Lecture 9 - p. 6

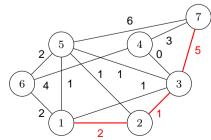
Cost of a path

- We consider a weighted digraph G = (V, A) with arc costs
- **J** I.e. we are given a function $c: A \to \mathbb{Q}$
- If $P \subseteq G$ is a path $u \to v$ in G then

$$c(P) = \sum_{(u,v)\in P} c_{uv}$$

where $c_{uv} = c((u, v))$

• For example, the path $1 \rightarrow 2 \rightarrow 3 \rightarrow 7$ has cost 2+1+5=8



Shortest path = path P having minimum cost c(P)

Several SP problems can be solved in polynomial time

Motivation

ECOLE

Negative cycles

The red cycle has negative cost 1 + 0 - 4 + 2 = -1 < 0

Thm.

If G = (V, A) has a cycle C with c(C) < 0, \exists no SP in G

Proof

Suppose P is SP $u \to v$ with cost c^* . Let $w \in V(C)$, consider path $Q = Q_1 \cup Q_2 \cup Q_3$ where $Q_1 \ u \to w$, $Q_2 = Q_1^{-1}$, and Q_3 consists of $k = \lceil \frac{c(Q_1) + c(Q_2) + c^*}{|c(C)|} \rceil + 1$ tours around C. Then $c(Q) = c(Q_1) + c(Q_2) + kc(C) < c^* \Rightarrow Q$ shorter than P (contradiction)

 \Rightarrow Need to assume *c* yields no negative cycles

INF421, Lecture 9 – p. 9

ECOLE

Assumptions

For the rest of these slides, if not otherwise specified, assume:

- G is connected (graph) or strongly connected (digraph)
- The arc costs c are conservative

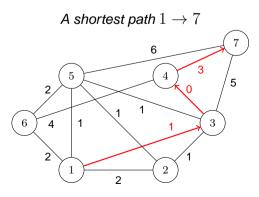
Negative cycles: comments

- If c yields no negative cycles, call c conservative
- In order to construct Q in proof of above thm., we toured several times around negative cycle C
- $\blacksquare \Rightarrow Q$ is not a simple path
- If we look for the shortest simple path in graphs then we don't have this unboundedness problem
- The SHORTEST SIMPLE PATH (SSP) problem, however, is NP-hard on general non-conservatively weighted graphs
- Solving the LONGEST PATH problem is also NP-hard (Prove this by polynomially transforming SSP to LONGEST PATH, see Lecture 8 for an example of polynomial transformation)

INF421, Lecture 9 - p. 10

Point-to-point shortest path

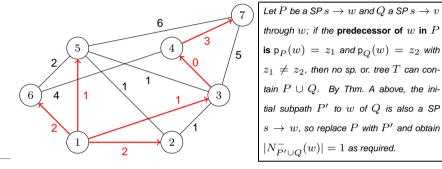
POINT-TO-POINT SHORTEST PATH (P2PSP). Given a digraph G = (V, A), a function $c : A \to \mathbb{Q}$ and two distinct nodes $s, t \in V$, find a SP $s \to t$



Shortest path tree

SHORTEST PATH TREE (SPT). Given a digraph G = (V, A), a function $c : A \to \mathbb{Q}$ and a source node $s \in V$, find SPs $s \to v$ for all $v \in V \setminus \{s\}$

- **9** Remark: there may be more than one SP $s \rightarrow v$
- Consistency: one can always choose SP P_{sv} $u \to v$ so that $T = \bigcup_{v \neq s} P_{sv}$ is a spanning oriented tree ($\Leftrightarrow \forall v \neq s \ (N_T^-(v) = 1)$)
- Thm. A If *c* is conservative, every initial subpath of a SP is a SP (e.g. subpath $1 \rightarrow 4$ of SP $1 \rightarrow 7$ below is a SP $1 \rightarrow 4$)



All shortest paths

ALL SHORTEST PATHS (ASP). Given a digraph G = (V, A) and a function $c : A \to \mathbb{Q}$, find SPs $u \to v$ for all pairs u, v of distinct nodes in V

INF421, Lecture 9 - p. 13

Variants

- Unit costs: for all $(u, v) \in A$ we have $c_{uv} = 1$
- Non-negative costs: for all $(u,v) \in A$ we have $c_{uv} \ge 1$
- Several others, too many to list them all
- A remarkable one: SPT on undirected graphs with $c: E \to \mathbb{N}$ can be solved in linear time [Thorup 1997]
- SPT on unit costs: use BFS (see Lectures 2, 6), O(m+n)

Dijkstra's algorithm

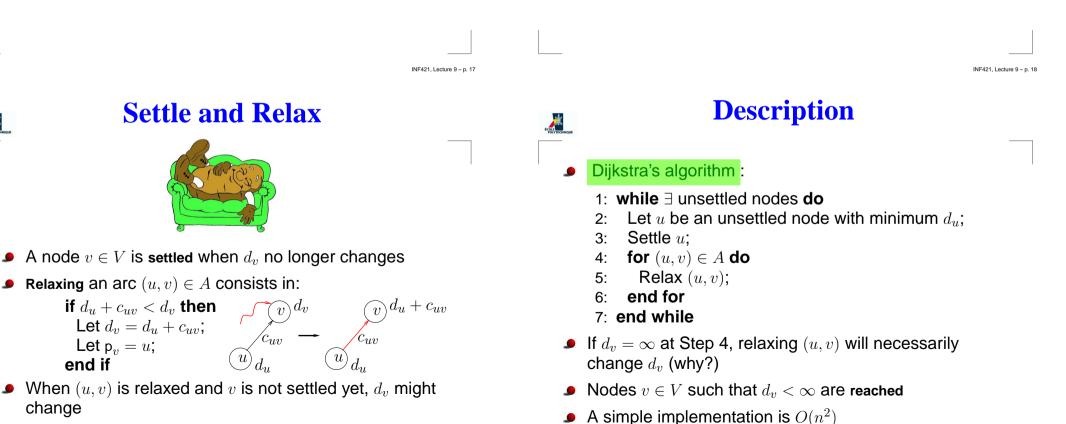
The problem it targets

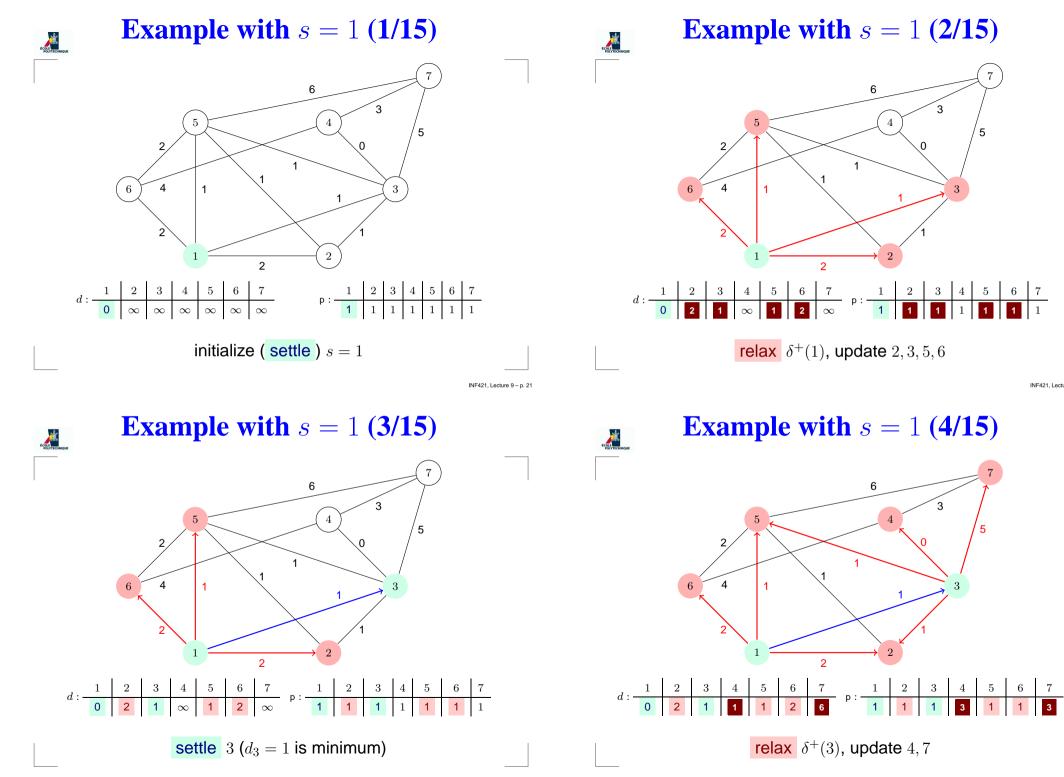
Dijkstra's algorithm solves the SPT on weighted digraphs G = (V, A) with non-negative costs (with a given source node $s \in V$)

- If $c \ge 0$ then c is conservative (why?)
- Worst-case complexity: $O(n^2)$ on general digraphs, $O(m + n \log n)$ on sparse graphs, where n = |V| and m = |A|
- Used as a sub-step in innumerable algorithms
- Main application: routing in networks (usually transportation and communication)

Data structures

- We maintain two functions
 - $d: V \to \mathbb{Q}_+$ $d_v = d(v)$ is the cost of a SP $s \to v$ for all $v \in V$
 - $\mathbf{p}: V \to V$ $\mathbf{p}_v = \mathbf{p}(v)$ is the predecessor of v in a SP $s \to v$ for all $v \in V$
- Initialization
 - $d_s = 0$ and $d_v = \infty$ for all $v \in V \smallsetminus \{s\}$
 - p(v) = s for all $v \in V$



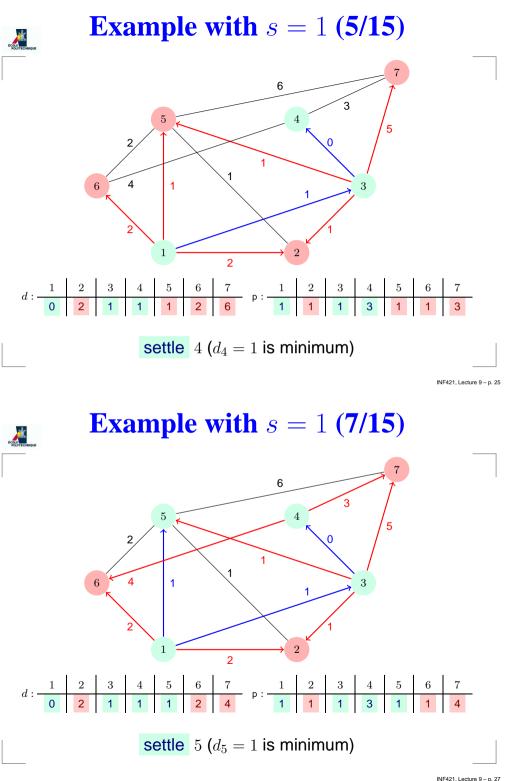


INF421, Lecture 9 - p. 23

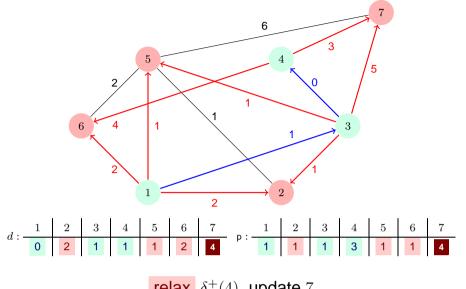
INF421, Lecture 9 - p. 22

3

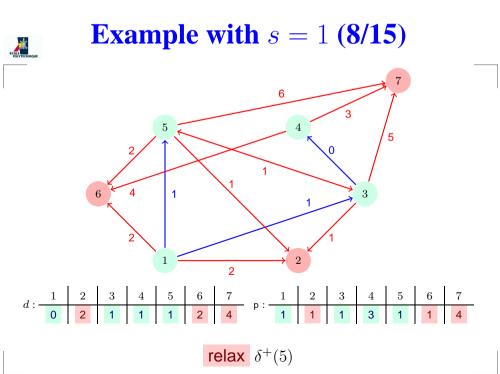
3

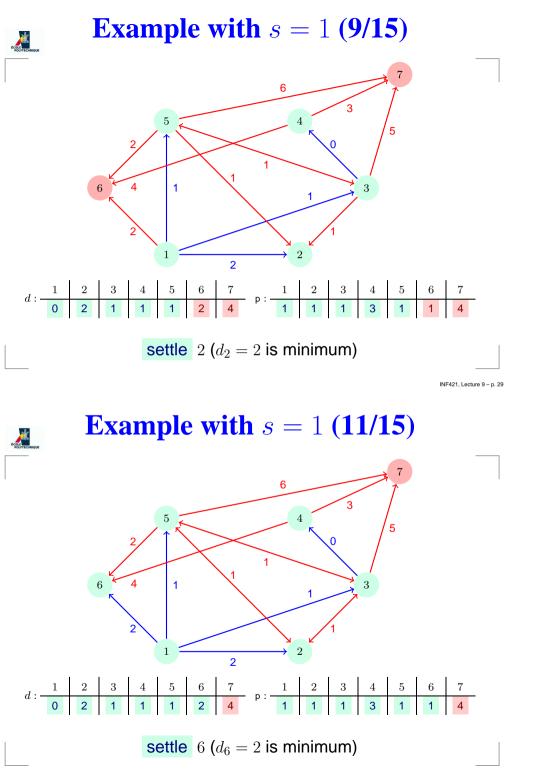


Example with s = 1 (6/15)

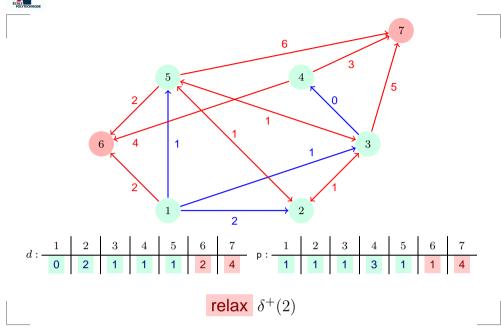


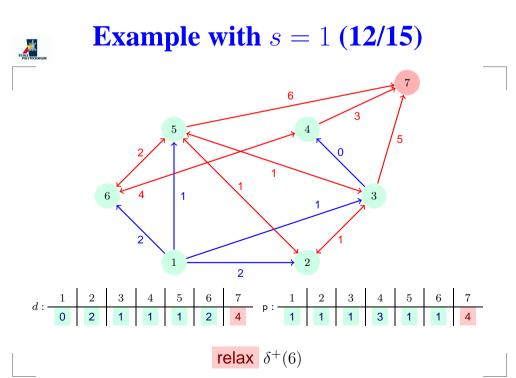
relax $\delta^+(4)$, update 7

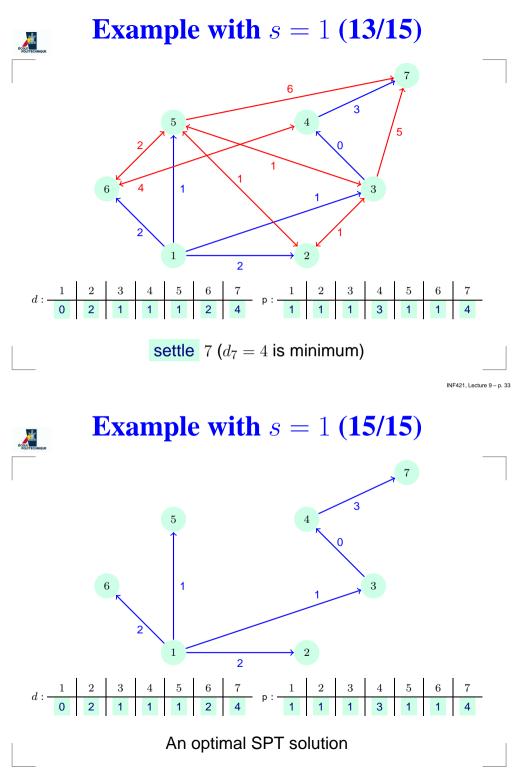




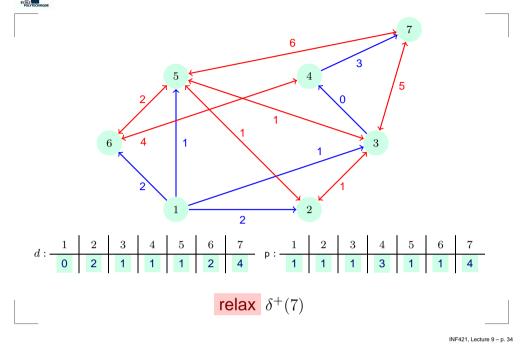
Example with s = 1 (10/15)







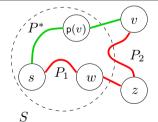
Example with s = 1 (14/15)



The algorithm is correct 1/2

Thm.

At any iteration and for each $v \in V$, d_v is the cost of a SP $s \to v$ where all predecessors of v are settled



Proof

~
By induction on itn. index k . Let S be the set of settled nodes at itn. $k-1$, let u be
chosen at Step 2 of itn. $k,$ and P^{\ast} be the path $s \rightarrow v$ determined by the alg. Suppose
\exists another path P from s to v with cost $c(P)$. Since $v \notin S$, there must be $(w,z) \in A$
with $w \in S$ and $z \notin S$ s.t. $P = P_1 \cup \{(w, z)\} \cup P_2$, where $V(P_1) \subseteq S$. Then $c(P) =$
$c(P_1) + c_{wz} + c(P_2) \ge c(P_1) + c_{wz}$ (because we subtracted $c(P_2)) = d_w + c_{wz}$ (by induction)
$d_z \geq d_v$ (because otherwise d_v would not be minimum, contradicting the choice of v at Step 2)
$= c(P^*)$, so that P^* is a SP $s \to v$

The algorithm is correct 2/2

- Remains to prove: at the end of the algorithm, every node is settled
- Similar to proof that Graph Scanning reaches all vertices in a graph (Lecture 6)
- Left as an exercise

Implementation

- No unreached node v can ever have minimum d_v at Step 2 since $d_v = \infty$ if v unreached
- The minimum choice at Step 2 occurs over unsettled, reached nodes ⇒ maintain a data structure containing unsettled, reached nodes
- Data structure that provides minimum in constant time:
 priority queue
- When arc (u, v) is relaxed and v is already reached, the priority dv might be updated
- We update a priority by deleting then re-inserting the element with the new priority (can implement delete in O(log n))

Worst-case complexity

Each node is settled exactly once (why? argue by

1. popMin() is called O(n) times $\Rightarrow O(n \log n)$

This yields an $O((n+m)\log n)$ algorithm

practice are usually sparse: competitive

2. each arc is relaxed exactly once $\Rightarrow O(m \log n)$

• Worse than $O(n^2)$ if graph is dense, however graphs in

• Can improve to $O(m + n \log n)$ with more refined data

contradiction) \Rightarrow

structures

INF421, Lecture 9 - p. 3

Pseudocode

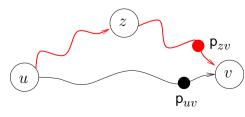
- 1: $\forall v \in V \ d_v = \infty$, $d_s = 0$;
- **2**: $\forall v \in V \ \mathbf{p}_v = s$;
- 3: $Q.insert(s, d_s);$
- 4: while $Q \neq \emptyset$ do
- 5: Let u = Q.popMin();
- 6: for $(u, v) \in \delta^+(u)$ do
- 7: Let $\Delta = d_u + c_{uv}$;
- 8: if $\Delta < d_v$ then
- 9: Let $d_v = \Delta$;
- 10: Let $p_v = u$;
- 11: $Q.delete(v); // \text{ if } v \notin Q \text{ this does nothing}$
- 12: $Q.insert(v, d_v);$
- 13: **end if**
- 14: **end for**
- 15: end while

Point-to-point SPs

- The P2PSP from s to t on nonnegatively weighted digraphs can be solved by Dijkstra's algorithm
- Simply terminate as soon as v is settled
- Insert the following code between Step 5 and 6:
 - if u = t then exit: end if

Floyd-Warshall's algorithm

- Solves the ASP with conservative arc costs *c*
- **J** Data structures: two $n \times n$ matrices d, p
 - $d_{uv} = \text{cost of SP } u \to v$
 - $p_{uv} =$ predecessor of v in SP from u
- For each node z and pair u, v of nodes, see if SP $u \rightarrow v$ can be improved by passing through z



• If so, update d_{uv} to $d_{uz} + d_{zv}$ and p_{uv} to p_{zv}

INF421, Lecture 9 - p. 42

The simplest algorithm! 1: $\forall u, v \in V \ d_{uv} = \begin{cases} c_{uv} & \text{if } (u, v) \in A \\ \infty & \text{otherwise} \end{cases}$ **2**: $\forall u, v \in V \mathsf{p}_{uv} = u$ 3: for $z \in V$ do for $u \in V$ do for $v \in V$ do $\Delta = d_{uz} + d_{zv};$ if $\Delta < d_{uv}$ then $d_{uv} = \Delta;$ $\mathbf{p}_{uv} = \mathbf{p}_{zv};$ end if end for end for 13: end for

4:

5:

6: 7:

8:

9:

10:

11:

12:

INF421, Lecture 9 - p. 43

Remarks

- Worst-case complexity: Clearly $O(n^3)$
- Algorithm is correct: every possible triangulation was tested
- Also solves Negative Cycle (NC):
 - Assume there is a negative cycle through u
 - When u = v, triangulations will eventually yield $d_{uu} < 0$
 - Whenever that happens, terminate: a negative cvcle was found
 - After Step 6, insert code:
 - if $\Delta < 0$ then exit: end if

Definitions

Defn.

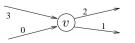
A flow is a pair of functions $(x : A \to \mathbb{R}, b : V \to \mathbb{R})$ s.t.:

$$\forall u \in V \quad \sum_{(u,v) \in A} x_{uv} - \sum_{(v,u) \in A} x_{vu} = b_u$$

• Whenever $b_v = 0$ for some $v \in V$, then the above becomes

$$\forall v \in V \quad b_v = 0 \to \sum_{(u,v) \in A} x_{uv} = \sum_{(v,u) \in A} x_{vu} \tag{1}$$

The entering flow in v is equal to the exiting flow



Eq. (1) are the flow conservation equations

Flows

INF421, Lecture 9 - p. 46

Mathematical Programming

- Flow equations help define connected subgraphs: G connected $\Rightarrow \forall u \neq v \in V(G)$ a unit of flow entering u will exit u as long as $b_z = 0$ for all $z \neq u, v$. Conversely: $\forall u \neq v \in V(G) \exists$ a flow (x, b)where $b_u = 1, b_v = -1, \forall z \neq u, v(b_z = 0) \Rightarrow G$ connected
- Can use flow equations in Mathematical Programs (MP)
- E.g. a SP $s \rightarrow t$ is the connected subgraph of minimum cost containing s, t:

$$\min_{\substack{x:A \to \mathbb{R}}} \sum_{\substack{(u,v) \in A}} c_{uv} x_{uv} \\ \forall u \in V \sum_{\substack{(u,v) \in A}} x_{uv} - \sum_{\substack{(v,u) \in A}} x_{vu} = \begin{cases} 1 & u = s \\ -1 & u = t \\ 0 & \text{othw.} \end{cases}$$

$$\forall (u,v) \in A \qquad \qquad x_{uv} \in \{0,1\} \end{cases}$$

$$\text{Test this with AMPI}$$

A dual algorithm

MP in flat form

• Every MP involving linear forms only can be written in the form $\min_x \gamma^{\mathsf{T}} x$

 $\left.\begin{array}{ccc}
Ax &\leq & \beta \\
x &\in & X
\end{array}\right\} [P]$

- **9** $\gamma, x \in \mathbb{R}^n$, $\beta \in \mathbb{R}^m$, A is $m \times n$, X is the set where variables range
- For P2PSP on our usual graph with s = 1 and t = 7 we have:
 - $\gamma = (1, \dots, 1), \beta = (1, 0, 0, 0, 0, 0, 1), X = \{0, 1\}^{13}$

ړ 🍠	A =												
	$\begin{pmatrix} 1 \end{pmatrix}$	1	1	1	0	0	0	0	0	0	0	0	0
	-1	0	0	0	1	1	0	0	0	0	0	0	0
	0	-1	0	0	$^{-1}$	0	1	1	1	0	0	0	0
	0	0	0	0	0	0	-1	0	0	1	1	0	0
	0	0	-1	0	0	-1	0	-1	0	0	0	1	1
	0	0	0	-1	0	0	0	0	0	-1	0	-1	0
	0	0	0	0	0	0	0	0	-1	0	-1	0	$^{-1}$

INF421, Lecture 9 - p. 50

INIQUE	Transpose		entre and a second					A dual view						
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(turn) \longrightarrow$			1	0	0	0 -	$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ -1 & 0 \\ 0 & -1 \end{array}$	0				
	0 0 0 0 0 1								0 0	0				
	0 0 0 0 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0	1	0	0 -	-1 0	0				
	0 0 1	1 0 0 0 <u> </u> 0 0		• Let $A^{T} =$	0	0	1 -	-1	0 0	0				
	0 1 0 0 0 1	1 0 0 0 - 1 0			0	0	1	0 -	-1 0	0				
		0 I I 0 0 0			0	0	1	0	0 0	-1				
		0 - 0 0 - 0 0							0 -1					
	$\circ \circ \circ \llcorner \vdash \circ $	0 0 1 <u>1</u> 0 0 0												
		0 I 0 I 0 0				0	0 0	0	$\begin{array}{ccc} 0 & 0 \\ 1 & -1 \end{array}$	0				
	$-\frac{1}{2}$	0 0 1 0 0 0 1					0	0						
	$-\frac{1}{1}$	$\begin{array}{ccc} 0 & 1 \\ 1 & 0 \\ 0 \\ 1 \\ 0 \\ 0$			(0	0	0	0	1 0	$^{-1}$ /	/			
	- 1 0 0 0	0 0 1 0 0 1		🧢 Turn rows	s into c	olum	ins ((const	raints i	nto va	riables)			
	0 0 0	0 0 0 0 - 1 0			م مرمون ا	inte			dahla-	into co	notrointe)			
	$-\frac{1}{2}$	0 0 0 1 0 1		and co	Jumns	into	IOWS	s (var	ladies	nto co	nstraints)			
	INF421, Lecture 9 – p. 51													

INF421, Lecture 9 - p. 49

LP Dual

- For each constraint define a variable y_i ($i \leq 7$)
- The Linear Programming Dual is

$\begin{array}{ccc} \max_{y} & -y\beta \\ & yA & \leq & \gamma \end{array} \right\} [D]$

In the case of the SP formulation, the dual is:

$$\begin{array}{ccc} \max_{y} & y_t - y_s \\ \forall (u, v) \in A & y_v - y_u & \leq & c_{uv} \end{array} \right\} [D_{\mathsf{SP}}]$$

 Dual solution encodes the same solution as the "primal" (test with AMPL)

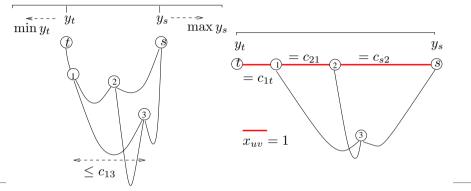
How the hell is this an SP formulation?

Open question

What is the worst-case complexity of the mechanical algorithm?

A mechanical algorithm

- Weighted arcs = strings as long as the weights
- Nodes = knots
- Pull nodes s, t as far as you can
- At maximum pull, strings corresponding to arcs (u, v) in SP have horizontal projections whose length is exactly c_{uv}



INF421, Lecture 9 - p. 54

End of Lecture 9 END OF COURSE