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Course
Objective : to teach you some data structures and associated
algorithms

Evaluation : TP noté en salle info le 16 septembre, Contrôle à la fin.
Note: max(CC, 3

4CC + 1
4TP )

Organization : fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books :
1. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2009

2. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

Website : www.enseignement.polytechnique.fr/informatique/INF421

Contact : liberti@lix.polytechnique.fr (e-mail subject: INF421)
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Lecture summary

Graph definitions

Operations on graphs

Combinatorial problems on graphs

Easy and hard problems

Modelling problems for a generic solution method
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The minimal knowledge

Operations on graphs : complement, line graph,
contraction

Decision/optimization problems : finding subgraphs with
given properties

Easy problems : solvable in polynomial time (P),
e.g. minimum cost spanning tree, shortest paths,
maximum matching

Hard problems : efficient method for solving one would
solve all of them (NP-hard), e.g. maximum clique,
maximum stable set, vertex colouring

Mathematical Programming : a generic model-and-solve
approach
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Graph definitions
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Motivation

The ultimate data structure

Every time you see arrow connecting boxes, circles or black
dots in a computer science course, you can think of graphs
and digraphs!
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Graphs and digraphs

Digraph G = (V,A): relation A on set V

V : set of nodes

A: set of arcs (u, v) with u, v ∈ V
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Graph G = (V,E): symmetric relation E on set V

V : set of vertices

E: set of edges {u, v} with u, v ∈ V
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Simple (di)graphs: relation is irreflexive
(I.e., v not related to itself for all v ∈ V )
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Remarks

I shall mainly present results for undirected graphs

Most results extend trivially to directed graphs (digraphs)

Detailing such extensions is a good exercise

Warning : not all such extensions are trivial

Example
If G is a graph, we indicate its set of vertices by V (G) and its set
of edges by E(G)

Example of extension to digraphs :
If G is a digraph, we indicate its set of nodes by V (G) and its set of
arcs by A(G)
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Stars
Stars : sets of nodes/vertices or arcs/edges adjacent to a given node

∀v ∈ V (G),
if G is undirected,

N(v) = {u ∈ V | {u, v} ∈ E(G)}

δ(v) = {{u, v} | u ∈ N(v)}

if G is directed,
N+(v) = {u ∈ V | (v, u) ∈ E(G)}

δ+(v) = {(v, u) | u ∈ N+(v)}

N−(v) = {u ∈ V | (u, v) ∈ E(G)}

δ−(v) = {(u, v) | u ∈ N−(v)}

|N(v)| =degree , |N+(v)| =outdegree , |N−(v)| =indegree of v

If v belongs to two graphs G,H, write NG(v) and NH(v)

(similarly for other star notation)
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Subgraphs
A graph H = (U, F ) is a subgraph of G = (V,E) if U ⊆ V , F ⊆ E and
∀{u, v} ∈ F (u, v ∈ U)
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A subgraph H = (U, F ) of G = (V,E) is spanning if U = V

A subgraph H = (U, F ) of G = (V,E) is induced by U if
∀u, v ∈ U ({u, v} ∈ E → {u, v} ∈ F )
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Induced subgraph notation: H = G[U ]
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Cutsets
Let H = (U, F ) be a subgraph of G = (V,E) (i.e. U ( V )

The cutset δ(H) =

(

⋃

u∈U

δ(u)

)

r F

is the edge set “separating” U and V r U

E.g. let U = {1, 2, 6} and H = G[U ], then δ(H) is shown by the red
edges below
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Similar definitions hold for directed cutsets

If G is undirected, δ(U) = δ(V r U) for all U ⊆ V (G)
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Connectedness

A graph is connected if there are no empty nontrivial
cutsets
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Connected
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Not connected: δ({1, 2, 6}) = ∅

Each maximal connected subgraph of a graph is a
connected component

Most graph algorithms assume the input graph to be
connected: if not, just apply it to each connected
component
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Paths and cycles
Let G be a graph and u, v ∈ V (G)

A simple path P from u to v in G is a connected subgraph of G s.t.:
1. each vertex w in P different from u, v has |N(w)| = 2

2. if u 6= v then |N(u)| = |N(v)| = 1

3. if u = v then either E(P ) = ∅ or |N(u)| = |N(v)| = 2

We indicate a path from u to v by the notation u→ v

If P is a path u→ v, then u, v are called the endpoints of the path

A simple cycle is a simple path with equal endpoints

Definitions in Lecture 6 equivalent but more general

Will simply say paths/cycles to mean simple paths/cycles
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Complete graph
The complete graph Kn on n vertices has all possible
edges
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Kn is also called n-clique ; a complete graph on a vertex
set U is denoted by K(U)

INF421, Lecture 8 – p. 14

Complement graph

Given G = (V, F ) with |V | = n, the complement of G is
Ḡ = (V,E(Kn)r F )

G 1 2
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The complement of Kn is the empty graph (V,∅) on n

vertices
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Forests and trees

A forest is a graph with no cycles
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A tree is a connected forest
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If a tree is a subgraph of another graph G, we also call it
a spanning tree

INF421, Lecture 8 – p. 16



Graph isomorphism
Let |V | = n and Sn be the symmetric group of order n
π ∈ Sn acts on V , get new graph πG

G = 1 2
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π=(1,2,3,4,5,6,7)
−→

2 3

4

56

7

1

= H

∃π ∈ Sn (G = πH)⇒ G,H isomorphic , π graph isomorphism

Take G = (1, 7, 6, 5, 4, 3, 2)H

If (πG = G), then π is an automorphism of G

Automorphism group of G is Aut(G) = 〈(1, 5), (4, 7)〉 ∼= C2 × C2

N(1) = {2, 3, 5, 6}, N(2) = {1, 3, 5}

N(3) = {1, 2, 4, 5, 7}, N(4) = {3, 6, 7}

N(5) = {1, 2, 3, 6}, N(6) = {1, 4, 5, 7}

N(7) = {3, 4, 6}

=

N(5) = {2, 3, 1, 6}, N(2) = {5, 3, 1}

N(3) = {5, 2, 7, 1, 4}, N(7) = {3, 6, 4}

N(1) = {5, 2, 3, 6}, N(6) = {5, 7, 1, 4}

N(4) = {3, 7, 6}
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Graphs modulo symmetry

Symmetries act on vertex labels — can represent
equivalence classes of graphs modulo symmetry by
simply ignoring labels

• •

•

••

•

•

Not easy to treat mathematically, though. . .
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Line graphs
Given a graph G = (V,E) where E = {e1, . . . , em}

The line graph of G is

L(G) = (E, {{ei, ej} | ei ∩ ej 6= ∅})

Every vertex of L(G) is an edge of G

Two vertices ei, ej of L(G) are adjacent if there is v ∈ V

such that ei, ej ∈ δ(v)
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��� Property : the degree |NL(G)(e)|

of a vertex e = {u, v} of L(G)

is |NG(u)|+ |NG(v)| − 2.

L(G) can be constructed from G

in polynomial time (how?)

INF421, Lecture 8 – p. 19

Operations on graphs

INF421, Lecture 8 – p. 20



Addition and removal

Add a vertex v:
update V ← V ∪ {v}

Add an edge e = {u, v}:
add vertices u, v, update E ← E ∪ {e}

Remove an edge e = {u, v}:
update E ← E r {e}

Remove a vertex v:
update V ← V r {v} and E ← E r δ(v)

Operations on sets of vertices/edges:
Apply operation to each set element

INF421, Lecture 8 – p. 21

Subdivision and contraction
Subdivide an edge e = {u, v}:

remove e, let z 6∈ V , add edges {u, z} and {z, v}

uu vv
z

Contract an edge e = {u, v}:

contract(G,e):

1: Let N(e) = (N(u) ∪N(v))r {u, v}

2: Let z be a vertex 6∈ V ;
3: Add vertex z;
4: for v ∈ N(e) do
5: Add edge {v, z};
6: end for
7: Remove edge e;

u v z
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Subgraph contraction
Let G = (V,E), U ⊆ V and H = G[U ]

The contraction G/U is a sort of “G modulo H”

contract(G,U ):

1: Let z be a new vertex not in V ;
2: Add vertex z;
3: for {u, v} ∈ δ(H) (assume WLOG u ∈ U, v ∈ V r U ) do
4: add edge {v, z};
5: remove edge {u, v};
6: end for
7: remove G[U ];
8: return G;

At the end of the contraction algorithm, the whole subgraph H is
“replaced” by a single vertex z

G/U is formally defined to be contract(G,U)
Thm.
Subgraph contraction is equivalent to a sequence of edge contractions
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Minors

The graph H is a minor of the graph G if it is isomorphic
to the graph obtained by a sequence of contractions

Useful to underline “essential structure” of a
complicated graph

contraction

Contract some triangles
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Combinatorial problems on graphs
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The subgraph problem

Let G be the class of all graphs

For a set of valid propositions P (G) (for G ∈ G), a typical decision
problem in graph theory is the following:

SUBGRAPH PROBLEM (SPP ). Given a graph G, does it have a sub-
graph H with property P?

Decision problem : YES/NO question parametrized over symbols
representing the instance (i.e. the input)

Formally, a decision problem is the set of all possible inputs

Require decision problems to always provide a certificate (a proof that
certifies the answer)

E.g. if P (H) ≡ (H is a cycle) the certificate is the cycle

NP is the class of decision problems whose certificates for YES
instances can be verified in polynomial time w.r.t. the instance size

INF421, Lecture 8 – p. 26

Graph optimization problems

To most decision problems on graphs there is a
corresponding optimization problem

Let µ : G→ R be a “measure” function for graphs

E.g. µ could be the number of vertices, or of edges
SUBGRAPH PROBLEM, optimization version (SPP,µ). Given
a graph G, does it have a subgraph H with property
P and having minimum/maximum measure µ?

Given a property P and a graph measure µ, the set of
instances of SPP,µ is an optimization problem
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Easy problems
We let P be the class of decision or optimization
problems which can be solved in polynomial time

We call problems in P “easy”
MINIMUM SPANNING TREE (MST)

Seen in Lecture 6

SHORTEST PATH PROBLEM (SPP) from a vertex v to all other vertices

To be seen in Lecture 9

MAXIMUM MATCHING problem (MATCHING)

Discussed in INF550

Matching : subgraph given by set

of mutually non-adjacent edges

A maximum matching M ,

µ(M) = |E(M)|
1 2

3

45

6

7

INF421, Lecture 8 – p. 28



Hard(er) problems

INF421, Lecture 8 – p. 29

Maximum clique

CLIQUE PROBLEM (CLIQUE). Given a graph G, what is the
largest n such that G has Kn as a subgraph?

In CLIQUE, µ(H) = |V (H)| and P (H) ≡ H=K(V (H))
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A clique in G
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The largest clique in G

Several applications to social networks and
bioinformatics
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Clique and NP-completeness

The decision version of CLIQUE is:
k-CLIQUE PROBLEM (k-CLIQUE). Given a graph G and an
integer k > 0, does G have Kk as a subgraph?

Consider the following result (which we won’t prove)
Thm.
[Karp 1972] If CLIQUE ∈ P then P = NP

Any decision problem for which such a result holds is
called NP-complete

It is not known whether NP-complete problems can be
solved in polynomial time; the current guess is NO
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Solving NP-complete problems
Essentially, proving NP-completeness of a problem amounts to say
“it’s really hard”
If it were easy, every problem in NP would be easy, which is unlikely: so
it’s likely to be hard

Solution methods for NP-complete problems include:

exact but exponential worst-case complexity algorithms

heuristic algorithms
whenever they find a YES answer they provide a certificate, but

there is no guarantee that they are able to determine whether an

answer is NO in a finite amount of time

Some optimization problems are also such that “solvable in
polynomial time” implies P = NP: they are called NP-hard

With NP-hard optimization problems, can use approximation algorithms

their solutions have a µ-value which is no more than f(|G|)-fold worse

than the optimal one (e.g. µ ≤ f(|G|)µ∗, where µ∗ is the cost of an optimal solution)
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Stables
A stable (or independent set ) of a graph G = (V,E) is a subset U ⊆ V

such that ∀u, v ∈ U ({u, v} 6∈ E)
Thm.

U is a stable in G if and only if Ḡ[U ] is a clique
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Decision problem: k-STABLE

Given G and k ∈ N, is there a stable U ⊆ V (G) of size k?

Optimization problem: STABLE

Given G, find the stable of G of maximum size
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NP-completeness ofk-STABLE

Thm.
k-STABLE is NP-complete
Proof
Consider an instance (G, k) of k-CLIQUE

The complement graph Ḡ can be obtained in polynomial time (∗)

It is easy to show that ¯̄G = G (∗∗)

By (∗∗) and previous thm.,

(G, k) is a YES instance of k-CLIQUE iff (Ḡ, k) is a YES instance of k-STABLE

By (∗), if k-STABLE ∈ P then k-CLIQUE ∈ P

By NP-completeness of k-CLIQUE, k-STABLE ∈ P implies P = NP

Hence k-STABLE is NP-complete

How to show that a problem P is NP-complete:

Take another NP-complete problem Q “similar” to P

Transform (with a poly. alg.) an instance of Q to an instance of P

Show that transformation preserves the YES/NO property
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Stable heuristic

It suffices to give an algorithm for STABLE, the one for
CLIQUE will follow trivially (why?)
The following greedy method will find a maximal stable

1: U = ∅;
2: order V by increasing values of |N(v)|;
3: while V 6= ∅ do
4: v = minV ;
5: U ← U ∪ {v};
6: V ← V r ({v} ∪N(v))
7: end while

Worst-case: O(n) (given by an empty graph)
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Heuristic fails
The above algorithm may fail to find a maximum stable

When choosing second element of U , instead of
choosing leftmost vertex, choose:

• •

•

••

•

•

Then algorithm stops immediately with a stable of
cardinality 2
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A polynomial case
Not all instances of an NP-complete problem are hard

Let P be a decision problem and C⊆P be an infinite set of instances
for which there exists a polynomial algorithm

Then C∈P, and C is a polynomial case of P

For example, let L = {H ∈ G | ∃G ∈ G (H = L(G))} be the class of
graphs that are line graphs of another graph

Thm.
A maximum matching in G is
a stable in L(G)

Proof
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Since MATCHING∈P and finding L(G) can be done in polynomial time,
STABLEL ∈P
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Vertex colouring

Decision problem
VERTEX k-COLOURING PROBLEM (k-VCP). Given a graph G = (V,E)

and an integer k > 0, find a function c : V → {1, . . . , k} such that
∀{u, v} ∈ E (c(u) 6= c(v))

Optimization problem
VERTEX COLOURING PROBLEM (VCP). Given a graph G = (V,E),
find the minimum k ∈ N such that there is a function c : V →

{1, . . . , k} with ∀{u, v} ∈ E (c(u) 6= c(v))

Applications to scheduling and wireless networks

In general, find how to allocate network resources to a
few capacities such that there is no conflict
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Vertex colouring example
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Vertex colouring heuristic

Thm.
Each color set Ck = {v ∈ V | c(v) = k} is a stable

Use stable set heuristic as a sub-step
1: k = 1;
2: U = V ;
3: while U 6= ∅ do
4: Ck = maximalStable(G[U ]);
5: U ← U r Ck;
6: k ← k + 1;
7: end while

Worst-case: O(n) (given by an empty or complete
graph)
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Model-and-solve
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Mathematical programming
Take e.g. the STABLE problem

Input (also called parameters ):
set of vertices V

set of edges E

Output: x : V → {0, 1}

∀v ∈ V x(v) =

{

1 if v ∈maximum stable
0 otherwise

We also write xv = x(v)

We’d like x = (xv | v ∈ V ) ∈ {0, 1}|V | to be the
characteristic vector of the maximum stable S∗

x1, . . . , x|V | are also called decision variables
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Objective function

If we take x = (0, 0, 0, 0, 0, 0, 0), S∗ = ∅ and |S∗| = 0
(minimum possible value)

If we take x = (1, 1, 1, 1, 1, 1, 1) = 1, |S∗| = |V | = 7 has
the maximum possible value

Characteristic vector x should satisfy the objective
function

max
x

∑

v∈V

xv
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Constraints
Consider the solution x = 1

x certainly maximizes the objective

. . . but S∗ = V is not a stable!
x = 1 is an infeasible solution

The feasible set is the set of all vectors in {0, 1}|V | which
encode stable sets

Defining property of a stable:
Two adjacent vertices cannot both belong to the stable

In other words,
choose at most one vertex adjacent to each edge

Written formally,

∀{u, v} ∈ E xu + xv ≤ 1
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Verify the constraints

x = (0, 1, 0, 0, 0, 0, 1, 1) encodes S∗ = {2, 6, 7}

xu + xv = 2 only for {u, v} ∈ F = {{2, 6}, {2, 7}, {6, 7}

Notice F ∩ E = ∅

Hence, xu + xv ≤ 1 for all {u, v} ∈ E
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So what?

OK, so the Mathematical Programming (MP) formulation

maxx
∑

v∈V

xv

∀{u, v} ∈ E xu + xv ≤ 1

x ∈ {0, 1}|V |

describes STABLE correctly

As long as we can’t solve it, why should we care?
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The magical method

But WE CAN!

Use generic MP solvers

These algorithms can solve ANY MP formulation
expressed with linear forms, or prove that there is no
solution

Based on Branch-and-Bound (BB)

The YES certificate is the characteristic vector of a
feasible solution

The NO certificate is the whole BB tree, which implicitly
(and intelligently) enumerates the feasible set

YES certificate lengths are polynomial, NO certificates
may have exponential length
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CLIQUE and MATCHING

Clique (use complement graph):

maxx
∑

v∈V

xv

∀{u, v} 6∈ E, u 6= v xu + xv ≤ 1

x ∈ {0, 1}|V |

Matching:

maxx
∑

{u,v}∈E

xuv

∀u ∈ V
∑

v∈N(u)

xuv ≤ 1

x ∈ {0, 1}|E|

Warning : although MATCHING∈P, solving the MP formulation with
BB is exponential-time
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How to

Come see me, I’ll give you a personal demo

Go to www.ampl.com and download the AMPL
software, student version

AMPL is for modelling, i.e. writing MP formulations

Still from www.ampl.com, you can download a student
version of the ILOG CPLEX BB implementation
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And tomorrow?

If you’re interested in modelling problems as MPs

M1:
INF572 (Optimization: Modelling and Software)
MAP557 (Optimization: Theory and Applications)

M2:
MPRO (Master Parisien en Recherche
Operationnelle)
http://uma.ensta-paristech.fr/mpro/
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End of Lecture 8
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