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Course
Objective : to teach you some data structures and associated
algorithms

Evaluation : TP noté en salle info le 16 septembre, Contrôle à la fin.
Note: max(CC, 3

4CC + 1
4TP )

Organization : fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books :
1. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2009

2. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

Website : www.enseignement.polytechnique.fr/informatique/INF421

Contact : liberti@lix.polytechnique.fr (e-mail subject: INF421)
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Lecture summary

Binary search trees

AVL trees

Heaps and priority queues

Tries
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Notation
Tree T

Node set of T : V(T ) (with |V(T )| = n)

Root: r(T )

Tree rooted at v: T(v)

Node: v ∈ V(T )

Root node of left subtree of v: L(v)

Root node of right subtree of v: R(v)

If L(v) = R(v) = ∅, v is a leaf node

Parent node of v: P (v)

⇒ T = 〈L(r(T )), r(T ),R(r(T ))〉

For all v ∈ V(T ): p(v) =unique path r(T ) → v

Path length: λ(T ) =
∑

v∈V(T )

|p(v)|

Depth (or height): D(T ) = max
v∈V(T )

|p(v)|

r(T )

L(r) R(r)

D(T )
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The minimal knowledge
Let (V,<) be a totally ordered set

V stored as a binary tree T :
L(v) = u ⇒ u ≤ v R(v) = u ⇒ u > v (†)

find, insert, delete, min, max:
O(log n) on average, O(n) worst case

AVL trees : balance
B(T ) = D(T(L(r(T ))))−D(T(R(r(T )))) ∈ {−1, 0, 1}

If an operation unbalances, use a rebalancing operation

⇒ all operations are O(log n) in the worst case

Can use a special balanced tree (a heap) to implement
a priority queue (min/max, insert, delete)

Tries are k-ary trees that encode words prefix-wise
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Binary search trees (BST)
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Sorted sequences

Used to store a set V as a sorted sequences

Makes it efficient to answer the question v ∈ V

Each node v in the tree is such that L(v) ≤ v < R(v)

Example: V = {1, 3, 6, 7}

1

3

6

7∅

∅

∅ 3

6

7∅

1

6

73

∅1

7

∅6

∅3

∅1

Several possibilities
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BST min/max

min(v):
1: if L(v) = ∅ then
2: return v;
3: else
4: return min(L(v));
5: end if

12

5

7

14

13 18

max(v):

1: if R(v) = ∅ then
2: return v;
3: else
4: return max(R(v));
5: end if

12

5

7

14

13 18
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Base cases for recursion

All other BST functions f(k, v) are assumed to be
implemented so that f(k,∅) returns without doing anything
(base case of recursion)
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BST find

find(k, v):
1: ret = not found ;
2: if v = k then
3: ret = v;
4: else if k < v then
5: ret = find(k, L(v));
6: else
7: ret = find(k,R(v));
8: end if
9: return ret;
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BST insert
insert(k, v):
1: if k = v then
2: return already in set ; // if multiset: add new node

3: else if k < v then
4: if L(v) = ∅ then
5: L(v) = k;
6: else
7: insert(k, L(v));
8: end if
9: else

10: if R(v) = ∅ then
11: R(v) = k;
12: else
13: insert(k,R(v));
14: end if
15: end if
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Insert example 1/3

insert(1, r(T ))

12

5

7

14

13 18

1 < 12, take left branch
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Insert example 2/3

insert(1, r(T ))

12

5

7

14

13 18

1 < 5, should take left branch but L(5) = ∅
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Insert example 3/3

insert(1, r(T ))

12

5

7

14

13 181

Add k = 1 as L(5)
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Deletion is not so easy

If node v to delete is a leaf, easy: “cut” it (unlink)

If R(v) = ∅ and L(v) 6= ∅, replace with L(v)

L L

If L(v) = ∅ and R(v) 6= ∅, replace with R(v)

R R

If v has both subtrees, not evident
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Replacing a node
w

v

u

−→

w

v

u

Replace link {P (v), v} with {P (v), u}, then unlink v

replace(u, v)

1: if R(P (v)) = v then
2: R(P (v))← u; // u is a right subnode

3: else
4: L(P (v))← u; // u is a left subnode

5: end if
6: if u 6= ∅ then
7: P (u)← P (v);
8: end if
9: unlink v;

unlink: set L(v) = R(v) = P (v) = ∅
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Deletingv : L(v) 6= ∅ ∧ R(v) 6= ∅

Idea: swap v with u = min(R(v)) then delete it

The minimum u of a BST is always the leftmost node
without a left subtree

Hence we know how to delete u (case L(·) = ∅ in
previous slide)

We replace the value of v by that of u then delete u

Because u = min T(R(v)), we have u < w for all
w ∈ T(R(v))

Since the value of v is now the value of u, v is now the
minimum over all nodes in T(R(v)); hence v < r(R(v))

Moreover, since the value of v used to be u, a node in
R(v), we have v > r(L(v)), satisfying the BST defn. (†)
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BST delete

delete(k, v):
1: if k < v then
2: delete(k, L(v));
3: else if k > v then
4: delete(k,R(v));
5: else
6: if L(v) = ∅ ∨ R(v) = ∅ then
7: delete v; // one of the easy cases

8: else
9: u = min(R(v));

10: swap values(u, v);
11: delete u; // an easy case, as L(u)=null

12: end if
13: end if
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Delete example

delete(10, r(T ))

10

5

7

14

12 18

v = 10

10

5

7

14

12 18

u = min T(14) = 12

12

5

7

14

10 18

swap values of 10 and 12

12

5

7

14

18

delete 10
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Complexity

Each IF case involves at most one recursive call

Recurse along one branch only

Worst-case complexity proportional to depth D(T )

If tree is balanced, D(T ) is O(logn) (see INF311)

In the worst case, D(T ) is O(n)

•

•

•

•∅

∅

∅
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Adelson-Velskii & Landis (AVL)
trees
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AVL Trees

Try inserting 1, 3, 6, 7 in this order: get unbalanced tree

1

3

6

7∅

∅

∅

Worst case find (i.e., find the key 7) is O(n)

Need to rebalance the tree to be more efficient

AVL trees : at any node, B(T ) =depth difference between
left and right subtrees ∈ {−1, 0, 1}
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Examples

AVL tree:
−1

−1

0

0

00

−1

0∅

−1

1

∅0

0

1

01

00

Non-AVL tree:
−2

−1

−1

0∅

0

0

Nodes indicate B(T(v))
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In general

We can decompose balanced trees operations into:
the operation itself
a sequence of rebalancing operations (when required), called
rotations

The operations min/max, find, insert, delete
are as in BST (with one simple modification)

Unbalancing can occur on insertion and deletion

Since we insert/delete only one node at a time,
unbalance offset is at most 1 unit

I.e., B(T ) =depth difference between left and right
subtrees, could be {−2, 2}
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Left and right rotation

u

uv

v

α

α
β β

γ
γ

rotateLeft

rotateRight
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Algebraic interpretation

Let α, β, γ be trees, u, v be nodes not in α, β, γ

Define:
rotateLeft(〈α, u, 〈β, v, γ〉〉) = 〈〈α, u, β〉, v, γ〉

rotateRight(〈〈α, u, β〉, v, γ〉) = 〈α, u, 〈β, v, γ〉〉

A sort of “associativity of trees”

Remark: rotateLeft,rotateRight are inverses

Thm.
rotateRight(rotateLeft(T )) =

rotateLeft(rotateRight(T )) = T

Proof
Directly from the definition
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Rotating and rebalancing
u

uv

v

D
=

hD
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1
−2

−1

0

0

α

α
β βγ

γ

rotateLeft

u

u v

v

D
=

h

D
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

2

1

0

0

α

α

ββ
γ

γ

rotateRight
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Properties of rotation
Thm.
∀T , rotateLeft(T ), rotateRight(T ′) are BSTs

Proof
(Sketch): The tree order only changes locally for u, v. In T , T(v) = R(u), which implies

u < v. In rotateLeft(T ), T(u) = L(u), which is consistent with u < v. Similarly for T ′.

Suppose D(α) = D(β) = h and D(γ) = h+ 1

Let T = 〈α, u, 〈β, v, γ〉〉: then B(T ) = −2

Let T ′ = 〈〈γ, u, β〉, v, α〉: then B(T ′) = 2

Thm.
T, T ′ as above ⇒ B(rotateLeft(T )) = 0, B(rotateRight(T ′)) = 0

Proof
(Sketch): since subtrees α, γ are swapped, tree depth is D = h for all subtrees
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Is this enough?

u

v

D
=

h

D
=

h

D
=

h
+

1

−2

1

α

βγ

Rotating leaves γ at its place, doesn’t work

INF421, Lecture 7 – p. 29

Break γ up into subtrees

u

v

D
=

h

D
=

h

h

h
−

1

−2

1

α

β

γ

Now we can rotate T(v) = R(u)
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Rotate a subtree right

Bv

uu

v

v

D
=

h

D
=

h

D
=

h

h

h

h

h
−

1

h
−

1

−2

−2

1
−1

αα

β

β

γ

r(γ)
rotateRight(R(u))

Rotate R(u) right
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Finally, rotate left

BuBv

u

u

v
v

D
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

hh

h

h

h
−

1

h
−

1

−2

−1

−1
0

α

α

β
β

r(γ)

r(γ)

rotateLeft(T )

Rotate T left
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Symmetric cases I

Bv

u u

v

v

D
=

h

D
=

h

D
=

h

h h

h

h
−

1

h
−

1

−2

−2

1
−2

α α

β

β

γ

r(γ)
rotateRight(R(u))

ւ

BuBv

u

u
v

v

D
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

h

h h

hh
−

1

h
−

1

−2

−2

0

0

α

αβ
β

r(γ)

r(γ)

rotateLeft(T )
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Symmetric cases II

u

v

D
=

h

D
=

h

D
=

h
+

1

2

−1

α

β γ

Rebalance: rotateLeft(L(u)), rotateRight(T )
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Implementation of AVL trees

It took me TEN bloody hours to code a decent Java implementatation!

Definition of “decent implementation” :

Recursive implementation for didactical value

Methods act on this node, for consistency with other lectures

Efficient update of B(v) after insertions and rotations

In view of my coding odyssey, in retrospect these were poor choices

Advice :

Consider iterative implementations using stacks or three threading

Declare static methods and pass the relevant nodes as arguments
this frees you from several constraints, e.g. you can’t set this to null

If you have trouble keeping balances updated in an efficient manner, you can always

re-compute them recursively at each node, using depth

yields a slower code but worst-case complexity is the same

Look at my (online) code and INF421 Polycopié’s
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Balanced vs. random BST
Balanced binary trees have O(logn) insert, delete, query ops

What about an average (not necessarily balanced) BST?

Given a sequence σ ∈ {1, . . . , n}n, we insert it in a BST T

Nodes to the left of r(T ) are ≤ r(T ), nodes to the right of are > r(T )

Let K be the number of nodes in L(T ), so that |R(T )| = n− 1−K

Uniform distribution on K i.e. P (K = k) = 1

n
for all k ∈ {0, . . . , n− 1}

σ (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

T

1

2

3

1

3

2

2

1 3

2

1 3

3

1

2

2

1

3

type A B C C D E

Type C (balanced) twice as likely as any other type!
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Average depth and path length

Average depth for BFSs: O(log n) [Devroye, 1986]

Average path length for BFSs: O(n log n) [Vitter &
Flajolet, 1990]

This shows that BFSs are pretty balanced on average
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Heaps and priority queues

INF421, Lecture 7 – p. 38

Queues reminder

A queue is a data structure with main operations:
pushBack(v): inserts v at the end of the queue
popFront(): returns and removes an element at the
beginning of the queue

Queues implement the Last-In-First-Out principle

Definitions in Lecture 2

Used by BFS to compute paths with fewest arcs

If arcs are prioritized (e.g. travelling times for route
segments), we want the queue to return the
element of highest priority

This may not be at the beginning of the queue
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Priority queues

Let V be a set and (S,<) be a totally ordered set

A priority queue on V, S is a set Q of pairs (v, pv)
s.t. v ∈ V and pv ∈ S

Usually, pv is a number

E.g., if pv is the rank of entrance of v in Q, then Q is a
standard queue

Supports three main operations:
insert(v, pv): inserts v in Q with priority pv

max(): returns the element of Q with maximum
priority
popMax(): returns and removes max()

Implemented as heaps
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Heap

A (binary) heap is an abstract, tree-like data structure
which offers:

O(log |Q|) insert

O(1) max

O(log |Q|) popMax

The O(1) is obtained by storing the maximum priority
element as the root of a binary tree

Distinguishing properties

shape property : all levels except perhaps the last are
fully filled; the last level is filled left-to-right

heap property : every node stores an element of
higher priority than its subnodes
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Example

Let V = N, and for all v ∈ V we let pv = v

100

36

125

19

317

72
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A balanced tree
Thm.
If Q is a binary heap, B(Q) ∈ {0, 1}

Proof
This follows trivially from the shape property. Since all levels are filled
completely apart perhaps from the last, B(Q) ∈ {−1, 0, 1}. Since the
last is filled left-to-right, B(Q) 6= −1

Cor.
A binary heap is a balanced binary tree
Warning : NOT a BST/AVL: heap property not compatible with BST definition L(v) ≤ V R(v)

Keep the heap balanced: need O(log |Q|) work to
insert/remove
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Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained
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Insertion maintains the heap

Worst case: insert takes time proportional to tree
depth: O(log n)

The shape property is maintained:
on adding a new element at last level, leftmost free
slot
on swapping node values along a path to the root

The heap property is not maintained after adding a new
element

However, it is restored after the sequence of swaps

Thm.
The insertion operation maintains the heap

INF421, Lecture 7 – p. 45

Max

Easy: return the root of the heap tree

Evidently O(1)
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Removal of max

Let last(Q) be the rightmost non-empty element of the
last heap level

Move node last(Q) to the root r(Q)

Compare v with its children u,w: if pv ≥ pu, pv ≥ pw,
heap is in correct order

Otherwise, swap v with maxp(u, v) (use minp if min-heap) and
repeat comparison/swap until termination
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Efficient construction

Suppose we have n elements of V to insert in an empty heap

Trivially: each insert takes O(log n), get O(n logn) to construct the
whole heap

Instead:
1. arbitrarily put the element in a binary tree with the shape

property (can do this in O(n))

2. lower level first, move nodes down using the same swapping
procedure as for popMax

At level ℓ, moving a node down costs O(ℓ) (worst-case)

There’s ≤ ⌈ n

2ℓ+1 ⌉ nodes at level ℓ and O(logn) possible levels

⌈logn⌉∑

ℓ=0

n

2ℓ+1
O(ℓ) = O(n

⌈logn⌉∑

ℓ=0

1

2ℓ
) ≤ O(n

∞∑

ℓ=0

1

2ℓ
) = O(2n) = O(n)
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Implementation

A priority queue is implemented as a heap

But we didn’t say how a heap is to be implemented

It behaves like a tree

We’re going to use an array instead (practically very
efficient)
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Binary trees in arrays
5

24

31

Node 5 4 2 1 3

Index 0 1 2 3 4
i 2i+ 1 2i+ 2

Heap Q of n elements stored in an array q of length n

q0 = r(Q)

Subnodes

If qi = v, then q2i+1 = r(L(v)) and q2i+2 = r(R(v))
(whenever 2i+ 1, 2i+ 2 < n)

Parent

If qi = v 6= r(Q), qj = P (v) where j = ⌊ i−1

2
⌋

We now have all the elements: start implementing!
INF421, Lecture 7 – p. 50

k-ary Search Trees
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Tries

Recall SEARCH problem: given a set V and a key v,
determine whether v ∈ V

Hash functions: O(1) in the average case

Let V be a set of words from same alphabet L

We can organize keys in a k-ary tree for answering
SEARCH

In a k-ary tree, each node has at most k subnodes
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Trie example

V = {a,at,to,tea,ted,ten,in,inn}
∅

i

n

innin

a

ata

t

e

tentedtea

to

Each key is stored at a leaf node ℓ

Each non-leaf node v represents a prefix of all keys
stored in the tree rooted at v

The trie root node is ∅, the empty string
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Trie properties

The path of the trie corresponding to a key k is given by the key itself
Compare with hash functions: the hash value is specified by the key

This path has the same length m as the key

find, insert and delete take worst-case O(m)

If m, |L| are bounded by a constant w.r.t. n = |V |, then methods are
O(1) in the worst case (w.r.t. set size)

Comparison to hash functions

With respect to hashing, tries support “ordered iteration”

Hash tables need re-hashing (expensive) as they become full;
tries adjust to size gracefully

No need to construct good hash functions

Warning : there are several trie variants
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End of Lecture 7
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