INF421, Lecture 7 Balanced Trees

Leo Liberti

LIX, École Polytechnique, France

INF421, Lecture 7 - p. 1

Lecture summary

- Binary search trees
- AVL trees
- Heaps and priority queues
- Tries

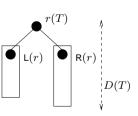


- Objective: to teach you some data structures and associated algorithms
- **Solution:** TP noté en salle info le 16 septembre, Contrôle à la fin. Note: $\max(CC, \frac{3}{4}CC + \frac{1}{4}TP)$
- Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)
- Books
 - Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2009
 - 2. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
 - 3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
 - 4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421. Lecture 7 – p. 2

Notation

- ightharpoonup Tree T
- Node set of T: V(T) (with |V(T)| = n)
- Tree rooted at v: T(v)
- **●** Node: $v \in V(T)$
- Root node of left subtree of v: L(v)
- **Proof** Root node of right subtree of v: R(v)
- If $L(v) = R(v) = \emptyset$, v is a leaf node
- Parent node of v: P(v)
- For all $v \in V(T)$: p(v) =unique path $r(T) \rightarrow v$
- Path length: $\lambda(T) = \sum_{v \in V(T)} |p(v)|$
- **●** Depth (or height): $D(T) = \max_{v \in V(T)} |p(v)|$



The minimal knowledge

- Let (V, <) be a totally ordered set
- V stored as a binary tree T:

$$L(v) = u \Rightarrow u \le v$$
 $R(v) = u \Rightarrow u > v$ (†)

- find, insert, delete, min, max: $O(\log n)$ on average, O(n) worst case
- AVL trees: balance

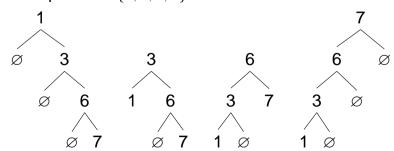
$$B(T) = D(\mathsf{T}(\mathsf{L}(r(T)))) - D(\mathsf{T}(\mathsf{R}(r(T)))) \in \{-1,0,1\}$$

- If an operation unbalances, use a rebalancing operation
- \bullet \Rightarrow all operations are $O(\log n)$ in the worst case
- Can use a special balanced tree (a heap) to implement a priority queue (min/max, insert, delete)
- Tries are k-ary trees that encode words prefix-wise

INF421, Lecture 7 - p. 5

Sorted sequences

- Used to store a set V as a sorted sequences
- Makes it efficient to answer the question $v \in V$
- Each node v in the tree is such that $L(v) \le v < R(v)$
- **•** Example: $V = \{1, 3, 6, 7\}$



Several possibilities

Binary search trees (BST)

INF421, Lecture 7 - p. 6

BST min/max

 \bullet min(v):

1: if $L(v) = \emptyset$ then

2: **return** v;

3: **else**

4: **return** $\min(\mathsf{L}(v))$;

5: end if

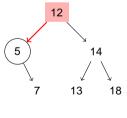
1: if $R(v) = \emptyset$ then

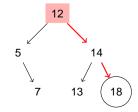
v: return v;

3: **else**

4: **return** $\max(R(v))$;

5: end if





Base cases for recursion

BST find

All other BST functions f(k,v) are assumed to be implemented so that $f(k,\varnothing)$ returns without doing anything (base case of recursion)

find(k, v):
1: ret = not_found;
2: if v = k then
3: ret = v;
4: else if k < v then
5: ret = find(k, L(v));
6: else
7: ret = find(k, R(v));</pre>

8: **end if**

9: return ret;

INF421. Lecture 7 – p. 10

ico (f

BST insert

```
insert(k, v):
```

4: **if** $L(v) = \emptyset$ **then** 5: L(v) = k;

6: **else**

7: insert(k, L(v));

8: **end if**

9: else

10: if $R(v) = \emptyset$ then

11: R(v) = k;

12: **else**

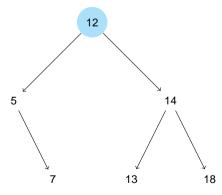
13: insert(k, R(v));

14: **end if**

15: end if

Insert example 1/3

insert(1, r(T))

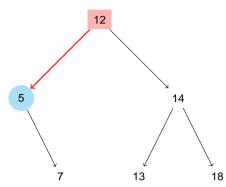


1 < 12, take left branch

INF421, Lecture 7 - p. 11

Insert example 2/3

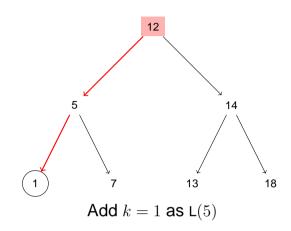
insert(1, r(T))



1 < 5, should take left branch but $L(5) = \emptyset$

Insert example 3/3

insert(1, r(T))



INF421, Lecture 7 - p. 14

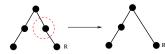
INF421, Lecture 7 - p. 13

Deletion is not so easy

If node v to delete is a leaf, easy: "cut" it (unlink)

• If $R(v) = \emptyset$ and $L(v) \neq \emptyset$, replace with L(v)

• If $L(v) = \emptyset$ and $R(v) \neq \emptyset$, replace with R(v)



If v has both subtrees, not evident

Replacing a node

Replace link $\{P(v),v\}$ with $\{P(v),u\}$, then unlink v

lacksquare replace(u,v)

1: if R(P(v)) = v then

2: $R(P(v)) \leftarrow u$; // u is a right subnode

3: else

4: $L(P(v)) \leftarrow u$; // u is a left subnode

5: end if

6: if $u \neq \emptyset$ then

7: $P(u) \leftarrow P(v)$;

8: end if

9: unlink v;

• unlink: set $L(v) = R(v) = P(v) = \emptyset$

Deleting $v : \mathsf{L}(v) \neq \varnothing \land \mathsf{R}(v) \neq \varnothing$

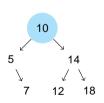
Idea: swap v with $u = \min(R(v))$ then delete it

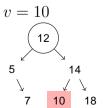
- The minimum u of a BST is always the leftmost node without a left subtree
- Hence we know how to delete u (case L(·) = Ø in previous slide)
- We replace the value of v by that of u then delete u
- **●** Because $u = \min T(R(v))$, we have u < w for all $w \in T(R(v))$
- Since the value of v is now the value of u, v is now the minimum over all nodes in T(R(v)); hence v < r(R(v))
- Moreover, since the value of v used to be u, a node in R(v), we have v > r(L(v)), satisfying the BST defn. (†)

INF421, Lecture 7 - p. 17

Delete example

delete(10, r(T))



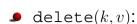


swap values of 10 and 12

delete 10

ECOLE POLYTECHNIQUE

BST delete



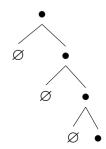
13: end if

```
1: if k < v then
     delete(k, L(v));
 3: else if k > v then
     delete(k, R(v));
 5: else
     if L(v) = \emptyset \vee R(v) = \emptyset then
       delete v; // one of the easy cases
      else
       u = \min(R(v)):
 9:
10:
       swap\_values(u, v);
11:
       delete u; // an easy case, as L(u)=null
      end if
12:
```

INF421, Lecture 7 - p. 18

Complexity

- Each IF case involves at most one recursive call
- Recurse along one branch only
- Worst-case complexity proportional to depth D(T)
- If tree is balanced, D(T) is $O(\log n)$ (see INF311)
- In the worst case, D(T) is O(n)



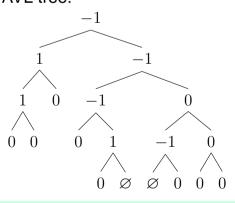
INF421, Lecture 7 - p. 19 INF421, Lecture 7 - p. 20

Adelson-Velskii & Landis (AVL) trees

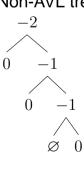
INF421, Lecture 7 - p. 21

Examples

AVL tree:



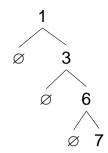
Non-AVL tree:



Nodes indicate B(T(v))

AVL Trees

• Try inserting 1, 3, 6, 7 in this order: get unbalanced tree



- ullet Worst case find (i.e., find the key 7) is O(n)
- Need to rebalance the tree to be more efficient.
- **AVL trees**: at any node, B(T) =depth difference between left and right subtrees $\in \{-1, 0, 1\}$

INF421, Lecture 7 - p. 22

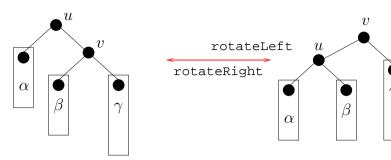
In general

- We can decompose balanced trees operations into:
 - the operation itself
 - a sequence of rebalancing operations (when required), called rotations
- The operations min/max, find, insert, delete are as in BST (with one simple modification)
- Unbalancing can occur on insertion and deletion
- Since we insert/delete only one node at a time, unbalance offset is at most 1 unit
- I.e., B(T) =depth difference between left and right subtrees, could be $\{-2,2\}$

INF421, Lecture 7 - p. 23 INF421, Lecture 7 - p. 24

ECOLE POLYTECHNIQUE

Left and right rotation



INF421, Lecture 7 - p. 25

ECOL

Algebraic interpretation

- Let α, β, γ be trees, u, v be nodes not in α, β, γ
- Define:
 - rotateLeft($\langle \alpha, u, \langle \beta, v, \gamma \rangle \rangle$) = $\langle \langle \alpha, u, \beta \rangle, v, \gamma \rangle$
 - rotateRight($\langle \langle \alpha, u, \beta \rangle, v, \gamma \rangle$) = $\langle \alpha, u, \langle \beta, v, \gamma \rangle \rangle$
- A sort of "associativity of trees"
- Remark: rotateLeft, rotateRight are inverses

Thm.

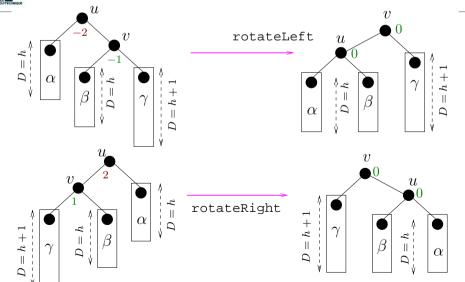
```
\label{eq:rotateRight} \begin{split} & \texttt{rotateRight}(\texttt{rotateLeft}(T)) = \\ & \texttt{rotateLeft}(\texttt{rotateRight}(T)) = T \end{split}
```

Proof

Directly from the definition

INF421, Lecture 7 - p. 26

Rotating and rebalancing



ECOLE

Properties of rotation

Thm.

 $\forall T$, rotateLeft(T), rotateRight(T') are BSTs

Proof

(Sketch): The tree order only changes locally for u,v. In T, $\mathsf{T}(v) = \mathsf{R}(u)$, which implies u < v. In $\mathsf{rotateLeft}(T)$, $\mathsf{T}(u) = \mathsf{L}(u)$, which is consistent with u < v. Similarly for T'.

- Suppose $D(\alpha) = D(\beta) = h$ and $D(\gamma) = h + 1$
- Let $T = \langle \alpha, u, \langle \beta, v, \gamma \rangle \rangle$: then B(T) = -2
- Let $T' = \langle \langle \gamma, u, \beta \rangle, v, \alpha \rangle$: then B(T') = 2

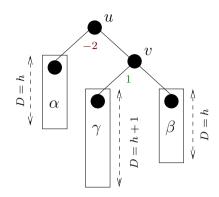
Thm.

T, T' as above $\Rightarrow B(\text{rotateLeft}(T)) = 0, B(\text{rotateRight}(T')) = 0$

Proof

(Sketch): since subtrees α, γ are swapped, tree depth is D = h for all subtrees

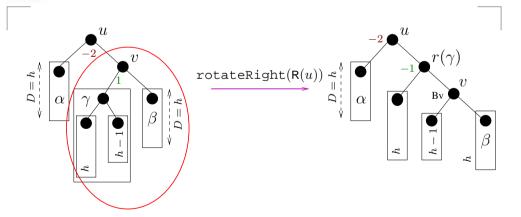
Is this enough?



Rotating leaves γ at its place, doesn't work

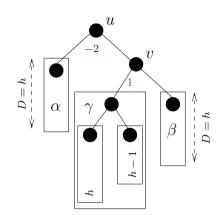
INF421, Lecture 7 - p. 29

Rotate a subtree right



Rotate R(u) right

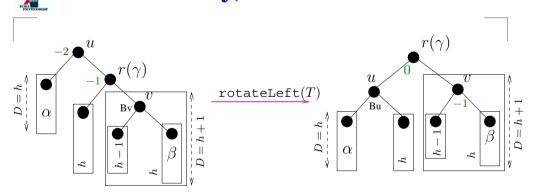
Break γ up into subtrees



Now we can rotate T(v) = R(u)

INF421, Lecture 7 - p. 30

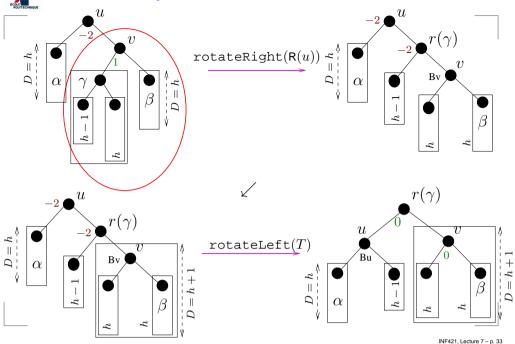
Finally, rotate left



Rotate T left

INF421, Lecture 7 – p. 31 INF421, Lecture 7 – p. 32

Symmetric cases I



VTECHNIQUE

Implementation of AVL trees

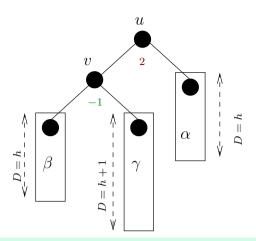
It took me TEN bloody hours to code a decent Java implementatation!

- Definition of "decent implementation":
- Recursive implementation for didactical value
- Methods act on this node, for consistency with other lectures
- Efficient update of B(v) after insertions and rotations

In view of my coding odyssey, in retrospect these were poor choices

- Advice:
- Consider iterative implementations using stacks or three threading
- Declare static methods and pass the relevant nodes as arguments this frees you from several constraints, e.g. you can't set this to null
- If you have trouble keeping balances updated in an efficient manner, you can always re-compute them recursively at each node, using depth yields a slower code but worst-case complexity is the same
- Look at my (online) code and INF421 Polycopié's

Symmetric cases II



Rebalance: rotateLeft(L(u)), rotateRight(T)

INF421, Lecture 7 - p. 34

Balanced vs. random BST

- **Palanced binary trees have** $O(\log n)$ insert, delete, query ops
- What about an average (not necessarily balanced) BST?
- **9** Given a sequence $\sigma \in \{1, \dots, n\}^n$, we insert it in a BST T
- Nodes to the left of r(T) are $\leq r(T)$, nodes to the right of are > r(T)
- Let K be the number of nodes in $\mathsf{L}(T)$, so that $|\mathsf{R}(T)| = n 1 K$
- ${\color{blue} \blacktriangleright}$ Uniform distribution on K i.e. $P(K=k)=\frac{1}{n}$ for all $k\in\{0,\dots,n-1\}$

σ	(1,2,3)	(1,3,2)	(2,1,3)	(2,3,1)	(3,1,2)	(3,2,1)
T	1 2 3	1 3 2	2 1 3	2 1 3	3 1 2	2 1 3
	,	_	1 0	1 0		
type	Α	В	С	С	D	Е

Type C (balanced) twice as likely as any other type!

Average depth and path length

- Average depth for BFSs: $O(\log n)$ [Devroye, 1986]
- Average path length for BFSs: $O(n \log n)$ [Vitter & Flajolet, 1990]
- This shows that BFSs are pretty balanced on average



Heaps and priority queues

INF421. Lecture 7 - p. 38

Queues reminder

- A queue is a data structure with main operations:
 - $m{ ilde{ }}$ pushBack(v): inserts v at the end of the queue
 - popFront(): returns and removes an element at the beginning of the queue
- Queues implement the Last-In-First-Out principle
- Definitions in Lecture 2
- Used by BFS to compute paths with fewest arcs
- If arcs are prioritized (e.g. travelling times for route segments), we want the queue to return the element of highest priority

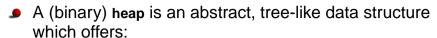
This may not be at the beginning of the queue

INF421. Lecture 7 - p. 37

Priority queues

- Let V be a set and (S,<) be a totally ordered set</p>
- A priority queue on V,S is a set Q of pairs (v,p_v) s.t. $v\in V$ and $p_v\in S$
- ullet Usually, p_v is a number
- E.g., if p_v is the rank of entrance of v in Q, then Q is a standard queue
- Supports three main operations:
 - insert (v, p_v) : inserts v in Q with priority p_v
 - $\max()$: returns the element of Q with maximum priority
 - popMax(): returns and removes max()
- Implemented as heaps

Heap



- $O(\log |Q|)$ insert
- $m{ ilde{}}$ $O(1) \max$
- $O(\log |Q|)$ popMax
- The O(1) is obtained by storing the maximum priority element as the root of a binary tree
- Distinguishing properties
 - shape property: all levels except perhaps the last are fully filled; the last level is filled left-to-right
 - heap property: every node stores an element of higher priority than its subnodes

INF421, Lecture 7 - p. 41

, ik

A balanced tree

Thm.

If Q is a binary heap, $B(Q) \in \{0, 1\}$

Proof

This follows trivially from the shape property. Since all levels are filled completely apart perhaps from the last, $B(Q) \in \{-1,0,1\}$. Since the last is filled left-to-right, $B(Q) \neq -1$

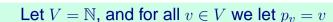
Cor.

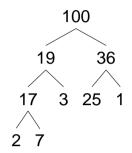
A binary heap is a balanced binary tree

Warning: NOT a BST/AVL: heap property not compatible with BST definition $\mathsf{L}(v) \leq V \mathsf{R}(v)$

Keep the heap balanced: need $O(\log |Q|)$ work to insert/remove

Example





INF421, Lecture 7 - p. 42

ECOLE

Insert

- Add new element (v, p_v) at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent (u, p_u) ; if $p_u < p_v$, swap u and v's positions in the heap
- Repeat comparison/swap until heap property is attained

Insertion maintains the heap

- Worst case: insert takes time proportional to tree depth: $O(\log n)$
- The shape property is maintained:
 - on adding a new element at last level, leftmost free slot
 - on swapping node values along a path to the root
- The heap property is not maintained after adding a new element
- However, it is restored after the sequence of swaps

Thm.

The insertion operation maintains the heap

INF421, Lecture 7 - p. 45

Removal of max

- Let last(Q) be the rightmost non-empty element of the last heap level
- ullet Move node ${ t last}(Q)$ to the root r(Q)
- Compare v with its children u, w: if $p_v \ge p_u, p_v \ge p_w$, heap is in correct order
- Otherwise, swap v with $\max_p(u,v)$ (use \min_p if min-heap) and repeat comparison/swap until termination

Max

- Easy: return the root of the heap tree
- **Evidently** *O*(1)

INF421. Lecture 7 - p. 46

Efficient construction

- Suppose we have n elements of V to insert in an empty heap
- Trivially: each insert takes $O(\log n)$, get $O(n \log n)$ to construct the whole heap
- Instead:
 - 1. arbitrarily put the element in a binary tree with the shape property (can do this in O(n))
 - 2. lower level first, move nodes down using the same swapping procedure as for popMax
- At level ℓ , moving a node down costs $O(\ell)$ (worst-case)
- **●** There's $\leq \lceil \frac{n}{2\ell+1} \rceil$ nodes at level ℓ and $O(\log n)$ possible levels

$$\sum_{\ell=0}^{\lceil \log n \rceil} \frac{n}{2^{\ell+1}} O(\ell) = O(n \sum_{\ell=0}^{\lceil \log n \rceil} \frac{1}{2^{\ell}}) \le O(n \sum_{\ell=0}^{\infty} \frac{1}{2^{\ell}}) = O(2n) = O(n)$$

Implementation

- A priority queue is implemented as a heap
- But we didn't say how a heap is to be implemented
- It behaves like a tree
- We're going to use an array instead (practically very efficient)

INF421, Lecture 7 - p. 49

k-ary Search Trees

Node	5	4	2	1	3
Index	0	1	2	3	4
		i		2i + 1	2i + 2

- Heap Q of n elements stored in an array q of length n
- Subnodes

If $q_i = v$, then $q_{2i+1} = r(L(v))$ and $q_{2i+2} = r(R(v))$ (whenever 2i + 1, 2i + 2 < n)

Parent

If
$$q_i = v \neq r(Q)$$
, $q_j = P(v)$ where $j = \lfloor \frac{i-1}{2} \rfloor$

We now have all the elements: start implementing!

INF421, Lecture 7 - p. 50

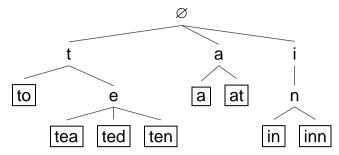
Tries

- $\hbox{\bf PRECALL SEARCH problem: given a set V and a key v, determine whether $v \in V$ }$
- ullet Hash functions: O(1) in the average case
- Let V be a set of words from same alphabet L
- We can organize keys in a k-ary tree for answering SEARCH
- In a k-ary tree, each node has at most k subnodes

INF421, Lecture 7 – p. 51 INF421, Lecture 7 – p. 52

Trie example

 $V = \{a,at,to,tea,ted,ten,in,inn\}$



- Each key is stored at a leaf node \(\ell \)
- Each non-leaf node v represents a prefix of all keys stored in the tree rooted at v
- The trie root node is Ø, the empty string

INF421, Lecture 7 - p. 53

End of Lecture 7

INF421, Lecture 7 - p. 55

Trie properties

- The path of the trie corresponding to a key k is given by the key itself Compare with hash functions: the hash value is specified by the key
- lacksquare This path has the same length m as the key
- find, insert and delete take worst-case O(m)
- If m, |L| are bounded by a constant w.r.t. n = |V|, then methods are O(1) in the worst case (w.r.t. set size)
- Comparison to hash functions
 - With respect to hashing, tries support "ordered iteration"
 - Hash tables need re-hashing (expensive) as they become full;
 tries adjust to size gracefully
 - No need to construct good hash functions

Warning: there are several trie variants