
INF421, Lecture 6
Trees

Leo Liberti

LIX, École Polytechnique, France

INF421, Lecture 6 – p. 1

Course

Objective: to teach you some data structures and associated

algorithms

Evaluation: TP noté en salle info le 16 septembre, Contrôle à la fin.

Note: max(CC, 3

4
CC + 1

4
TP)

Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books:

1. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

2. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

Website: www.enseignement.polytechnique.fr/informatique/INF421

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 6 – p. 2

Lecture summary

Introduction and reminders

Definitions and properties

Listing chemical trees

Trees in psychology and languages

Depth-First Search (DFS)

Spanning trees

INF421, Lecture 6 – p. 3

The minimal knowledge

A tree is a connected relation without cycles

A tree on n nodes has n− 1 branches

There are nn−2 labelled trees

The same molecular formula can correspond to
different bond trees (isomers)

The analysis of sentences yields grammatical trees

The Graph Scanning algorithm, DFS and BFS

The cheapest kind of distribution network is a spanning
tree

INF421, Lecture 6 – p. 4

Introduction and reminders

INF421, Lecture 6 – p. 5

Trees

INF421, Lecture 6 – p. 6

How we draw them

INF421, Lecture 6 – p. 7

Nomenclature

INF421, Lecture 6 – p. 8

Graphical representation

root

leaf

br
an

ch

node

leaf leaf

leaf

h
e
ig
h
t
o
r
d
e
p
th

=
2

subtree

height/depth = length (#branches) of longest walk [root→ leaf]

INF421, Lecture 6 – p. 9

Recall from INF311

Binary trees

Their implementations

How to explore them in prefix, infix, postfix order

How to store mathematical expressions in trees

INF421, Lecture 6 – p. 10

Some applications of trees

Chemistry (molecular composition and structure)

Psychology (natural language)

Distribution networks of minimum cost

Computer science

model for recursion (Lecture 3)

data structures for sorting and searching (Lecture 7)

INF421, Lecture 6 – p. 11

Definitions and properties

INF421, Lecture 6 – p. 12

Relations

A relation A on a set V is a subset of V × V

V = {v1, . . . , v5}

A = {(v1, v3), (v1, v2), (v4, v5), (v5, v4), (v5, v5)}
v1 v2

arc

v3

v4

v5

edge
loop

Arc: an element of A; loop: a pair (v, v)

Edge: e = {(u, v), (v, u)} (denote by e = {u, v})

(u, v are incident to e, and u, v are adjacent)

Symmetric relation: if (u, v) ∈ A, then (v, u) ∈ A

Reflexive relation: (v, v) ∈ A for all v ∈ V

Irreflexive or simple relation: (v, v) 6∈ A for all v ∈ V

Transitive relation: if (u, v), (v, w) ∈ A then (u, w) ∈ A

INF421, Lecture 6 – p. 13

Graphs and digraphs
A relation A on V is also called a digraph G = (V,A)

INF421, Lecture 6 – p. 14

Graphs and digraphs
A relation A on V is also called a digraph G = (V,A)

A symmetric relation E on V is also called a graph G = (V,E)

INF421, Lecture 6 – p. 14

Graphs and digraphs
A relation A on V is also called a digraph G = (V,A)

A symmetric relation E on V is also called a graph G = (V,E)

Digraphs have arcs (u, v), graphs have edges {u, v}

INF421, Lecture 6 – p. 14

Graphs and digraphs
A relation A on V is also called a digraph G = (V,A)

A symmetric relation E on V is also called a graph G = (V,E)

Digraphs have arcs (u, v), graphs have edges {u, v}

A digraph/graph is simple if it has no loops

INF421, Lecture 6 – p. 14

Graphs and digraphs
A relation A on V is also called a digraph G = (V,A)

A symmetric relation E on V is also called a graph G = (V,E)

Digraphs have arcs (u, v), graphs have edges {u, v}

A digraph/graph is simple if it has no loops

In a graph context, nodes are also called vertices

INF421, Lecture 6 – p. 14

Graphs and digraphs
A relation A on V is also called a digraph G = (V,A)

A symmetric relation E on V is also called a graph G = (V,E)

Digraphs have arcs (u, v), graphs have edges {u, v}

A digraph/graph is simple if it has no loops

In a graph context, nodes are also called vertices

Notation: given v ∈ V ,

INF421, Lecture 6 – p. 14

Graphs and digraphs
A relation A on V is also called a digraph G = (V,A)

A symmetric relation E on V is also called a graph G = (V,E)

Digraphs have arcs (u, v), graphs have edges {u, v}

A digraph/graph is simple if it has no loops

In a graph context, nodes are also called vertices

Notation: given v ∈ V ,

if E is symmetric N(v) = {u ∈ V | {u, v} ∈ E} is the star of v

v

N(v)

INF421, Lecture 6 – p. 14

Graphs and digraphs
A relation A on V is also called a digraph G = (V,A)

A symmetric relation E on V is also called a graph G = (V,E)

Digraphs have arcs (u, v), graphs have edges {u, v}

A digraph/graph is simple if it has no loops

In a graph context, nodes are also called vertices

Notation: given v ∈ V ,

if E is symmetric N(v) = {u ∈ V | {u, v} ∈ E} is the star of v

v

N(v)

v

N+(v)

N−(v)

if A is not symmetric N+(v) = {u ∈ V | (v, u) ∈ A} =outgoing star

and N−(v) = {u ∈ V | (u, v) ∈ A} =incoming star of v

INF421, Lecture 6 – p. 14

Graphs and digraphs
A relation A on V is also called a digraph G = (V,A)

A symmetric relation E on V is also called a graph G = (V,E)

Digraphs have arcs (u, v), graphs have edges {u, v}

A digraph/graph is simple if it has no loops

In a graph context, nodes are also called vertices

Notation: given v ∈ V ,

if E is symmetric N(v) = {u ∈ V | {u, v} ∈ E} is the star of v

v

N(v)

v

N+(v)

N−(v)

if A is not symmetric N+(v) = {u ∈ V | (v, u) ∈ A} =outgoing star

and N−(v) = {u ∈ V | (u, v) ∈ A} =incoming star of v

Also δ(v) = {{u, v} | u ∈ N(v)} , δ+(v) = {(v, u) | u ∈ N+(v)}

and δ−(v) = {(u, v) | u ∈ N−(v)} defined equivalently
INF421, Lecture 6 – p. 14

Walks and paths

Let i = (i1, . . . , ik) with k > 1; P = {(vij , vij+1
) | j < k} is a

walk v1 → vk

(i1, i2, i3) = (2, 1, 1)
P = {(v2, v1), (v1, v1)}

v1 v2 v3 v4

simple
(i1, i2, i3) = (2, 4, 3)
P = {(v2, v4), (v4, v3)}

v1 v2 v3 v4

G = (V,A) a digraph, G−1 obtained by reversing all arcs in A
Thm.

If W is a walk in G, W−1 is a walk in G−1

A relation P is a path u→ v if there is a walk W ⊆ P

from u to v such that P = W ∪W−1

graphical representation of a path:
• • •

INF421, Lecture 6 – p. 15

Properties of walks and paths

Let W be a walk given by the node sequence vi1 , . . . , vik

Every contiguous subsequence of vi1 , . . . , vik is also a
walk

v1 v2 v3 v4

v4, v3 subwalk of v1, v2, v4, v3

If W1 is a walk u→ v and W2 is a walk v → w, then the
sequence W = W1 ∪W2 is a walk u→ w

v1 v2 v3 v4

v1, v2 and v2, v4 walks ⇒ v1, v2, v4 a walk

The same holds for paths

INF421, Lecture 6 – p. 16

Circuits and cycles

If a walk has i1 = ik: circuit

v1

v2

v3

v4
circuit

If a path with at least 3 nodes has i1 = ik: cycle

v1

v2

v3

v4
cycle

INF421, Lecture 6 – p. 17

Connectedness

Let A be a symmetric relation

If for all u, v ∈ V there is a path u→ v in A, then A is
connected, otherwise disconnected

v1 v2 v3 v4

connected

v1 v2 v3 v4

disconnected

If A is not symmetric, equivalent notion is strong connectivity

(replace “path” with “walk”)

Let e be an edge in A, if Ar {e} is disconnected, A is
minimally connected

v1 v2 v3 v4

minimally connected

INF421, Lecture 6 – p. 18

Mathematical definition of a tree

Tree: a minimally connected relation T on a set V

If one node is specified as the root, then the tree is
rooted

Every node which only appears as part of a single edge
is called a dangling node

v1 v2 v3 v4

v1, v3: dangling nodes

A dangling node which is not the root is called a leaf

Edges of a rooted tree are also called branches

INF421, Lecture 6 – p. 19

Orientations

The outward orientation of a tree T with root r ∈ V is a
relation U such that:

for every edge {(u, v), (v, u)} of T , U contains only one of the arcs

for every leaf node ℓ of T , U has a path r → ℓ

v1 r v3 v4 → v1 r v3 v4

The inward orientation is such that for every leaf node ℓ of
T , U has a path ℓ→ r

v1 r v3 v4 → v1 r v3 v4

INF421, Lecture 6 – p. 20

A tree has no cycles

Lemma

A cycle is not minimally connected

Proof
Cycle: a path C = W ∪W−1 where W is a walk (vi1 , . . . , vik) with i1 = ik and k ≥ 3

Every contiguous subsequence of W is a (sub)walk of W

Consider any subwalk W1 = (vij , . . . , vih) of W with j < h

Both (vi1 , . . . , vij) and (vih , . . . , vik) are contiguous subseq. of W , hence walks in W

Their union W0 = (vih , vih+1
, . . . , vik = vi1 , . . . , vij) is also a walk in W

Since W−1 ⊆ C, the walk W2 = W−1

0
is also in C

Since C is symmetric, the paths P1, P2 induced by W1,W2 are both in C

Notice P1, P2 are two paths vij → vih that have no common edges

Notice also that P1 ∪ P2 = C

Taking away an edge from P1 or P2 does not disconnect C

C is not minimally connected

Thm.

A tree has no cycles

INF421, Lecture 6 – p. 21

A tree has |V | − 1 edges

Thm.
A tree T on a set V has |V | − 1 edges

Proof
Let m(T) be the number of edges in T

Show m(T) = |V | − 1 by induction on |V |

If |V | = 2, a minimally connected relation requires one edge

Induction hypothesis: Suppose m(T) = |V | − 2 for all trees T on |V | − 1 nodes

Let T be any tree on V

Any tree must have at least one leaf node ℓ (why?)

Because ℓ is a leaf, it is incident to only one edge e

Consider the tree T ′ = T r {e} on V ′ = V r {ℓ}

Because |V ′| = |V | − 1, m(T ′) = |V | − 2 by the induction hypothesis

Thus, T has exactly m(T) = m(T ∪ {e}) = m(T) + 1 = |V | − 1 edges

INF421, Lecture 6 – p. 22

The converse

Thm.

If T is a symmetric relation on V with no cycles and
m(T) = |V | − 1, then T is a tree

Proof
By induction on |V |, aim to show T is a tree

Recall: ∀v ∈ V , δ(v) is the set of edges incident to v

Since T has no cycles, there must be at least one node ℓ with |δ(ℓ)| = 1 (why?)

Let V ′ = V r {ℓ} and T ′ = T r {e}, where {e} = δ(ℓ)

Since T has no cycles, T ′ has no cycles either (why?)

Since |T ′| = |T | − 1 and |V ′| = |V | − 1, we have |T ′| = |V ′| − 1

By the induction hypothesis, |T ′| is a tree

Hence T is minimally connected

Since e is the only edge in T incident to ℓ, T = T ′ ∪ {e} is also minimally connected

Hence T is a tree

INF421, Lecture 6 – p. 23

Chemical trees

INF421, Lecture 6 – p. 24

Molecular descriptions

Until the mid-XIX century, people thought molecules
were completely defined by their atomic formula

E.g. paraffins are CkH2k+2

Then people started to notice that different bond
relations gave rise to substances with different
properties: isomers

butane

isobutane

INF421, Lecture 6 – p. 25

Listing isomers

Carbons have valence 4 (they can be incident to 4
edges)

Hydrogens have valence 1 (they can be incident to 1
edge)

Paraffins are known to have tree-like bond relations

Finding paraffin isomers in the mid-XIX century:

list all trees on n = 3k + 2 nodes

remove those whose valences does not match the
paraffin chemical formula

How do we list all trees? How many are there?

INF421, Lecture 6 – p. 26

Listing labelled trees

Two possible interpretations

These two are different (unlabelled trees):
•

•

•

•

•

•

••

These two are different (labelled trees):

1

2

43

3

4

12

Counting/listing labelled trees easier than unlabelled
ones

There are more labelled than unlabelled trees (why?)

INF421, Lecture 6 – p. 27

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {5, 2, 3, 7, 8}, v = 2, t = (6)

INF421, Lecture 6 – p. 28

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {5, 3, 7, 8}, v = 3, t = (6, 9)

INF421, Lecture 6 – p. 28

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {5, 7, 8, 9}, v = 5, t = (6, 9, 1)

INF421, Lecture 6 – p. 28

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {7, 8, 9}, v = 7, t = (6, 9, 1, 4)

INF421, Lecture 6 – p. 28

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {8, 9}, v = 8, t = (6, 9, 1, 4, 4)

INF421, Lecture 6 – p. 28

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {9, 4}, v = 4, t = (6, 9, 1, 4, 4, 1)

INF421, Lecture 6 – p. 28

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {9}, v = 9, t = (6, 9, 1, 4, 4, 1, 6)

INF421, Lecture 6 – p. 28

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = ∅, t = (6, 9, 1, 4, 4, 1, 6)

INF421, Lecture 6 – p. 28

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence p on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r p, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6}

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = {2, 3, 5, 7, 8},
p = (6, 9, 1, 4, 4, 1, 6)

INF421, Lecture 6 – p. 29

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence p on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r p, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6}

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 2 , 3, 5, 7, 8}, ℓ = 2,
p = (6, 9, 1, 4, 4, 1, 6), edge {2, 6}

INF421, Lecture 6 – p. 29

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence p on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r p, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6}

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 3 , 5, 7, 8}, ℓ = 3,
p = (9, 1, 4, 4, 1, 6), edge {3, 9}

INF421, Lecture 6 – p. 29

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence p on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r p, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6}

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 5 , 7, 8, 9}, ℓ = 5, p = (1, 4, 4, 1, 6),
edge {5, 1}

INF421, Lecture 6 – p. 29

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence p on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r p, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6}

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 7 , 8, 9}, ℓ = 7, p = (4, 4, 1, 6),
edge {7, 4}

INF421, Lecture 6 – p. 29

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence p on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r p, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6}

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 8 , 9}, ℓ = 8, p = (4, 1, 6),
edge {8, 4}

INF421, Lecture 6 – p. 29

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence p on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r p, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6}

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = {9, 4 }, ℓ = 4, p = (1, 6),
edge {4, 1}

INF421, Lecture 6 – p. 29

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence p on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r p, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6}

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 1 , 9}, ℓ = 1, p = (6),
edge {1, 6}

INF421, Lecture 6 – p. 29

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence p on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r p, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6}

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 6 , 9},
edge {6, 9}

INF421, Lecture 6 – p. 29

Bijection

Thm.
There is a bijection between trees on V and sequences in V |V |−2

Proof
Essentially follows by two algorithms above

Left to prove: no cycles occur when constructing the tree from the sequence

Then result will follow by the “converse theorem” on slide 22 (why?)

Claim: no cycles, proceed by contradiction

Notice the mapping trees → sequences always deletes leaf nodes

By definition, a cycle must have ≥ 3 nodes, and none of these can be a leaf

So the resulting sequence has at most |V | − 3 nodes, contradiction (why?)

Thm.
[Cayley 1889] Let |V | = n. There are nn−2 labelled trees on V

Proof
By previous theorem, the number of labelled trees is the same as the number of se-

quences in V |V |−2 (this proof is by Prüfer, 1918)

INF421, Lecture 6 – p. 30

Psychology and natural language

INF421, Lecture 6 – p. 31

A remark

Most students (and not just students!) find arrays, lists, maps,
queues and stacks “easier” than trees

INF421, Lecture 6 – p. 32

A remark

Most students (and not just students!) find arrays, lists, maps,
queues and stacks “easier” than trees

Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

INF421, Lecture 6 – p. 32

A remark

Most students (and not just students!) find arrays, lists, maps,
queues and stacks “easier” than trees

Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

Thesis 2: iterative vs. recursive

Sequences are models of iteration and trees models of

recursion

Most people think iteratively rather than recursively (?)

INF421, Lecture 6 – p. 32

A remark

Most students (and not just students!) find arrays, lists, maps,
queues and stacks “easier” than trees

Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

Thesis 2: iterative vs. recursive

Sequences are models of iteration and trees models of

recursion

Most people think iteratively rather than recursively (?)

Thesis 3: trees require decisions

Every node has ≤ 1 next node in a sequence

tree nodes might have more than one subnodes

⇒ Scanning a sequence: no decisions to take

⇒ Exploring a tree: which subnode to process next?

INF421, Lecture 6 – p. 32

Languages and grammars

Remember nouns, adjectives, transitive verbs from school?

Analyzing sentences means to identify and name their
grammatical components

We can analyze such components recursively:

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

INF421, Lecture 6 – p. 33

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

INF421, Lecture 6 – p. 34

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

the soft, furry cat purrs

INF421, Lecture 6 – p. 34

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

the soft, furry cat purrs

INF421, Lecture 6 – p. 34

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

the soft, furry cat

INF421, Lecture 6 – p. 34

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

name

the soft, furry cat

INF421, Lecture 6 – p. 34

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

soft furry

INF421, Lecture 6 – p. 34

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

furry

INF421, Lecture 6 – p. 34

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 34

Formal and natural languages

If there’s more than one parse tree to a given sentence,
the grammar is ambiguous

If the different parse trees for a sentence lead to
different meanings, the language itself is ambiguous

Non-ambiguous languages are also called formal

(e.g. formal logic, C/C++, Java,. . .)

Ambiguous languages are also called natural

(e.g. common mathematical language, English, French,. . .)

Richard Montague (1930-1971) tried to supply
grammar-like mechanisms that were able to
disambiguate some subsets of English

INF421, Lecture 6 – p. 35

Tree exploration

Breadth-First Search (BFS — seen in Lecture 2)
find the way out of a maze in the smallest number of steps

Depth-First Search (DFS — seen in polycopié of INF311)
find the way out of a maze

DFS: recursive call to dfs(node v):

1: optionally perform an action on v;
2: for all subnodes u of v do
3: dfs(u);
4: end for
5: optionally perform an action on v;

DFS is dfs(root)

Thesis [XX century]: our brain treats sentences like mazes, and inher-

ently uses DFS to find the way out (i.e., parse them)

INF421, Lecture 6 – p. 36

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 37

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 37

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 37

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 37

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 37

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 37

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 37

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 37

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 37

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 37

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 37

How much memory?

How much do we need to remember during DFS?

Notice that the recursive code makes no explicit use of
memory

From Lecture 3, remember recursion is implemented
using stacks

What is the maximum size of the stack in exploring a
tree by DFS?

Let’s see the DFS once again, and keep track of stack
size

INF421, Lecture 6 – p. 38

DFS on parse trees: memory

0

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 39

DFS on parse trees: memory

0

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 39

DFS on parse trees: memory

1

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 39

DFS on parse trees: memory

2

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 39

DFS on parse trees: memory

3

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 39

DFS on parse trees: memory

3

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 39

DFS on parse trees: memory

4

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 39

DFS on parse trees: memory

4

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 39

DFS on parse trees: memory

max=5 5

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 39

DFS on parse trees: memory

max=5 3

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 39

DFS on parse trees: memory

max=5 1

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 6 – p. 39

Memory and depth

Need as much memory as the tree depth

Recall: depth = longest path from root to a leaf

INF421, Lecture 6 – p. 40

Miracles of the human mind

However, consider this:

We (humans) process input in a given order

Reading: left→right | right→left | top→bottom

Question: are there bottom→top languages?

Western languages: left→right

⇒ DFS: no need to use stack at rightmost branch!

If we know we’re on rightmost path and we process subnodes in

left→right order, then rightmost=last

No “climbing back up the tree” at rightmost path

[Yngve, 1960]: western language trees develop in depth on the

right; depth on the left is limited to a constant

INF421, Lecture 6 – p. 41

Regressive and progressive trees

•

••

••

••

••

Regressive tree

In left→right node order, requires as much stack

as the depth (4 in this case)

•

•

•

•

••

•

•

•

Progressive tree

In left→right node order, only requires a stack of

constant size (1 in this case)

INF421, Lecture 6 – p. 42

The “7” brain

[Miller 1956] On average, the human memory can recall
seven random words without effort

⇒ In western languages, it employs progressive trees
with maximum “left depth” of 7

This is why the “progressive sentence”:

l’élève retardataire n’apprend que la moitié des choses

qu’on lui enseigne

sounds much more natural than the “regressive” one:

on enseigne des choses dont la moitié seulement est

apprise par le retardataire élève

INF421, Lecture 6 – p. 43

Brain and languages

Anglosaxon languages are regressive on adjectives and
appositions (often before the noun)

Latin-derived languages decrease this tendency

Classical latin is very difficult to understand: one has
the impression that there is no fixed order!

Inde toro pater Æneas sic orsus ab alto

→ Thereafter seat father Eneas thus standing from a high

→ Thereafter father Eneas, thus standing from a high seat

Perhaps this is why classical latin is a dead language: it
required too much “brain stack” to process sentences

INF421, Lecture 6 – p. 44

Depth-First Search

INF421, Lecture 6 – p. 45

(Di)Graph scanning

DFS above explores nodes of a tree starting from the
root, visit each (connected) node only once

Generalization: scan the nodes of a digraph (or the

vertices of a graph) starting from a node s

Require: G = (V,A), s ∈ V , R = {s}, Q = {s}
1: while Q 6= ∅ do
2: choose v ∈ Q // v is scanned

3: Q← Qr {v}

4: for w ∈ N+(v)rR do
5: R← R ∪ {w}
6: Q← Q ∪ {w}
7: end for
8: end while

INF421, Lecture 6 – p. 46

Storing a graph

Seen in Lecture 1: use the jagged array representation
(also called adjacency list)

N+(0) = (1, 2, 3)

N+(1) = (2)

N+(2) = (3)
0

1

2

3

Seen in Lecture 2: use the list of arcs representation

L = ((0, 1), (0, 2), (0, 3), (1, 2), (2, 3))

Different efficiency on different algorithms

INF421, Lecture 6 – p. 47

The algorithm is correct

Thm.

If there is an oriented path P from s to z ∈ V , then DIGRAPH

SCANNING scans z

Proof
Suppose not, then ∃(x, y) ∈ P with x ∈ R and y 6∈ R (for

otherwise, by induction on the path length, z ∈ R by Step 5 and

hence in Q by Step 6)

By Step 6 x was added to Q

The algorithm does not stop before eliminating x from Q in Step 3

at some iteration

This happens only if δ+(x) ⊆ R by Steps 4-5

Hence y 6∈ δ+(x), which implies (x, y) 6∈ P , which yields a contra-

diction

INF421, Lecture 6 – p. 48

The algorithm takes O(n +m)

Thm.

If the digraph is encoded as adjacency lists, DIGRAPH SCAN-

NING takes CPU time proportional O(n + m) in the worst
case

Proof
Each node is considered only once:

Whenever a node x is eliminated from Q, it was previously

inserted by Step 6, which means that it was also added to R

by Step 5

By Step 4, x is never re-added to Q

Each arc (x, y) is considered only once:

When x = v in Step 2 then y ∈ δ+(x), so either y = w in Step

4 or it must be verified that y ∈ R

In both cases, the relation (x, y) was considered once

INF421, Lecture 6 – p. 49

The choice of v ∈ Q

In Step 2, the choice of v ∈ Q determines the order in
which the nodes are scanned

Can alter this using different data structures for
implementing the set Q

Two data structures are commonly used:

1. Stacks

DEPTH-FIRST SEARCH (DFS): this corresponds to the
order being Last-In, First-Out (LIFO)

2. Queues

BREADTH-FIRST SEARCH: this corresponds to the order
being First-In, First-Out (FIFO)

If you failed to understand BFS in Lecture 2, here’s another chance!

INF421, Lecture 6 – p. 50

Spanning trees

INF421, Lecture 6 – p. 51

Distribution networks

A network is a connected relation on a set V of entities
that models a distribution process

E.g. V : production sites, customer sites

Two sites are related if there is an exchange of material
between them

Two production sites are related if there is an exchange
of raw material

Other pairs of sites are related if there is an exchange
of finished material

Main cost of distribution: transportation

How do you guarantee that each site has access to the
material?

INF421, Lecture 6 – p. 52

Electricity/water distribution

Raw and finished material is the same

Blurred distinction between production and customer sites

Cable/duct reaches customer γ1, it is then extended to customer γ2

(γ1 is both production and customer)

The main cost is laying the cables/ducts

INF421, Lecture 6 – p. 53

Spanning trees

Cost is optimized if material can be distributed to all
sites using as few cables/duct as possible

A tree on U ⊆ V is spanning if U = V

If each edge e in the network has cost ce,
the cost of T is

c(T) =
∑

e∈T

ce

Find a spanning tree of minimum cost

INF421, Lecture 6 – p. 54

Example

The network

1

1.3

1.3

2

1.4

v1

v2

v3v4

1

1.3

1.3

2

1.4

v1

v2

v3v4

c(T) = 4.4

1

1.3

1.3

2

1.4

v1

v2

v3v4

c(T) = 3.6

INF421, Lecture 6 – p. 55

Kruskal’s algorithm: a sketch

Two classical algorithms: Kruskal’s and Prim’s

Implementation in INF431: requires union-find data structure

Let E be the set of edges in the network

1: T = ∅

2: while |T | < |V | − 1 do

3: find the edge e of minimum cost in the network E;

4: if T ∪ {e} has no cycle then

5: T ← T ∪ {e};

6: E ← E r {e};

7: end if

8: end while

At the end, T has |V | − 1 edges and has no cycle: it is a
tree by the “converse theorem” (slide 22)

Try and prove that Kruskal’s algorithm terminates

INF421, Lecture 6 – p. 56

End of Lecture 6

INF421, Lecture 6 – p. 57

	Course
	Lecture summary
	The minimal knowledge
	Introduction and reminders
	Trees
	How we draw them
	Nomenclature
	Graphical representation
	Recall from INF311
	Some applications of trees
	Definitions and properties
	Relations
	Graphs and digraphs
	Graphs and digraphs
	Graphs and digraphs
	Graphs and digraphs
	Graphs and digraphs
	Graphs and digraphs
	Graphs and digraphs
	Graphs and digraphs
	Graphs and digraphs

	Walks and paths
	Properties of walks and paths
	Circuits and cycles
	Connectedness
	Mathematical definition of a tree
	Orientations
	A tree has no cycles
	A tree has $|V|-1$ edges
	The converse
	Chemical trees
	Molecular descriptions
	Listing isomers
	Listing labelled trees
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences

	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees

	Bijection
	Psychology and natural language
	A remark
	A remark
	A remark
	A remark

	Languages and grammars
	Parse trees
	Parse trees
	Parse trees
	Parse trees
	Parse trees
	Parse trees
	Parse trees
	Parse trees

	Formal and natural languages
	Tree exploration
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree

	How much memory?
	DFS on parse trees: memory
	DFS on parse trees: memory
	DFS on parse trees: memory
	DFS on parse trees: memory
	DFS on parse trees: memory
	DFS on parse trees: memory
	DFS on parse trees: memory
	DFS on parse trees: memory
	DFS on parse trees: memory
	DFS on parse trees: memory
	DFS on parse trees: memory

	Memory and depth
	Miracles of the human mind
	Regressive and progressive trees
	The ``7'' brain
	Brain and languages
	Depth-First Search
	(Di)Graph
scanning
	Storing a graph
	The algorithm is correct
	The algorithm takes $O(n+m)$
	The choice of $vin Q$
	Spanning trees
	Distribution networks
	Electricity/water distribution
	Spanning trees
	Example
	Kruskal's algorithm: a sketch
	End of Lecture 6

