

INF421, Lecture 6 Trees

Leo Liberti

LIX, École Polytechnique, France

- Objective: to teach you some data structures and associated algorithms
- Evaluation: TP noté en salle info le 16 septembre, Contrôle à la fin.
 Note: max($CC, \frac{3}{4}CC + \frac{1}{4}TP$)
- Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books:

- 1. Ph. Baptiste & L. Maranget, *Programmation et Algorithmique*, Ecole Polytechnique (Polycopié), 2006
- 2. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
- 3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
- 4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
- Website: www.enseignement.polytechnique.fr/informatique/INF421
- **Contact:** liberti@lix.polytechnique.fr (e-mail subject: INF421)

Lecture summary

- Introduction and reminders
- Definitions and properties
- Listing chemical trees
- Trees in psychology and languages
- Depth-First Search (DFS)
- Spanning trees

The minimal knowledge

- A tree is a connected relation without cycles
- A tree on n nodes has n-1 branches
- There are n^{n-2} labelled trees
- The same molecular formula can correspond to different bond trees (isomers)
- The analysis of sentences yields grammatical trees
- The Graph Scanning algorithm, DFS and BFS
- The cheapest kind of distribution network is a spanning tree

Introduction and reminders

Trees

How we draw them

Nomenclature

Graphical representation

height/depth = length (#branches) of longest walk [root \rightarrow leaf]

Recall from INF311

- Binary trees
- Their implementations
- How to explore them in prefix, infix, postfix order
- How to store mathematical expressions in trees

Some applications of trees

- Chemistry (molecular composition and structure)
- Psychology (natural language)
- Distribution networks of minimum cost
- Computer science
 - model for recursion (Lecture 3)
 - data structures for sorting and searching (Lecture 7)

Definitions and properties

Relations

A relation A on a set V is a subset of $V \times V$

$$V = \{v_1, \dots, v_5\}$$

$$A = \{(v_1, v_3), (v_1, v_2), (v_4, v_5), (v_5, v_4), (v_5, v_5)\}$$

$$\begin{array}{c} v_{3} \\ \uparrow \\ v_{4} & v_{1} \xrightarrow{} v_{2} \\ \hline v_{5} & \bigcirc \\ v_{5} & & \\ v_{5} & & \\ v_{5} & \\ v_{5} & \\ v_{5} & \\ v_{5} & & \\ v_{5} & \\ v_{$$

- **Arc:** an element of A; loop: a pair (v, v)
- Edge: $e = \{(u, v), (v, u)\}$ (denote by $e = \{u, v\}$) (u, v are incident to e, and u, v are adjacent)
- Symmetric relation: if $(u, v) \in A$, then $(v, u) \in A$
- **•** Reflexive relation: $(v, v) \in A$ for all $v \in V$
- Irreflexive or simple relation: $(v, v) \notin A$ for all $v \in V$
- Transitive relation: if $(u, v), (v, w) \in A$ then $(u, w) \in A$

A relation A on V is also called a digraph G = (V, A)

- A relation A on V is also called a digraph G = (V, A)
- A symmetric relation E on V is also called a graph G = (V, E)

- A relation A on V is also called a digraph G = (V, A)
- A symmetric relation E on V is also called a graph G = (V, E)
- Digraphs have arcs (u, v), graphs have edges $\{u, v\}$

- A relation A on V is also called a digraph G = (V, A)
- A symmetric relation E on V is also called a graph G = (V, E)
- Digraphs have arcs (u, v), graphs have edges $\{u, v\}$
- A digraph/graph is **simple** if it has no loops

- A relation A on V is also called a digraph G = (V, A)
- A symmetric relation E on V is also called a graph G = (V, E)
- Digraphs have arcs (u, v), graphs have edges $\{u, v\}$
- A digraph/graph is **simple** if it has no loops
- In a graph context, nodes are also called vertices

- A relation A on V is also called a digraph G = (V, A)
- A symmetric relation E on V is also called a graph G = (V, E)
- Digraphs have arcs (u, v), graphs have edges $\{u, v\}$
- A digraph/graph is **simple** if it has no loops
- In a graph context, nodes are also called vertices
- <u>Notation</u>: given $v \in V$,

- A relation A on V is also called a digraph G = (V, A)
- A symmetric relation E on V is also called a graph G = (V, E)
- Digraphs have arcs (u, v), graphs have edges $\{u, v\}$
- A digraph/graph is simple if it has no loops
- In a graph context, nodes are also called vertices

• if E is symmetric $N(v) = \{u \in V \mid \{u, v\} \in E\}$ is the star of v

- A relation A on V is also called a digraph G = (V, A)
- A symmetric relation E on V is also called a graph G = (V, E)
- Digraphs have arcs (u, v), graphs have edges $\{u, v\}$
- A digraph/graph is simple if it has no loops
- In a graph context, nodes are also called vertices

• if E is symmetric $N(v) = \{u \in V \mid \{u, v\} \in E\}$ is the star of v

and $N^-(v) = \{u \in V \mid (u, v) \in A\} = \text{incoming star} \text{ of } v$

- A relation A on V is also called a digraph G = (V, A)
- A symmetric relation E on V is also called a graph G = (V, E)
- Digraphs have arcs (u, v), graphs have edges $\{u, v\}$
- A digraph/graph is simple if it has no loops
- In a graph context, nodes are also called vertices

• if E is symmetric $N(v) = \{u \in V \mid \{u, v\} \in E\}$ is the star of v

• if A is not symmetric $N^+(v) = \{u \in V \mid (v, u) \in A\}$ =outgoing star

and $N^-(v) = \{u \in V \mid (u,v) \in A\} = \text{incoming star} \ \ \text{Of} \ v$

• Also $\delta(v) = \{\{u, v\} \mid u \in N(v)\}$, $\delta^+(v) = \{(v, u) \mid u \in N^+(v)\}$ and $\delta^-(v) = \{(u, v) \mid u \in N^-(v)\}$ defined equivalently

 $N^+(v)$

1)

Walks and paths

• Let
$$i = (i_1, \ldots, i_k)$$
 with $k > 1$; $P = \{(v_{i_j}, v_{i_{j+1}}) \mid j < k\}$ is a walk $v_1 \rightarrow v_k$

$$\begin{array}{c} (i_1, i_2, i_3) = (2, 1, 1) \\ P = \{(v_2, v_1), (v_1, v_1)\} \end{array} \qquad \textcircled{\ } v_1 \leftarrow v_2 \quad \overbrace{v_3 \leftarrow v_4} \\ \\ \text{simple} \quad \hline (i_1, i_2, i_3) = (2, 4, 3) \\ P = \{(v_2, v_4), (v_4, v_3)\} \end{array} \qquad \Huge{\ } \swarrow v_1 \leftarrow v_2 \quad \overbrace{v_3 \leftarrow v_4} \\ \end{array}$$

• G = (V, A) a digraph, G^{-1} obtained by reversing all arcs in A Thm.

If W is a walk in G, W^{-1} is a walk in G^{-1}

▲ A relation P is a path $u \to v$ if there is a walk $W \subseteq P$ from u to v such that $P = W \cup W^{-1}$

graphical representation of a path:

Properties of walks and paths

- Let W be a walk given by the node sequence v_{i_1}, \ldots, v_{i_k}
- Every contiguous subsequence of v_{i_1}, \ldots, v_{i_k} is also a walk

$$ightarrow v_1
ightarrow v_2
ightarrow v_3
ightarrow v_4$$

 v_4, v_3 subwalk of v_1, v_2, v_4, v_3

If W_1 is a walk $u \to v$ and W_2 is a walk $v \to w$, then the sequence $W = W_1 \cup W_2$ is a walk $u \to w$

$$ightarrow v_1 \rightarrow v_2 \qquad v_3 \leftarrow v_4$$

 $v_1, v_2 \text{ and } v_2, v_4 \text{ walks} \Rightarrow v_1, v_2, v_4 \text{ a walk}$

The same holds for paths

Circuits and cycles

• If a walk has $i_1 = i_k$: circuit

If a path with at least 3 nodes has $i_1 = i_k$: cycle

Connectedness

- Let A be a symmetric relation
- If for all $u, v \in V$ there is a path $u \to v$ in A, then A is connected, otherwise disconnected

$$v_1 - v_2$$
 $v_3 - v_4$ $v_1 - v_2$ $v_3 - v_4$ disconnected

- If A is not symmetric, equivalent notion is strong connectivity (replace "path" with "walk")
- Let e be an edge in A, if $A \setminus \{e\}$ is disconnected, A is minimally connected

$$v_1 = v_2 \quad v_3 = v_4$$

minimally connected

- If one node is specified as the root, then the tree is rooted
- Every node which only appears as part of a single edge is called a dangling node

$$v_1 = v_2$$
 $v_3 = v_4$
 v_1, v_3 : dangling nodes

- A dangling node which is not the root is called a leaf
- Edges of a rooted tree are also called branches

Orientations

- The outward orientation of a tree T with root $r \in V$ is a relation U such that:
 - for every edge $\{(u, v), (v, u)\}$ of T, U contains only one of the arcs
 - for every leaf node ℓ of T, U has a path $r \to \ell$

$$v_1 - r \quad v_3 - v_4 \quad \rightarrow \quad v_1 \leftarrow r \quad v_3 \leftarrow v_4$$

• The inward orientation is such that for every leaf node ℓ of T, U has a path $\ell \rightarrow r$

$$v_1 - r \quad v_3 - v_4 \quad \rightarrow \quad v_1 \rightarrow r \quad v_3 \rightarrow v_4$$

A tree has no cycles

Lemma

A cycle is not minimally connected

Proof

 $\begin{array}{l} \textit{Cycle: a path } C = W \cup W^{-1} \textit{ where } W \textit{ is a walk } (v_{i_1}, \ldots, v_{i_k}) \textit{ with } i_1 = i_k \textit{ and } k \geq 3 \\ \textbf{Every contiguous subsequence of } W \textit{ is a (sub)walk of } W \\ \textbf{Consider any subwalk } W_1 = (v_{i_j}, \ldots, v_{i_h}) \textit{ of } W \textit{ with } j < h \\ \textbf{Both } (v_{i_1}, \ldots, v_{i_j}) \textit{ and } (v_{i_h}, \ldots, v_{i_k}) \textit{ are contiguous subseq. of } W, \textit{ hence walks in } W \\ \textbf{Their union } W_0 = (v_{i_h}, v_{i_{h+1}}, \ldots, v_{i_k} = v_{i_1}, \ldots, v_{i_j}) \textit{ is also a walk in } W \\ \textbf{Since } W^{-1} \subseteq C, \textit{ the walk } W_2 = W_0^{-1} \textit{ is also in } C \\ \textbf{Since } C \textit{ is symmetric, the paths } P_1, P_2 \textit{ induced by } W_1, W_2 \textit{ are both in } C \\ \textbf{Notice } P_1, P_2 \textit{ are two paths } v_{i_j} \rightarrow v_{i_h} \textit{ that have no common edges} \\ \textbf{Notice also that } P_1 \cup P_2 = C \\ \textbf{Taking away an edge from } P_1 \textit{ or } P_2 \textit{ does not disconnect } C \\ C \textit{ is not minimally connected} \end{array}$

Thm.

A tree has no cycles

A tree has |V| - 1 edges

Thm.

A tree T on a set V has |V| - 1 edges

Proof

```
Let m(T) be the number of edges in T
```

```
Show m(T) = |V| - 1 by induction on |V|
```

If |V| = 2, a minimally connected relation requires one edge

Induction hypothesis: Suppose m(T) = |V| - 2 for all trees T on |V| - 1 nodes

Let T be any tree on V

Any tree must have at least one leaf node ℓ (why?)

Because ℓ is a leaf, it is incident to only one edge e

Consider the tree $T' = T \setminus \{e\}$ on $V' = V \setminus \{\ell\}$

Because |V'| = |V| - 1, m(T') = |V| - 2 by the induction hypothesis

Thus, T has exactly $m(T) = m(T \cup \{e\}) = m(T) + 1 = |V| - 1$ edges

The converse

Thm.

If *T* is a symmetric relation on *V* with no cycles and m(T) = |V| - 1, then *T* is a tree

Proof

By induction on |V|, aim to show T is a tree

Recall: $\forall v \in V$, $\delta(v)$ is the set of edges incident to v

Since T has no cycles, there must be at least one node ℓ with $|\delta(\ell)| = 1$ (why?)

Let
$$V' = V \setminus \{\ell\}$$
 and $T' = T \setminus \{e\}$, where $\{e\} = \delta(\ell)$

Since T has no cycles, T' has no cycles either (why?)

Since
$$|T'| = |T| - 1$$
 and $|V'| = |V| - 1$, we have $|T'| = |V'| - 1$

By the induction hypothesis, |T'| is a tree

Hence \boldsymbol{T} is minimally connected

Since *e* is the only edge in *T* incident to ℓ , $T = T' \cup \{e\}$ is also minimally connected

Hence T is a tree

Chemical trees

Molecular descriptions

- Until the mid-XIX century, people thought molecules were completely defined by their atomic formula
- E.g. paraffins are $C_k H_{2k+2}$
- Then people started to notice that different bond relations gave rise to substances with different properties: isomers

butane

isobutane

Listing isomers

- Carbons have valence 4 (they can be incident to 4 edges)
- Hydrogens have valence 1 (they can be incident to 1 edge)
- Paraffins are known to have tree-like bond relations
- Finding paraffin isomers in the mid-XIX century:
 - list all trees on n = 3k + 2 nodes
 - remove those whose valences does not match the paraffin chemical formula
- How do we list all trees? How many are there?

Listing labelled trees

- - Two possible interpretations
 - These two are different (unlabelled trees):

These two are different (labelled trees):

- Counting/listing labelled trees easier than unlabelled ones
- There are more labelled than unlabelled trees (why?)

Prüfer sequences

Mapping trees on V to sequences in $V^{|V|-2}$

For a tree T let L(T) be the set of leaf nodes of T

1: for
$$k \in \{1, \dots, |V| - 2\}$$
 do

2:
$$v = \min L(T);$$

- 3: let e be the only edge incident to v;
- 4: let $t_k \neq v$ be the other node incident to e;
- 5: $T \leftarrow T \smallsetminus \{v\};$
- 6: **end for**

7: return
$$t = (t_1, \dots, t_{|V|-2})$$

$$L(T) = \{5, 2, 3, 7, 8\}, v = 2, t = (6)$$

Mapping trees on V to sequences in $V^{|V|-2}$

For a tree T let L(T) be the set of leaf nodes of T

1: for
$$k \in \{1, ..., |V| - 2\}$$
 do

2:
$$v = \min L(T);$$

- 3: let e be the only edge incident to v;
- 4: let $t_k \neq v$ be the other node incident to e;
- 5: $T \leftarrow T \smallsetminus \{v\};$
- 6: **end for**

7: return
$$t = (t_1, \dots, t_{|V|-2})$$

$$L(T) = \{5, 3, 7, 8\}, v = 3, t = (6, 9)$$

Mapping trees on V to sequences in $V^{|V|-2}$

For a tree T let L(T) be the set of leaf nodes of T

1: for
$$k \in \{1, ..., |V| - 2\}$$
 do

2:
$$v = \min L(T);$$

- 3: let e be the only edge incident to v;
- 4: let $t_k \neq v$ be the other node incident to e;
- 5: $T \leftarrow T \smallsetminus \{v\};$
- 6: **end for**

7: return
$$t = (t_1, \dots, t_{|V|-2})$$

$$L(T) = \{5, 7, 8, 9\}, v = 5, t = (6, 9, 1)$$

Mapping trees on V to sequences in $V^{|V|-2}$

1: for
$$k \in \{1, ..., |V| - 2\}$$
 do

2:
$$v = \min L(T);$$

- 3: let e be the only edge incident to v;
- 4: let $t_k \neq v$ be the other node incident to e;
- 5: $T \leftarrow T \smallsetminus \{v\};$
- 6: **end for**

7: return
$$t = (t_1, \dots, t_{|V|-2})$$

 $L(T) = \{7, 8, 9\}, v = 7, t = (6, 9, 1, 4)$

Mapping trees on V to sequences in $V^{|V|-2}$

For a tree T let L(T) be the set of leaf nodes of T

1: for
$$k \in \{1, ..., |V| - 2\}$$
 do

2:
$$v = \min L(T);$$

- 3: let e be the only edge incident to v;
- 4: let $t_k \neq v$ be the other node incident to e;
- 5: $T \leftarrow T \smallsetminus \{v\};$
- 6: **end for**

7: return
$$t = (t_1, \dots, t_{|V|-2})$$

$$L(T) = \{8, 9\}, v = 8, t = (6, 9, 1, 4, 4)$$

Mapping trees on V to sequences in $V^{|V|-2}$

1: for
$$k \in \{1, ..., |V| - 2\}$$
 do

- **2**: $v = \min L(T);$
- 3: let e be the only edge incident to v;
- 4: let $t_k \neq v$ be the other node incident to e;
- 5: $T \leftarrow T \smallsetminus \{v\};$
- 6: **end for**

7: return
$$t = (t_1, \dots, t_{|V|-2})$$

 $L(T) = \{9, 4\}, v = 4, t = (6, 9, 1, 4, 4, 1)$

Mapping trees on V to sequences in $V^{|V|-2}$

1: for
$$k \in \{1, ..., |V| - 2\}$$
 do

- **2**: $v = \min L(T);$
- 3: let e be the only edge incident to v;
- 4: let $t_k \neq v$ be the other node incident to e;
- 5: $T \leftarrow T \smallsetminus \{v\};$
- 6: **end for**

7: return
$$t = (t_1, \dots, t_{|V|-2})$$

$$L(T) = \{9\}, v = 9, t = (6, 9, 1, 4, 4, 1, 6)$$

Mapping trees on V to sequences in $V^{|V|-2}$

1: for
$$k \in \{1, \dots, |V| - 2\}$$
 do

- **2**: $v = \min L(T);$
- 3: let e be the only edge incident to v;
- 4: let $t_k \neq v$ be the other node incident to e;
- 5: $T \leftarrow T \smallsetminus \{v\};$
- 6: **end for**

7: return
$$t = (t_1, \dots, t_{|V|-2})$$

 $L(T) = \emptyset, t = (6, 9, 1, 4, 4, 1, 6)$

- 1. Given a Prüfer sequence p on V, e.g. (6, 9, 1, 4, 4, 1, 6)
- 2. Find smallest index ℓ in $V \smallsetminus p$, e.g. 2
- 3. Add $\{\ell, t_1\}$ to *T*, e.g. $\{2, 6\}$
- 4. Remove t_1 from t, e.g. t = (9, 1, 4, 4, 1, 6)
- 5. Remove ℓ from *V*, e.g. $V \setminus t = \{3, 5, 7, 8\}$
- 6. Repeat from Step 2 until $t = \emptyset$
- 7. At this point $|V \setminus t| = 2$ (it is an edge): add it

$$V \smallsetminus t = \{2, 3, 5, 7, 8\},\ p = (6, 9, 1, 4, 4, 1, 6)$$

- 1. Given a Prüfer sequence p on V, e.g. (6, 9, 1, 4, 4, 1, 6)
- 2. Find smallest index ℓ in $V \smallsetminus p$, e.g. 2
- 3. Add $\{\ell, t_1\}$ to *T*, e.g. $\{2, 6\}$
- 4. Remove t_1 from t, e.g. t = (9, 1, 4, 4, 1, 6)
- 5. Remove ℓ from *V*, e.g. $V \setminus t = \{3, 5, 7, 8\}$
- 6. Repeat from Step 2 until $t = \emptyset$
- 7. At this point $|V \setminus t| = 2$ (it is an edge): add it

$$V \smallsetminus t = \{ [2], 3, 5, 7, 8 \}, \ell = 2,$$

 $p = (6, 9, 1, 4, 4, 1, 6), edge \{2, 6 \}$

- 1. Given a Prüfer sequence p on V, e.g. (6, 9, 1, 4, 4, 1, 6)
- 2. Find smallest index ℓ in $V \smallsetminus p$, e.g. 2
- 3. Add $\{\ell, t_1\}$ to *T*, e.g. $\{2, 6\}$
- 4. Remove t_1 from t, e.g. t = (9, 1, 4, 4, 1, 6)
- 5. Remove ℓ from *V*, e.g. $V \setminus t = \{3, 5, 7, 8\}$
- 6. Repeat from Step 2 until $t = \emptyset$
- 7. At this point $|V \setminus t| = 2$ (it is an edge): add it

$$V \smallsetminus t = \{[3], 5, 7, 8\}, \ell = 3,$$

 $p = (9, 1, 4, 4, 1, 6), \text{ edge } \{3, 9\}$

- 1. Given a Prüfer sequence p on V, e.g. (6, 9, 1, 4, 4, 1, 6)
- 2. Find smallest index ℓ in $V \smallsetminus p$, e.g. 2
- 3. Add $\{\ell, t_1\}$ to *T*, e.g. $\{2, 6\}$
- 4. Remove t_1 from t, e.g. t = (9, 1, 4, 4, 1, 6)
- 5. Remove ℓ from *V*, e.g. $V \setminus t = \{3, 5, 7, 8\}$
- 6. Repeat from Step 2 until $t = \emptyset$
- 7. At this point $|V \setminus t| = 2$ (it is an edge): add it

$$V \setminus t = \{5, 7, 8, 9\}, \ell = 5, p = (1, 4, 4, 1, 6), edge \{5, 1\}$$

- 1. Given a Prüfer sequence p on V, e.g. (6, 9, 1, 4, 4, 1, 6)
- 2. Find smallest index ℓ in $V \smallsetminus p$, e.g. 2
- 3. Add $\{\ell, t_1\}$ to *T*, e.g. $\{2, 6\}$
- 4. Remove t_1 from t, e.g. t = (9, 1, 4, 4, 1, 6)
- 5. Remove ℓ from *V*, e.g. $V \setminus t = \{3, 5, 7, 8\}$
- 6. Repeat from Step 2 until $t = \emptyset$
- 7. At this point $|V \setminus t| = 2$ (it is an edge): add it

$$V \smallsetminus t = \{ \boxed{7}, 8, 9 \}, \ell = 7, p = (4, 4, 1, 6),$$

edge $\{7, 4\}$

- 1. Given a Prüfer sequence p on V, e.g. (6, 9, 1, 4, 4, 1, 6)
- 2. Find smallest index ℓ in $V \smallsetminus p$, e.g. 2
- 3. Add $\{\ell, t_1\}$ to *T*, e.g. $\{2, 6\}$
- 4. Remove t_1 from t, e.g. t = (9, 1, 4, 4, 1, 6)
- 5. Remove ℓ from *V*, e.g. $V \setminus t = \{3, 5, 7, 8\}$
- 6. Repeat from Step 2 until $t = \emptyset$
- 7. At this point $|V \setminus t| = 2$ (it is an edge): add it

$$V \smallsetminus t = \{ [8], 9 \}, \ell = 8, p = (4, 1, 6),$$

edge $\{8, 4\}$

- 1. Given a Prüfer sequence p on V, e.g. (6, 9, 1, 4, 4, 1, 6)
- 2. Find smallest index ℓ in $V \smallsetminus p$, e.g. 2
- 3. Add $\{\ell, t_1\}$ to *T*, e.g. $\{2, 6\}$
- 4. Remove t_1 from t, e.g. t = (9, 1, 4, 4, 1, 6)
- 5. Remove ℓ from *V*, e.g. $V \setminus t = \{3, 5, 7, 8\}$
- 6. Repeat from Step 2 until $t = \emptyset$
- 7. At this point $|V \setminus t| = 2$ (it is an edge): add it

$$V \smallsetminus t = \{9, \boxed{4}\}, \ \ell = 4, \ p = (1, 6),$$

edge $\{4, 1\}$

- 1. Given a Prüfer sequence p on V, e.g. (6, 9, 1, 4, 4, 1, 6)
- 2. Find smallest index ℓ in $V \smallsetminus p$, e.g. 2
- 3. Add $\{\ell, t_1\}$ to *T*, e.g. $\{2, 6\}$
- 4. Remove t_1 from t, e.g. t = (9, 1, 4, 4, 1, 6)
- 5. Remove ℓ from *V*, e.g. $V \setminus t = \{3, 5, 7, 8\}$
- 6. Repeat from Step 2 until $t = \emptyset$
- 7. At this point $|V \setminus t| = 2$ (it is an edge): add it

$$V \smallsetminus t = \{1, 9\}, \ell = 1, p = (6),$$

edge $\{1, 6\}$

- 1. Given a Prüfer sequence p on V, e.g. (6, 9, 1, 4, 4, 1, 6)
- 2. Find smallest index ℓ in $V \smallsetminus p$, e.g. 2
- 3. Add $\{\ell, t_1\}$ to *T*, e.g. $\{2, 6\}$
- 4. Remove t_1 from t, e.g. t = (9, 1, 4, 4, 1, 6)
- 5. Remove ℓ from *V*, e.g. $V \setminus t = \{3, 5, 7, 8\}$
- 6. Repeat from Step 2 until $t = \emptyset$
- 7. At this point $|V \setminus t| = 2$ (it is an edge): add it

$$V \smallsetminus t = \{ 6, 9 \},\$$
edge $\{6, 9\}$

Bijection

Thm.

There is a bijection between trees on V and sequences in $V^{|V|-2}$

Proof

Essentially follows by two algorithms above

Left to prove: no cycles occur when constructing the tree from the sequence

Then result will follow by the "converse theorem" on slide 22 (why?)

Claim: no cycles, proceed by contradiction

Notice the mapping trees \rightarrow sequences always deletes leaf nodes

By definition, a cycle must have ≥ 3 nodes, and none of these can be a leaf

So the resulting sequence has at most |V| - 3 nodes, contradiction (why?)

Thm.

```
[Cayley 1889] Let |V| = n. There are n^{n-2} labelled trees on V
```

Proof

By previous theorem, the number of labelled trees is the same as the number of sequences in $V^{|V|-2}$ (this proof is by Prüfer, 1918)

Psychology and natural language

Most students (and not just students!) find arrays, lists, maps, queues and stacks "easier" than trees

- Most students (and not just students!) find arrays, lists, maps, queues and stacks "easier" than trees
- Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

- Most students (and not just students!) find arrays, lists, maps, queues and stacks "easier" than trees
- Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

- Thesis 2: iterative vs. recursive
 - Sequences are models of iteration and trees models of recursion
 - Most people think iteratively rather than recursively (?)

- Most students (and not just students!) find arrays, lists, maps, queues and stacks "easier" than trees
- Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

- Thesis 2: iterative vs. recursive
 - Sequences are models of iteration and trees models of recursion
 - Most people think iteratively rather than recursively (?)
- Thesis 3: trees require decisions
 - Every node has ≤ 1 next node in a sequence tree nodes might have more than one subnodes
 - Scanning a sequence: no decisions to take
 Exploring a tree: which subnode to process next?

Languages and grammars

- Remember nouns, adjectives, transitive verbs from school?
- Analyzing sentences means to identify and name their grammatical components
- We can analyze such components recursively:

<u>sentence</u>	\longrightarrow	names verb
names	\longrightarrow	name names
name	\longrightarrow	noun
		article noun
		adjectives noun
		article adjectives noun
adjectives	\longrightarrow	adjective adjectives
verb	\longrightarrow	

Parse trees

Parse trees

the soft, furry cat purrs

Parse trees

Formal and natural languages

- If there's more than one parse tree to a given sentence, the grammar is ambiguous
- If the different parse trees for a sentence lead to different meanings, the language itself is ambiguous
- Non-ambiguous languages are also called formal (e.g. formal logic, C/C++, Java,...)
- Ambiguous languages are also called natural (e.g. common mathematical language, English, French,...)
- Richard Montague (1930-1971) tried to supply grammar-like mechanisms that were able to disambiguate some subsets of English

Tree exploration

- Breadth-First Search (BFS seen in Lecture 2) find the way out of a maze in the smallest number of steps
- Depth-First Search (DFS seen in *polycopié* of INF311) find the way out of a maze
- DFS: recursive call to dfs(node v):
 - 1: optionally perform an action on v;
 - 2: for all subnodes u of v do
 - 3: dfs(*u*);
 - 4: end for
 - 5: optionally perform an action on v;
- DFS is dfs(root)

Thesis [XX century]: our brain treats sentences like mazes, and inherently uses DFS to find the way out (i.e., parse them)

DFS: exploring a parse tree

ÉCOLE POLYTECHNIOU

adjective (furry)

How much memory?

- How much do we need to remember during DFS?
- Notice that the recursive code makes no explicit use of memory
- From Lecture 3, remember recursion is implemented using stacks
- What is the maximum size of the stack in exploring a tree by DFS?
- Let's see the DFS once again, and keep track of stack size

DFS on parse trees: memory

INF421, Lecture 6 - p. 39

Memory and depth

Need as much memory as the tree depth

Recall: **depth** = longest path from root to a leaf

Miracles of the human mind

However, consider this:

We (humans) process input in a given order

- Reading: left→right | right→left | top→bottom
- **Question:** are there bottom \rightarrow top languages?
- Western languages: left→right
- **DFS:** no need to use stack at rightmost branch!
- If we know we're on rightmost path and we process subnodes in left \rightarrow right order, then rightmost=last
- No "climbing back up the tree" at rightmost path
- [Yngve, 1960]: western language trees develop in depth on the right; depth on the left is limited to a constant

Regressive and progressive trees

Regressive tree

In left \rightarrow right node order, requires as much stack as the depth (4 in this case)

Progressive tree

In left \rightarrow right node order, only requires a stack of constant size (1 in this case)

The "7" brain

- [Miller 1956] On average, the human memory can recall seven random words without effort
- In western languages, it employs progressive trees with maximum "left depth" of 7
- This is why the "progressive sentence":

l'élève retardataire n'apprend que la moitié des choses qu'on lui enseigne

sounds much more natural than the "regressive" one:

on enseigne des choses dont la moitié seulement est apprise par le retardataire élève

Brain and languages

- Anglosaxon languages are regressive on adjectives and appositions (often before the noun)
- Latin-derived languages decrease this tendency
- Classical latin is very difficult to understand: one has the impression that there is no fixed order!

Inde toro pater Æneas sic orsus ab alto

- \rightarrow Thereafter <u>seat</u> father Eneas thus standing from a high
- \rightarrow Thereafter father Eneas, thus standing from a high seat
- Perhaps this is why classical latin is a dead language: it required too much "brain stack" to process sentences

Depth-First Search

(Di)Graph scanning

- DFS above explores nodes of a tree starting from the root, visit each (connected) node only once
- Generalization: scan the nodes of a digraph (or the vertices of a graph) starting from a node s

Require: $G = (V, A), s \in V, R = \{s\}, Q = \{s\}$ 1: while $Q \neq \emptyset$ do 2: choose $v \in Q / / v$ is scanned 3: $Q \leftarrow Q \smallsetminus \{v\}$ 4: for $w \in N^+(v) \smallsetminus R$ do 5: $R \leftarrow R \cup \{w\}$ 6: $Q \leftarrow Q \cup \{w\}$ 7: end for

8: end while

Storing a graph

Seen in Lecture 1: use the jagged array representation (also called adjacency list)

$$N^{+}(0) = (1, 2, 3)$$

$$N^{+}(1) = (2)$$

$$N^{+}(2) = (3)$$

$$1$$

$$0$$

$$1$$

$$2$$

$$3$$

• Seen in Lecture 2: use the *list of arcs* representation L = ((0, 1), (0, 2), (0, 3), (1, 2), (2, 3))

Different efficiency on different algorithms

The algorithm is correct

Thm.

If there is an oriented path P from s to $z \in V$, then DIGRAPH SCANNING SCANS z

Proof

- Suppose not, then ∃(x, y) ∈ P with x ∈ R and y ∉ R (for otherwise, by induction on the path length, z ∈ R by Step 5 and hence in Q by Step 6)
- **9** By Step 6 x was added to Q
- The algorithm does not stop before eliminating x from Q in Step 3 at some iteration
- This happens only if $\delta^+(x) \subseteq R$ by Steps 4-5
- Hence $y \notin \delta^+(x)$, which implies $(x, y) \notin P$, which yields a contradiction

The algorithm takes O(n+m)

Thm.

If the digraph is encoded as adjacency lists, DIGRAPH SCANNING takes CPU time proportional O(n + m) in the worst case

Proof

- Each node is considered only once:
 - Whenever a node x is eliminated from Q, it was previously inserted by Step 6, which means that it was also added to R by Step 5
 - By Step 4, x is never re-added to Q
- Each arc (x, y) is considered only once:
 - When x = v in Step 2 then $y \in \delta^+(x)$, so either y = w in Step 4 or it must be verified that $y \in R$
 - In both cases, the relation (x, y) was considered once

The choice of $v \in Q$

- In Step 2, the choice of $v \in Q$ determines the order in which the nodes are scanned
- Can alter this using different data structures for implementing the set Q
- Two data structures are commonly used:
 - 1. Stacks

DEPTH-FIRST SEARCH (DFS): this corresponds to the order being Last-In, First-Out (LIFO)

2. Queues

BREADTH-FIRST SEARCH: this corresponds to the order being First-In, First-Out (FIFO)

If you failed to understand BFS in Lecture 2, here's another chance!

Spanning trees

Distribution networks

- A network is a connected relation on a set V of entities that models a distribution process
- E.g. *V*: production sites, customer sites
- Two sites are related if there is an exchange of material between them
- Two production sites are related if there is an exchange of raw material
- Other pairs of sites are related if there is an exchange of finished material
- Main cost of distribution: transportation
- How do you guarantee that each site has access to the material?

Electricity/water distribution

- Raw and finished material is the same
- Blurred distinction between production and customer sites
- Cable/duct reaches customer γ_1 , it is then extended to customer γ_2 (γ_1 is both production and customer)
- The main cost is laying the cables/ducts

Spanning trees

- Cost is optimized if material can be distributed to all sites using as few cables/duct as possible
- A tree on $U \subseteq V$ is spanning if U = V
- If each edge e in the network has cost c_e , the cost of T is

$$c(T) = \sum_{e \in T} c_e$$

Find a spanning tree of minimum cost

Kruskal's algorithm: a sketch

- Two classical algorithms: Kruskal's and Prim's
- *Implementation in INF431: requires union-find data structure*
- Let E be the set of edges in the network

1: $T = \emptyset$

- **2: while** |T| < |V| 1 **do**
- 3: find the edge e of minimum cost in the network E;
- 4: if $T \cup \{e\}$ has no cycle then

5:
$$T \leftarrow T \cup \{e\};$$

- $6: \qquad E \leftarrow E \smallsetminus \{e\};$
- 7: end if
- 8: end while
- At the end, T has |V| 1 edges and has no cycle: it is a tree by the "converse theorem" (slide 22)

Try and prove that Kruskal's algorithm terminates

End of Lecture 6