

Leo Liberti

LIX, École Polytechnique, France

INF421, Lecture 6 - p.

Lecture summary

- Introduction and reminders
- Definitions and properties
- Listing chemical trees
- Trees in psychology and languages
- Depth-First Search (DFS)
- Spanning trees

Course

- Objective: to teach you some data structures and associated algorithms
- **Evaluation**: TP noté en salle info le 16 septembre, Contrôle à la fin. Note: $\max(CC, \frac{3}{4}CC + \frac{1}{4}TP)$
- Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)
- Books
 - Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2006
 - 2. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
 - 3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
 - 4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 6 - p. 2

The minimal knowledge

- A tree is a connected relation without cycles
- A tree on n nodes has n-1 branches
- There are n^{n-2} labelled trees
- The same molecular formula can correspond to different bond trees (isomers)
- The analysis of sentences yields grammatical trees
- The Graph Scanning algorithm, DFS and BFS
- The cheapest kind of distribution network is a spanning tree

INF421, Lecture 6 - p. 3 INF421, Lecture 6 - p. 4

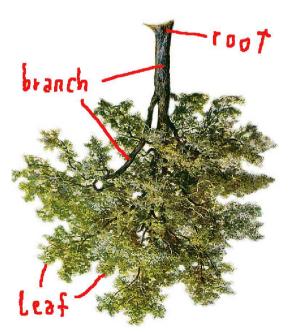
Introduction and reminders

Trees

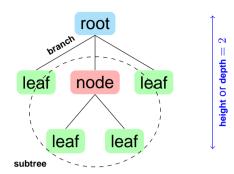
INF421, Lecture 6 - p. 6

How we draw them

INF421, Lecture 6 - p. 5



INF421, Lecture 6 - p. 7 INF421, Lecture 6 - p. 8



 $height/depth = length (\#branches) of longest walk [root <math>\rightarrow leaf]$

INF421, Lecture 6 - p. 9

Some applications of trees

- Chemistry (molecular composition and structure)
- Psychology (natural language)
- Distribution networks of minimum cost
- Computer science
 - model for recursion (Lecture 3)
 - data structures for sorting and searching (Lecture 7)

Recall from INF311

- Binary trees
- Their implementations
- How to explore them in prefix, infix, postfix order
- How to store mathematical expressions in trees

INF421, Lecture 6 - p. 10

Definitions and properties

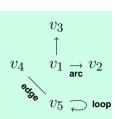
ECOLE

Relations

• A relation A on a set V is a subset of $V \times V$

$$V = \{v_1, \dots, v_5\}$$

$$A = \{(v_1, v_3), (v_1, v_2), (v_4, v_5), (v_5, v_4), (v_5, v_5)\}$$



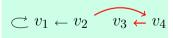
- Arc: an element of A; loop: a pair (v, v)
- Edge: $e = \{(u, v), (v, u)\}$ (denote by $e = \{u, v\}$)
 (u, v are incident to e, and u, v are adjacent)
- **Symmetric relation:** if $(u,v) \in A$, then $(v,u) \in A$
- Reflexive relation: $(v,v) \in A$ for all $v \in V$
- Irreflexive or simple relation: $(v,v) \not\in A$ for all $v \in V$
- **●** Transitive relation: if $(u, v), (v, w) \in A$ then $(u, w) \in A$

INF421, Lecture 6 - p. 13

Walks and paths

• Let $i=(i_1,\ldots,i_k)$ with k>1; $P=\{(v_{i_j},v_{i_{j+1}})\mid j< k\}$ is a walk $v_1\to v_k$

$$|(i_1, i_2, i_3) = (2, 4, 3) P = \{(v_2, v_4), (v_4, v_3)\}$$



If W is a walk in G, W^{-1} is a walk in G^{-1}

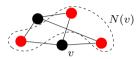
● A relation P is a path $u \to v$ if there is a walk $W \subseteq P$ from u to v such that $P = W \cup W^{-1}$

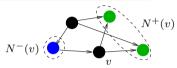
graphical representation of a path:

ECOLE POLYTECHNIQUE

Graphs and digraphs

- A relation A on V is also called a digraph G = (V, A)
- lacksquare A symmetric relation E on V is also called a graph G=(V,E)
- lacksquare Digraphs have arcs (u,v), graphs have edges $\{u,v\}$
- A digraph/graph is simple if it has no loops
- In a graph context, nodes are also called vertices
- **Notation**: given $v \in V$,
 - If E is symmetric $N(v) = \{u \in V \mid \{u,v\} \in E\}$ is the star of v





- $\begin{array}{|c|c|c|c|c|} \hline \text{\it if A is not symmetric} & N^+(v) = \{u \in V \mid (v,u) \in A\} = & \text{outgoing star} \\ \hline \text{\it and} & N^-(v) = \{u \in V \mid (u,v) \in A\} = & \text{incoming star} \\ \hline \end{array}$
- Also $\delta(v)=\{\{u,v\}\mid u\in N(v)\}$, $\delta^+(v)=\{(v,u)\mid u\in N^+(v)\}$ and $\delta^-(v)=\{(u,v)\mid u\in N^-(v)\}$ defined equivalently

INF421, Lecture 6 - p. 14

Properties of walks and paths

- ullet Let W be a walk given by the node sequence v_{i_1},\ldots,v_{i_k}
- Every contiguous subsequence of v_{i_1}, \ldots, v_{i_k} is also a walk

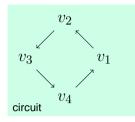
$$\stackrel{\textstyle \smile}{\smile} v_1 \to v_2$$
 $\stackrel{\textstyle \smile}{\smile} v_3 \stackrel{\textstyle \smile}{\longleftarrow} v_4$ v_4, v_3 subwalk of v_1, v_2, v_4, v_3

• If W_1 is a walk $u \to v$ and W_2 is a walk $v \to w$, then the sequence $W = W_1 \cup W_2$ is a walk $u \to w$

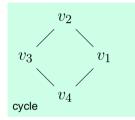
The same holds for paths

Circuits and cycles

• If a walk has $i_1 = i_k$: circuit



• If a path with at least 3 nodes has $i_1 = i_k$: cycle



INF421, Lecture 6 - p. 17

Mathematical definition of a tree

Tree: a minimally connected relation T on a set V

- If one node is specified as the root, then the tree is rooted
- Every node which only appears as part of a single edge is called a dangling node

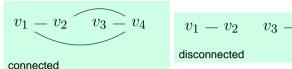
$$v_1 = v_2 \overbrace{v_3 = v_4}$$

 v_1, v_3 : dangling nodes

- A dangling node which is not the root is called a leaf
- Edges of a rooted tree are also called branches

Connectedness

- Let A be a symmetric relation
- If for all $u,v\in V$ there is a path $u\to v$ in A, then A is connected, Otherwise disconnected



- If A is not symmetric, equivalent notion is strong connectivity (replace "path" with "walk")
- Let e be an edge in A, if $A \setminus \{e\}$ is disconnected, A is minimally connected

$$v_1 = v_2$$
 $v_3 = v_4$ minimally connected

INF421, Lecture 6 - p. 18

Orientations

- The outward orientation of a tree T with root $r \in V$ is a relation U such that:
 - for every edge $\{(u, v), (v, u)\}$ of T, U contains only one of the arcs
 - for every leaf node ℓ of T, U has a path $r \to \ell$

$$v_1 = r \qquad v_3 = v_4 \qquad \rightarrow \qquad v_1 \leftarrow r \qquad v_3 \leftarrow v_4$$

● The inward orientation is such that for every leaf node ℓ of T, U has a path $\ell \to r$

$$v_1 - r \qquad v_3 - v_4 \qquad \rightarrow \qquad v_1 \rightarrow r \qquad v_3 \rightarrow v_4$$

A tree has no cycles

Lemma

A cycle is not minimally connected

Proof

Cycle: a path $C = W \cup W^{-1}$ where W is a walk $(v_{i_1}, \dots, v_{i_k})$ with $i_1 = i_k$ and $k \geq 3$

Every contiguous subsequence of W is a (sub)walk of W

Consider any subwalk $W_1 = (v_{i_1}, \dots, v_{i_h})$ of W with j < h

Both $(v_{i_1}, \ldots, v_{i_i})$ and $(v_{i_1}, \ldots, v_{i_k})$ are contiguous subseq. of W, hence walks in W

Their union $W_0 = (v_{i_h}, v_{i_{h+1}}, \dots, v_{i_k} = v_{i_1}, \dots, v_{i_j})$ is also a walk in W

Since $W^{-1} \subseteq C$, the walk $W_2 = W_0^{-1}$ is also in C

Since C is symmetric, the paths P_1, P_2 induced by W_1, W_2 are both in C

Notice P_1, P_2 are two paths $v_{i_j} \rightarrow v_{i_h}$ that have no common edges

Notice also that $P_1 \cup P_2 = C$

Taking away an edge from P_1 or P_2 does not disconnect C

 ${\cal C}$ is not minimally connected

Thm.

A tree has no cycles

INF421, Lecture 6 - p. 21

The converse

Thm.

If T is a symmetric relation on V with no cycles and m(T) = |V| - 1, then T is a tree

Proof

By induction on |V|, aim to show T is a tree

Recall: $\forall v \in V$, $\delta(v)$ is the set of edges incident to v

Since T has no cycles, there must be at least one node ℓ with $|\delta(\ell)| = 1$ (why?)

Let $V' = V \setminus \{\ell\}$ and $T' = T \setminus \{e\}$, where $\{e\} = \delta(\ell)$

Since T has no cycles, T' has no cycles either (why?)

Since |T'| = |T| - 1 and |V'| = |V| - 1, we have |T'| = |V'| - 1

By the induction hypothesis, |T'| is a tree

Hence T is minimally connected

Since e is the only edge in T incident to ℓ , $T = T' \cup \{e\}$ is also minimally connected

Hence T is a tree

A tree has |V| - 1 edges

Thm.

A tree T on a set V has |V| - 1 edges

Proof

Let m(T) be the number of edges in T

Show m(T) = |V| - 1 by induction on |V|

If |V|=2, a minimally connected relation requires one edge

Induction hypothesis: Suppose m(T) = |V| - 2 for all trees T on |V| - 1 nodes

Let T be any tree on V

Any tree must have at least one leaf node ℓ (why?)

Because ℓ is a leaf, it is incident to only one edge e

Consider the tree $T' = T \setminus \{e\}$ on $V' = V \setminus \{\ell\}$

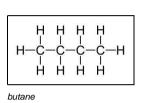
Because |V'| = |V| - 1, m(T') = |V| - 2 by the induction hypothesis

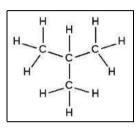
Thus, T has exactly $m(T) = m(T \cup \{e\}) = m(T) + 1 = |V| - 1$ edges

INF421, Lecture 6 - p. 22

Chemical trees

- Until the mid-XIX century, people thought molecules were completely defined by their atomic formula
- E.g. paraffins are $C_k H_{2k+2}$
- Then people started to notice that different bond relations gave rise to substances with different properties: isomers





isobutane

INF421. Lecture 6 - p. 25

Listing labelled trees

- Two possible interpretations
- These two are different (unlabelled trees):

These two are different (labelled trees):

- Counting/listing labelled trees easier than unlabelled ones
- There are more labelled than unlabelled trees (why?)

Listing isomers

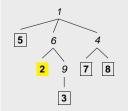
- Carbons have valence 4 (they can be incident to 4 edges)
- Hydrogens have valence 1 (they can be incident to 1 edge)
- Paraffins are known to have tree-like bond relations
- Finding paraffin isomers in the mid-XIX century:
 - list all trees on n = 3k + 2 nodes
 - remove those whose valences does not match the paraffin chemical formula
- How do we list all trees? How many are there?

INF421. Lecture 6 - p. 26

Prüfer sequences

Mapping trees on V to sequences in $V^{|V|-2}$

- For a tree T let L(T) be the set of leaf nodes of T
 - 1: for $k \in \{1, ..., |V| 2\}$ do
 - $v = \min L(T)$;
 - let e be the only edge incident to v;
 - let $t_k \neq v$ be the other node incident to e;
 - $T \leftarrow T \setminus \{v\};$
 - 6: end for
 - 7: **return** $t = (t_1, \dots, t_{|V|-2})$



First iteration

$$L(T) = \{5, 2, 3, 7, 8\}, v = 2, t = (6)$$

Prüfer sequence of example: (6, 9, 1, 4, 4, 1, 6)

Back to the trees

Mapping $V^{|V|-2}$ to trees

- 1. Given a Prüfer sequence p on V, e.g. (6,9,1,4,4,1,6)
- 2. Find smallest index ℓ in $V \setminus p$, e.g. 2
- 3. Add $\{\ell, t_1\}$ to T, e.g. $\{2, 6\}$
- 4. Remove t_1 from t_1 , e.g. t = (9, 1, 4, 4, 1, 6)
- 5. Remove ℓ from V, e.g. $V \setminus t = \{3, 5, 7, 8\}$
- 6. Repeat from Step 2 until $t = \emptyset$
- 7. At this point $|V \setminus t| = 2$ (it is an edge): add it

First iteration

$$V \setminus t = \{ [2], 3, 5, 7, 8 \}, \ \ell = 2, p = (6, 9, 1, 4, 4, 1, 6),$$
 edge $\{2, 6\}$

INF421, Lecture 6 - p. 29

Psychology and natural language

Bijection

Thm.

There is a bijection between trees on V and sequences in $V^{|V|-2}$

Proof

Essentially follows by two algorithms above

Left to prove: no cycles occur when constructing the tree from the sequence

Then result will follow by the "converse theorem" on slide 22 (why?)

Claim: no cycles, proceed by contradiction

Notice the mapping trees → sequences always deletes leaf nodes

By definition, a cycle must have > 3 nodes, and none of these can be a leaf

So the resulting sequence has at most |V| - 3 nodes, contradiction (why?)

Thm.

[Cayley 1889] Let |V| = n. There are n^{n-2} labelled trees on V

Proof

By previous theorem, the number of labelled trees is the same as the number of sequences in $V^{|V|-2}$ (this proof is by Prüfer, 1918)

INF421, Lecture 6 - p. 30

A remark

- Most people find arrays, lists, maps, queues and stacks "easier" than trees
- Thesis 1: the graphical representation
 People are used to read sequence-like rather than tree-like text
- Thesis 2: iterative vs. recursive
 - Sequences are models of iteration and trees models of recursion
 - Most people think iteratively rather than recursively (?)
- Thesis 3: trees require decisions
 - Every node has ≤ 1 next node in a sequence tree nodes might have more than one subnodes
 - Scanning a sequence: no decisions to take
 - ⇒ Exploring a tree: which subnode to process next?

Languages and grammars

- Remember nouns, adjectives, transitive verbs from school?
- Analyzing sentences means to identify and name their grammatical components
- We can analyze such components recursively:

```
sentence → names verb

names → name names

name → noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives → adjective adjectives

verb → ...
```

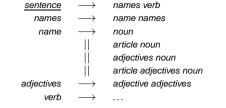
INF421, Lecture 6 - p. 33

Formal and natural languages

- If there's more than one parse tree to a given sentence, the grammar is ambiguous
- If the different parse trees for a sentence lead to different meanings, the language itself is ambiguous
- Non-ambiguous languages are also called formal (e.g. formal logic, C/C++, Java,...)
- Ambiguous languages are also called natural (e.g. common mathematical language, English, French,...)
- Richard Montague (1930-1971) tried to supply grammar-like mechanisms that were able to disambiguate some subsets of English

Parse trees

The soft, furry cat purrs



INF421, Lecture 6 - p. 34

Tree exploration

- Breadth-First Search (BFS seen in Lecture 2)
 find the way out of a maze in the smallest number of steps
- Depth-First Search (DFS seen in polycopié of INF311)
 find the way out of a maze
- DFS: recursive call to dfs(node v):
 - 1: optionally perform an action on v;
 - 2: **for** all subnodes u of v **do**
 - 3: dfs(u);
 - 4: end for
 - 5: optionally perform an action on v;
- DFS is dfs(root)

Thesis [XX century]: our brain treats sentences like mazes, and inherently uses DFS to find the way out (i.e., parse them)

How much memory?

- How much do we need to remember during DFS?
- Notice that the recursive code makes no explicit use of memory
- From Lecture 3, remember recursion is implemented using stacks
- What is the maximum size of the stack in exploring a tree by DFS?
- Let's see the DFS once again, and keep track of stack size

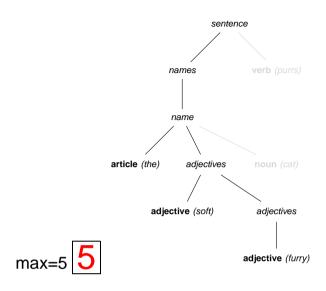
INF421, Lecture 6 - p. 37

Memory and depth

Need as much memory as the tree depth

Recall: depth = longest path from root to a leaf

DFS on parse trees: memory



INF421. Lecture 6 = p. 38

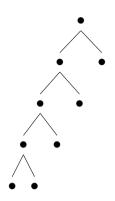
Miracles of the human mind

However, consider this:

We (humans) process input in a given order

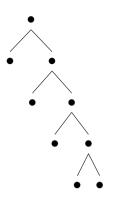
- Reading: left→right | right→left | top→bottom
- Question: are there bottom→top languages?
- Western languages: left→right
- ⇒ DFS: no need to use stack at rightmost branch!
- If we know we're on rightmost path and we process subnodes in left→right order, then rightmost=last
- No "climbing back up the tree" at rightmost path
- [Yngve, 1960]: western language trees develop in depth on the right; depth on the left is limited to a constant

Regressive and progressive trees



Regressive tree

In left—right node order, requires as much stack as the depth (4 in this case)



Progressive tree

In left—right node order, only requires a stack of constant size (1 in this case)

INF421, Lecture 6 - p. 41

Brain and languages

- Anglosaxon languages are regressive on adjectives and appositions (often before the noun)
- Latin-derived languages decrease this tendency
- Classical latin is very difficult to understand: one has the impression that there is no fixed order!

Inde toro pater Æneas sic orsus ab alto

- → Thereafter seat father Eneas thus standing from a high
- ightarrow Thereafter father Eneas, thus standing from a high seat
- Perhaps this is why classical latin is a dead language: it required too much "brain stack" to process sentences

The "7" brain

- [Miller 1956] On average, the human memory can recall seven random words without effort
- In western languages, it employs progressive trees with maximum "left depth" of 7
- This is why the "progressive sentence":

l'élève retardataire n'apprend que la moitié des choses qu'on lui enseigne

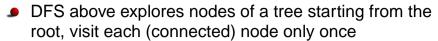
sounds much more natural than the "regressive" one:

on enseigne des choses dont la moitié seulement est apprise par le retardataire élève

INF421, Lecture 6 - p. 42

Depth-First Search

(Di)Graph scanning



Generalization: scan the nodes of a digraph (or the vertices of a graph) starting from a node s

Require: $G = (V, A), s \in V, R = \{s\}, Q = \{s\}$

- 1: while $Q \neq \emptyset$ do
- 2: choose $v \in Q$ // v is scanned
- 3: $Q \leftarrow Q \setminus \{v\}$
- 4: for $w \in N^+(v) \setminus R$ do
- 5: $R \leftarrow R \cup \{w\}$
- 6: $Q \leftarrow Q \cup \{w\}$
- 7: end for
- 8: end while

INF421, Lecture 6 - p. 45

The algorithm is correct

Thm.

If there is an oriented path P from s to $z \in V$, then DIGRAPH SCANNING SCANS z

Proof

- **●** Suppose not, then $\exists (x,y) \in P$ with $x \in R$ and $y \notin R$ (for otherwise, by induction on the path length, $z \in R$ by Step 5 and hence in Q by Step 6)
- lacksquare By Step 6 x was added to Q
- ullet The algorithm does not stop before eliminating x from Q in Step 3 at some iteration
- **●** This happens only if $\delta^+(x) \subseteq R$ by Steps 4-5
- Hence $y \notin \delta^+(x)$, which implies $(x,y) \notin P$, which yields a contradiction

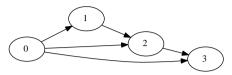
ECOLE POLYTECHNIQ

Storing a graph

Seen in Lecture 1: use the jagged array representation (also called adjacency list)

$$N^{+}(0) = (1, 2, 3)$$

 $N^{+}(1) = (2)$
 $N^{+}(2) = (3)$



Seen in Lecture 2: use the list of arcs representation

$$L = ((0,1), (0,2), (0,3), (1,2), (2,3))$$

Different efficiency on different algorithms

INF421, Lecture 6 - p. 46

The algorithm takes O(n+m)

Thm.

If the digraph is encoded as adjacency lists, DIGRAPH SCANNING takes CPU time proportional O(n+m) in the worst case

Proof

- Each node is considered only once:
 - Whenever a node x is eliminated from Q, it was previously inserted by Step 6, which means that it was also added to R by Step 5
 - \blacksquare By Step 4, x is never re-added to Q
- **Solution** Each arc (x, y) is considered only once:
 - When x=v in Step 2 then $y\in \delta^+(x)$, so either y=w in Step 4 or it must be verified that $y\in R$
 - ullet In both cases, the relation (x,y) was considered once

The choice of $v \in Q$

- In Step 2, the choice of $v \in Q$ determines the order in which the nodes are scanned
- Can alter this using different data structures for implementing the set Q
- Two data structures are commonly used:
 - 1. Stacks

DEPTH-FIRST SEARCH (DFS): this corresponds to the order being Last-In, First-Out (LIFO)

2. Queues

Breadth-First Search: this corresponds to the order being First-In, First-Out (FIFO)

If you failed to understand BFS in Lecture 2, here's another chance!

INF421, Lecture 6 - p. 49

Distribution networks

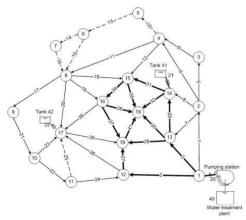
- A network is a connected relation on a set V of entities that models a distribution process
- E.g. V: production sites, customer sites
- Two sites are related if there is an exchange of material between them
- Two production sites are related if there is an exchange of raw material
- Other pairs of sites are related if there is an exchange of finished material
- Main cost of distribution: transportation
- How do you guarantee that each site has access to the material?

Spanning trees

INF421, Lecture 6 - p. 50

Electricity/water distribution

- Raw and finished material is the same
- Blurred distinction between production and customer sites
- Cable/duct reaches customer γ_1 , it is then extended to customer γ_2 (γ_1 is both production and customer)
- The main cost is laying the cables/ducts



Spanning trees

- Cost is optimized if material can be distributed to all sites using as few cables/duct as possible
- ullet A tree on $U\subseteq V$ is spanning if U=V
- If each edge e in the network has cost c_e , the cost of T is

$$c(T) = \sum_{e \in T} c_e$$

Find a spanning tree of minimum cost

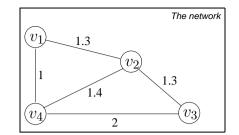
INF421, Lecture 6 - p. 53

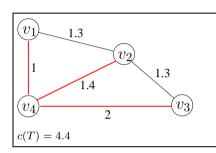
Kruskal's algorithm: a sketch

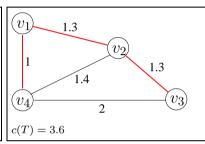
- Two classical algorithms: Kruskal's and Prim's
- Implementation in INF431: requires union-find data structure
- Let E be the set of edges in the network
 - 1: $T = \emptyset$
 - 2: while |T| < |V| 1 do
 - 3: find the edge e of minimum cost in the network E;
 - 4: if $T \cup \{e\}$ has no cycle then
 - 5: $T \leftarrow T \cup \{e\};$
 - **6**: $E \leftarrow E \setminus \{e\};$
 - 7: end if
 - 8: end while
- At the end, T has |V|-1 edges and has no cycle: it is a tree by the "converse theorem" (slide 22)

Try and prove that Kruskal's algorithm terminates

Example







INF421, Lecture 6 - p. 54

End of Lecture 6