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Course

Objective: to teach you some data structures and associated

algorithms

Evaluation: TP noté en salle info le 16 septembre, Contrôle à la fin.

Note: max(CC, 3
4CC + 1

4TP )

Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books:

1. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

2. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

Website: www.enseignement.polytechnique.fr/informatique/INF421

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)
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Lecture summary

Searching

Tables

Hashing

Collisions

Implementation
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Why?

Address book:

1. each page corresponds to a character

2. page with character k contains all names beginning with k

3. easy to search: immediately find the correct page, then scan the

list, which is at most as long as the page

Can we use a list of pairs (name,telephone)?
Slow to search

Can we use a table name→ telephone?
Difficult to extend its size

Hash tables are the appropriate data structures
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The minimal knowledge

K

U

τ

K a very large set of keys; U : a set of objects; τ : K → U : a table

Assume K too large to store, but dom τ is small

Find a function h : K → I with I = {0, 1, . . . , p − 1} and |I| ≈ |U |, then store

u = τ(k) at σ(i) where i = h(k)
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K a very large set of keys; U : a set of objects; τ : K → U : a table

Assume K too large to store, but dom τ is small

Find a function h : K → I with I = {0, 1, . . . , p − 1} and |I| ≈ |U |, then store
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The minimal knowledge

K

U

dom τ

σ

h

I

K a very large set of keys; U : a set of objects; τ : K → U : a table

Assume K too large to store, but dom τ is small

Find a function h : K → I with I = {0, 1, . . . , p − 1} and |I| ≈ |U |, then store

u = τ(k) in array element σ(i) where i = h(k)
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Minimal technical knowledge
K =keys, U =records

Associate some keys with records

Get an injective table function τ : K → U , with dom τ ( K

Given a key k ∈ K, determine whether k ∈ dom τ

If τ was an array, τ(k) = u if k ∈ dom τ or ⊥ if k 6∈ dom τ : O(1)

However, |K| too large to be in an array

Use hash table σ : I → U on an index set I with |I| ≈ | dom τ | ≪ |K|

Need a hash function h : K → I to map keys to indices

Store record u in σ at position h(k): get σ(h(k)) = u

Maps σ, h, τ must be such that τ = σ ◦ h:

K U

I

τ

h σ

If this holds, then k ∈ dom τ ⇔ h(k) ∈ I

Look h(k) up in array σ in O(1)

Scheme only works if h is injective, otherwise get collisions

One way to address collisions is to let σ(i) = {u ∈ U | h(τ−1(u)) = i}
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Searching
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The set element problem

SET ELEMENT PROBLEM (SEP). Given a set U , a set V ⊆
U and an element u ∈ U , determine whether u ∈ V

Fundamental problem in computer science (and
mathematics)

Also known as the searching problem, the find problem, in
some context the feasibility problem, and no doubt in
several other ways too

For computer implementations, one often also requires
the index of u in V if the answer to the SEP is YES
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Sequential search

If the set V is stored as a sequence (v1, v2, . . . , vn), can
perform sequential search:

1: for i ≤ n do
2: if vi = u then
3: return i; // found

4: end if
5: end for
6: return n+ 1; // not found

If seq. search returns n+ 1, u 6∈ V , otherwise u ∈ V and
the return value is the index of u in V

Worst-case complexity: O(n)
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Eliminate a test

1: Let vn+1 = u
2: for i ∈ N do
3: if vi = u then
4: return i;
5: end if
6: end for

Gets rid of test i ≤ n at each iteration

This “trick” already seen in Lecture 1
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Self-organizing search

Each time u ∈ V at position i, swap u = vi and v1:

1: Let vn+1 = u
2: for i ∈ N do
3: if vi = u then
4: if i ≤ n then
5: swap(v, 1, i);
6: return 1;
7: else
8: return n+ 1;
9: end if

10: end if
11: end for

Elements that are sought for most often take fewer
iterations to be found

Still O(n) worst-case complexity
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Binary search

Assume V = (v1, . . . , vn) is ordered (i < j → vi ≤ vj)

1: i = 1;

2: j = n;

3: while i ≤ j do

4: ℓ = ⌊ i+j
2 ⌋;

5: if u < vℓ then

6: j = ℓ− 1;

7: else if u > vℓ then

8: i = ℓ+ 1;

9: else

10: return ℓ; // found

11: end if

12: end while

13: return n+ 1; // not found

Worst-case complexity: O(log n) (by INF311)
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Tables
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The data structure

A table generalizes the concept of array: it maps a key k ∈ K to a

record u ∈ U
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The data structure

A table generalizes the concept of array: it maps a key k ∈ K to a

record u ∈ U
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Examples: telephone directory, nameservers, databases
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key
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If u ∈ U is associated to two different keys k, k′ ∈ K, the data for u is

duplicated in memory, so that τ remains injective
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The data structure

A table generalizes the concept of array: it maps a key k ∈ K to a

record u ∈ U

We assume that each record u ∈ U is given with its corresponding

key

Examples: telephone directory, nameservers, databases

Mathematically, tables are used to model injective maps τ : K → U

If u ∈ U is associated to two different keys k, k′ ∈ K, the data for u is

duplicated in memory, so that τ remains injective

Basic operations:

insert(u): insert a new record u in the table
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The data structure

A table generalizes the concept of array: it maps a key k ∈ K to a

record u ∈ U

We assume that each record u ∈ U is given with its corresponding

key

Examples: telephone directory, nameservers, databases

Mathematically, tables are used to model injective maps τ : K → U

If u ∈ U is associated to two different keys k, k′ ∈ K, the data for u is

duplicated in memory, so that τ remains injective

Basic operations:

insert(u): insert a new record u in the table

find(k): determine if a given key k appears in the table

remove(k): delete a record with key k from the table
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Searching tables

Searching a table for a given key is an extremely
important problem (also known as table look-up problem)

Needs to be solved as efficiently as possible

E.g. in Lecture 2, I stated that we could find whether an
arc was in a certain table (in BFS) in O(1)

However:

Sequential search: O(n)

Binary search: O(log n)

How do we look a key up in O(1)?
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Motivating examples
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Telephone directory

τ maps the set K of all personal names to a set U of
telephone numbers

Clearly, not all names are mapped, but only those of
existing people having telephones: | dom τ | ≪ |K|

Two trivial solutions:

a table τ : K → U (which lists all possible names, and τ(k) = ⊥ if k

is not the name of an existing person with a telephone)

a table τ ′ : dom τ → U which only lists existing people
with telephones

τ : O(1) find but O(|K|) space (impractical)

τ ′: O(| dom τ |) find if K is unsorted, O(log | dom τ |) if
sorted (we want O(1))
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Comparing Java objects

An object could occupy a fairly large chunk of memory
(e.g. a whole database table)

Sometimes we wish to test whether two objects a, b in
memory are equal

Requires a byte comparison: O(max(|a|, |b|)): inefficient

How do we do it in O(1)?
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Back to tables
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Tables in arrays

Usually, |K| is monstrously large

nameserver: K =set of fully qualified domain names

database: K =set of all possible entries from an index
field

Trivial implementation — array of size |K|: impossible

Notice that | dom τ | is usually much smaller than |K|

Consider a map h : K → I where I is a set of indices
(which could be integers, or memory addresses), and a
hash table σ : I → U

Then, if u = τ(k), u is stored in σ at index h(k)

Look-up in σ rather than τ
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Clarification I

We’re concerned with three sets:

U is the set of records

K is the set of keys

I is the set of indices

. . . and three maps:

τ : K → U : given a k ∈ K, is it in dom τ?

h : K → I: maps keys to a smaller set of indices

σ : I → U : table actually used for storing records

K U

I

τ

h σ
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Clarification II

If K were small, we could store τ : K → U in an array
with as many components as |K|
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Clarification II

If K were small, we could store τ : K → U in an array
with as many components as |K|

This array would be initialized to ⊥ (=not found) if
k 6∈ dom τ , and to the record u = τ(k) otherwise (=found)

INF421, Lecture 5 – p. 22



Clarification II

If K were small, we could store τ : K → U in an array
with as many components as |K|

This array would be initialized to ⊥ (=not found) if
k 6∈ dom τ , and to the record u = τ(k) otherwise (=found)

Then the question k ∈ dom τ? could be answered in O(1)
by simply looking up the value at position k in this array
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k 6∈ dom τ , and to the record u = τ(k) otherwise (=found)
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by simply looking up the value at position k in this array

But |K| is too large, so we map dom τ to a set I of
indices with |I| ≈ | dom τ |, using a map h : K → I, and
store records in hash table σ : I → U

We use the O(1) table look-up method on the array σ

The map h apparently reduces O(|K|) to O(1)
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Clarification II

If K were small, we could store τ : K → U in an array
with as many components as |K|

This array would be initialized to ⊥ (=not found) if
k 6∈ dom τ , and to the record u = τ(k) otherwise (=found)

Then the question k ∈ dom τ? could be answered in O(1)
by simply looking up the value at position k in this array

But |K| is too large, so we map dom τ to a set I of
indices with |I| ≈ | dom τ |, using a map h : K → I, and
store records in hash table σ : I → U

We use the O(1) table look-up method on the array σ

The map h apparently reduces O(|K|) to O(1)

Where am I cheating?
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Clarification III

Since the size of K is the problem, why didn’t I simply
index σ by dom τ? Why introducing the function h at all?
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Clarification III

Since the size of K is the problem, why didn’t I simply
index σ by dom τ? Why introducing the function h at all?

Consider that dom τ ( K, but dom τ might well contain
small as well as large keys in K
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Clarification III

Since the size of K is the problem, why didn’t I simply
index σ by dom τ? Why introducing the function h at all?

Consider that dom τ ( K, but dom τ might well contain
small as well as large keys in K

In order to find an array element in O(1), the array
components must be stored contiguously
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Clarification III

Since the size of K is the problem, why didn’t I simply
index σ by dom τ? Why introducing the function h at all?

Consider that dom τ ( K, but dom τ might well contain
small as well as large keys in K

In order to find an array element in O(1), the array
components must be stored contiguously

If K = {0, 1, . . . , 1050 − 1} and dom τ = {0, 1050 − 1}, the
fact that | dom τ | = 2 is useless: we must index the array
over the whole of K
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Clarification III

Since the size of K is the problem, why didn’t I simply
index σ by dom τ? Why introducing the function h at all?

Consider that dom τ ( K, but dom τ might well contain
small as well as large keys in K

In order to find an array element in O(1), the array
components must be stored contiguously

If K = {0, 1, . . . , 1050 − 1} and dom τ = {0, 1050 − 1}, the
fact that | dom τ | = 2 is useless: we must index the array
over the whole of K

However, by defining I = {0, 1} and h(k) = k mod 2, we
can really use an array of length 2
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A very special case

K = I = {0x0,0x1,0x2,0x3,0x4} (set of addresses)

dom τ = {0x0,0x3,0x4}

I = K U

0x0 1

0x1 0

0x2 0

0x3 1

0x4 1

Let h : K → I be the identity function

To find whether k ∈ K is in dom τ , look at σ(h(k)):
k ∈ dom τ iff it is 1 (answer in time O(1))
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A very special case

K = I = {0x0,0x1,0x2,0x3,0x4} (set of addresses)

dom τ = {0x0,0x3,0x4}

I = K U

0x0 1

0x1 0

0x2 0

0x3 1

0x4 1

Let h : K → I be the identity function

To find whether k ∈ K is in dom τ , look at σ(h(k)):
k ∈ dom τ iff it is 1 (answer in time O(1))

u = 0x0 ∈ dom τ
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A very special case

K = I = {0x0,0x1,0x2,0x3,0x4} (set of addresses)

dom τ = {0x0,0x3,0x4}

I = K U

0x0 1

0x1 0

0x2 0

0x3 1

0x4 1

Let h : K → I be the identity function

To find whether k ∈ K is in dom τ , look at σ(h(k)):
k ∈ dom τ iff it is 1 (answer in time O(1))
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A very special case

K = I = {0x0,0x1,0x2,0x3,0x4} (set of addresses)

dom τ = {0x0,0x3,0x4}

I = K U

0x0 1

0x1 0

0x2 0

0x3 1

0x4 1

Let h : K → I be the identity function

To find whether k ∈ K is in dom τ , look at σ(h(k)):
k ∈ dom τ iff it is 1 (answer in time O(1))

How far can we generalize this concept?
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Address book again

In an address book, K is the set of all names

I is the set of all (capital) letters

h maps a surname to its initial letter

Assuming all our names start with a different letter,
we’re in business

Otherwise, we have collisions (see later)
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Hashing
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Main idea

The main insight of these examples is that

the index h(k) is obtained from the key k

INF421, Lecture 5 – p. 27



Main idea

The main insight of these examples is that

the index h(k) is obtained from the key k

Idea

Construct each index from the corresponding key
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Main idea

The main insight of these examples is that

the index h(k) is obtained from the key k
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Construct each index from the corresponding key

For example, if the key is the string Leo, we could take
the ASCII codes of all characters and sum them
together
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Main idea

The main insight of these examples is that

the index h(k) is obtained from the key k

Idea

Construct each index from the corresponding key

For example, if the key is the string Leo, we could take
the ASCII codes of all characters and sum them
together

This gives h(Leo) = 76 + 101 + 111 = 288: we store Leo

in the table σ at position 288
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Main idea

The main insight of these examples is that

the index h(k) is obtained from the key k

Idea

Construct each index from the corresponding key

For example, if the key is the string Leo, we could take
the ASCII codes of all characters and sum them
together

This gives h(Leo) = 76 + 101 + 111 = 288: we store Leo

in the table σ at position 288

If we use the same rule for every key, we have an
implementation of h
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Hash functions

I wrote “we could sum the ASCII codes of the characters”

INF421, Lecture 5 – p. 28



Hash functions

I wrote “we could sum the ASCII codes of the characters”

Sounds a little vague. . . why sum? why not multiply? why not raise them to a prime

power, sum them, then reduce the sum modulo a prime?
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Hash functions

I wrote “we could sum the ASCII codes of the characters”

Sounds a little vague. . . why sum? why not multiply? why not raise them to a prime

power, sum them, then reduce the sum modulo a prime?

Let H be the set of all programs h which:

take keys in K as input

output indices in I as output

run fast
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Hash functions

I wrote “we could sum the ASCII codes of the characters”

Sounds a little vague. . . why sum? why not multiply? why not raise them to a prime

power, sum them, then reduce the sum modulo a prime?

Let H be the set of all programs h which:

take keys in K as input

output indices in I as output

run fast

Each h ∈ H defines a hash function h : K → I

We initialize σ to the “not found” value ⊥

We store u = τ(k) in σ at position h(k)
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Hash speed

How fast should h be in order to define a useful hash
function?

We assume the maximum size ℓ of the memory taken to
store an element of K to be constant with respect to

| dom τ |

In other words: keys have the same size ℓ independently of

how many we store in τ

We require h to run in time proportional to some
function of ℓ

This means h runs in O(1) with respect to | dom τ |
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Example with names

Consider the set of names {Tim, John,Leo}

We store names as char arrays using ASCII codes:

Tim 54 69 6D

Jon 4A 6F 6E

Leo 4C 65 6F

We now form the map h as follows:

h(Tim) = 0x0054696D

h(John) = 0x004A6F6E

h(Leo) = 0x004C656F

For k ∈ K we can store τ(k) in σ at the address h(k)

Requires large hash table, but computing h is O(1)
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A general hash function

All computer-representable data can be written as byte sequences of

various lengths
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A general hash function
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various lengths

Each byte holds an integer in the range 0, . . . , 255

Hence, we can assume K to be a set of m finite integer sequences

(with m large)
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A general hash function

All computer-representable data can be written as byte sequences of

various lengths

Each byte holds an integer in the range 0, . . . , 255

Hence, we can assume K to be a set of m finite integer sequences

(with m large)

We also assume that all sequences in k = (k1, . . . , kℓ) ∈ K have the

same length ℓ (if not, pad shorter sequences with initial zeroes)
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A general hash function

All computer-representable data can be written as byte sequences of

various lengths

Each byte holds an integer in the range 0, . . . , 255

Hence, we can assume K to be a set of m finite integer sequences

(with m large)

We also assume that all sequences in k = (k1, . . . , kℓ) ∈ K have the

same length ℓ (if not, pad shorter sequences with initial zeroes)

p: smallest prime ≥ |U |, let I = {0, . . . , p− 1}
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A general hash function

All computer-representable data can be written as byte sequences of

various lengths

Each byte holds an integer in the range 0, . . . , 255

Hence, we can assume K to be a set of m finite integer sequences

(with m large)

We also assume that all sequences in k = (k1, . . . , kℓ) ∈ K have the

same length ℓ (if not, pad shorter sequences with initial zeroes)

p: smallest prime ≥ |U |, let I = {0, . . . , p− 1}

For each a ∈ Iℓ, the following is a hash function:

ha(k) = ak mod p (6)

ak is the scalar product
∑

j≤ℓ ajkj of a and k

ha maps K to I,

computing ha is O(ℓ) as required, and very fast in practice
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Some hash functions

Up to now, we’ve seen four types of hash functions

The identity h(k) = k (first example with K = I)

The projection h(k) = kj for some j ≤ |k| (address book)

The base change h((u1, . . . , un)) =
∑

j≤n ujb
j−1,

where b is “large enough” (table of first names)

The scalar product by a ∈ Nn modulo p:

ha((k1, . . . , kn)) =





∑

j≤n

ajkj



 mod p

Identity and base change are not often used:

Projection and scalar product modulo p are used in practice
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Collisions
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What can go wrong

Consider the scalar product modulo p with a = (2, 3, 5)
and p = 7

Let k = (1, 1, 1) and k′ = (3, 2, 1)

We have:

ha(k) = 2 + 3 + 5 mod 7 = 3 = 6 + 6 + 5 mod 7 = ha(k
′)

How can we store both k and k′ at index 3 in σ?

This is called a collision

It happens when hash functions are not injective
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Table injectivity

Recall we store u = τ(k) at σ(h(k))
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Table injectivity

Recall we store u = τ(k) at σ(h(k))

⇒ ∀k ∈ dom τ ( τ(k) = σ(h(k)) )

Since τ is injective, k 6= k′ ⇒ τ(k) 6= τ(k′)

Let u = τ(k) and u′ = τ(k′)

If h fails to be injective on {k, k′}, there is an i ∈ I such
that h(k) = i = h(k′)
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Table injectivity

Recall we store u = τ(k) at σ(h(k))

⇒ ∀k ∈ dom τ ( τ(k) = σ(h(k)) )

Since τ is injective, k 6= k′ ⇒ τ(k) 6= τ(k′)

Let u = τ(k) and u′ = τ(k′)

If h fails to be injective on {k, k′}, there is an i ∈ I such
that h(k) = i = h(k′)

This means that both u, u′ should both be stored at σ(i)

Impossible as long as the hash table σ is implemented
as an array
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Hashes do not inject

A sad fact of life: most hash functions are not injective
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potentially be hash functions
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Hashes do not inject

A sad fact of life: most hash functions are not injective

There are |I||K| functions from K → I, all could
potentially be hash functions

If |I| < |K|, none is injective
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Hashes do not inject

A sad fact of life: most hash functions are not injective

There are |I||K| functions from K → I, all could
potentially be hash functions

If |I| < |K|, none is injective

If |I| ≥ |K|:

there are |I| ways to choose the image of the first element of K,

|I| − 1 ways to choose the second, and so on

get





|I|

|K|



 injective functions K → I
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Hashes do not inject

A sad fact of life: most hash functions are not injective

There are |I||K| functions from K → I, all could
potentially be hash functions

If |I| < |K|, none is injective

If |I| ≥ |K|:

there are |I| ways to choose the image of the first element of K,

|I| − 1 ways to choose the second, and so on

get





|I|

|K|



 injective functions K → I

If |K| = 31 and |I| = 41, there are around 1050 functions,

only 1043 of which are injective (one in ten million: rare)

Thanks to D. Knuth for this calculation
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Resolving collisions: chaining

The array σ maps I to the power set of U

I.e. σ(i) stores the set of all u ∈ U having keys which all
hash to i

In this context, such sets are also called buckets

We can implement these sets as lists

1

2

3

f

hp

m

a

b

0

⊥

⊥

⊥
⊥

σ

h(a) = h(f) = 0

h(p) = h(b) = h(h) = 1

h(m) = 2

⊥ stands for the null reference

INF421, Lecture 5 – p. 37



Implementation
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Implementation: find

find(k) {

i = h(k)
if σ(i) = ⊥ then
return ⊥; // not found

else
return σ(i).find(u);

end if

}

Note: the list’s find returns a reference to list element
containing u or ⊥ if u is not in the list
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Implementation: insert

insert(u) {

σ(h(τ−1(u))).add(u); // uses the list’s add

}

remove(k) {

t = find(k);
if t 6= ⊥ then
σ(h(k)).remove(t); // t points to the list node with u

end if

}
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Complexity

All the table methods employ the underlying list
methods

In particular, find is O(list.size()) and is used by
all three methods

However, if there are no collisions, the lists all have size
1, so methods are O(1) as required

Choose h so that the probability of collisions is low

Collisions are “evenly spread” over the keys

Aim to have short lists of similar size

Can show that avg. case complexity is O(1 + α)

where α = | ran τ |/|I|
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Hash function implementation

Above code assumes h to be available

Designing good hash functions is very difficult

So difficult, in fact, as to require several clock cycles

This computer work, as any useful work, is worth some
money

http://bitcoin.org/

Moreover, this work prevents spam

http://hashcash.org/

Java provides a ready-made method hashCode()

which applies to all classes

However, an ad-hoc implementation is often needed
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Testing Java object equality
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Perfect hash

Let a, b are Java (or C++) objects of a class C

Suppose they have a large size when stored in memory

Suppose also you want to test whether a=b

Byte-comparison takes O(max(|a|, |b|)) (too long)

Consider a hash function h : K → I where K = C and I are integers

modulo a given prime p

Since we can never allow h(a) = h(b) whenever a 6= b, h must be

injective

An injective hash function is also known as a perfect hash function

A perfect hash function is minimal (MPHF) if | dom τ | = |I|

MPHFs can be found in time O(| dom τ |) [Czech, Majewski, 1992]

This requires dom τ to be known in advance: impractical for transient

memory objects
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Or else. . .

Use normal hash functions

Design them so that the chances of a collision are as low as possible

Only test for difference rather than equality

If h(a) 6= h(b), then certainly a 6= b

If h(a) = h(b), it may be because a = b or because of a collision

Only perform lengthy byte comparisons whenever h(a) = h(b)

Remark that there are |I| pairs i, j ∈ I such that i = j but
|I|(|I|−1)

2

unordered pairs with i 6= j

Probability that h(a) = h(b): 2
|I|−1

Most comparisons are expected to take O(1), O( 1
|I| ) are expected to

take O(max(|a|, |b|))
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Appendix
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The obvious won’t work

Why h(k) should be computed in function of k

Let K =all words and dom τ = {Leo, Jon,Tim, Joe, . . .}

Why not let h(Leo) = 1, h(Jon) = 2 and so on?

Store “Joe” in σ(h(Joe)) = σ(4)

Find if “Joe” is in dom τ : see if σ(4) = ⊥ or not

Trouble: for a key k ∈ dom τ , how do you find the value of
h(k)?

Have to search the sequence of pairs
((Leo, 1), (Jon, 2), . . .)

O(n) if sequence unsorted, O(log n) if sorted

Process fails to be O(1)
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Open addressing

Often, dom σ ( I

⇒ some hash values in I are never used

⇒ hash table has unused entries

Can use them to store colliding keys

If h(k) = h(k′) = i with k 6= k′, store τ(k) = u at σ(i) and
τ(k′) = u′ at first unused hash table entry after the i-th
one
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Open addressing: collision

...

i− 1

i

i+ 1 w

i+ 2
...
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Open addressing: collision

...

i− 1

i u

i+ 1 w

i+ 2
...
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Open addressing: collision

...

i− 1

i u

i+ 1 w

i+ 2 u′

...
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Open addressing: insert

insert(u)

i = h(τ−1(u));
c = 0;
while c < |σ| ∧ σ(i) 6= ⊥ do
i← (i+ 1) mod |σ|;
c← c+ 1;

end while
if c ≥ |σ| then
error: hash table full;

else
σ(i) = u;

end if
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Open addressing: find

find(k)

i = h(k);
c = 0;
while c < |σ| ∧ τ−1(σ(i)) 6= k do
i← (i+ 1) mod |σ|;
c← c+ 1;

end while
if c ≥ |σ| then
return ⊥;

else
return σ(i);

end if

remove is not easy to implement
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An implementation secret

In the pseudocodes, I’ve been referring to τ(k) and

τ−1(u) as if they’d be easy to compute

That is mathematical notation: I simply meant “the record
associated with the key k” and “the key associated with
the record u”

In an implementation, record pairs 〈k, u〉 in the hash
table

Then σ : I → K × U

Pseudocode adapts perfectly: τ, τ−1 simply mean “the
other element of the pair”
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End of Lecture 5
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