
INF421, Lecture 5
Hashing

Leo Liberti

LIX, École Polytechnique, France

INF421, Lecture 5 – p. 1

Course
Objective : to teach you some data structures and associated
algorithms

Evaluation : TP noté en salle info le 16 septembre, Contrôle à la fin.
Note: max(CC, 3

4CC + 1
4TP)

Organization : fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books :
1. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

2. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

Website : www.enseignement.polytechnique.fr/informatique/INF421

Contact : liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 5 – p. 2

Lecture summary

Searching

Tables

Hashing

Collisions

Implementation

INF421, Lecture 5 – p. 3

Why?

Address book:
1. each page corresponds to a character

2. page with character k contains all names beginning with k

3. easy to search: immediately find the correct page, then scan the
list, which is at most as long as the page

Can we use a list of pairs (name,telephone)?
Slow to search

Can we use a table name→ telephone?
Difficult to extend its size

Hash tables are the appropriate data structures

INF421, Lecture 5 – p. 4

The minimal knowledge

K

U

dom τ

σ

h

I

K a very large set of keys; U : a set of objects; τ : K → U : a table

Assume K too large to store, but dom τ is small

Find a function h : K → I with I = {0, 1, . . . , p − 1} and |I| ≈ |U |, then store
u = τ(k) in array element σ(i) where i = h(k)

INF421, Lecture 5 – p. 5

Minimal technical knowledge
K =keys, U =records

Associate some keys with records
Get an injective table function τ : K → U , with dom τ (K

Given a key k ∈ K, determine whether k ∈ dom τ

If τ was an array, τ(k) = u if k ∈ dom τ or ⊥ if k 6∈ dom τ : O(1)

However, |K| too large to be in an array
Use hash table σ : I → U on an index set I with |I | ≈ | dom τ | ≪ |K|

Need a hash function h : K → I to map keys to indices
Store record u in σ at position h(k): get σ(h(k)) = u

Maps σ, h, τ must be such that τ = σ ◦ h:

K U

I

τ

h σ

If this holds, then k ∈ dom τ ⇔ h(k) ∈ I

Look h(k) up in array σ in O(1)

Scheme only works if h is injective, otherwise get collisions

One way to address collisions is to let σ(i) = {u ∈ U | h(τ−1(u)) = i}

INF421, Lecture 5 – p. 6

Searching

INF421, Lecture 5 – p. 7

The set element problem

SET ELEMENT PROBLEM (SEP). Given a set U , a set V ⊆
U and an element u ∈ U , determine whether u ∈ V

Fundamental problem in computer science (and
mathematics)

Also known as the searching problem, the find problem, in
some context the feasibility problem, and no doubt in
several other ways too

For computer implementations, one often also requires
the index of u in V if the answer to the SEP is YES

INF421, Lecture 5 – p. 8

Sequential search

If the set V is stored as a sequence (v1, v2, . . . , vn), can
perform sequential search :

1: for i ≤ n do
2: if vi = u then
3: return i; // found
4: end if
5: end for
6: return n+ 1; // not found

If seq. search returns n+ 1, u 6∈ V , otherwise u ∈ V and
the return value is the index of u in V

Worst-case complexity: O(n)

INF421, Lecture 5 – p. 9

Eliminate a test

1: Let vn+1 = u
2: for i ∈ N do
3: if vi = u then
4: return i;
5: end if
6: end for

Gets rid of test i ≤ n at each iteration

This “trick” already seen in Lecture 1

INF421, Lecture 5 – p. 10

Self-organizing search
Each time u ∈ V at position i, swap u = vi and v1:

1: Let vn+1 = u
2: for i ∈ N do
3: if vi = u then
4: if i ≤ n then
5: swap(v, 1, i);
6: return 1;
7: else
8: return n+ 1;
9: end if

10: end if
11: end for

Elements that are sought for most often take fewer
iterations to be found

Still O(n) worst-case complexity
INF421, Lecture 5 – p. 11

Binary search
Assume V = (v1, . . . , vn) is ordered (i < j → vi ≤ vj)

1: i = 1;
2: j = n;
3: while i ≤ j do
4: ℓ = ⌊ i+j

2 ⌋;
5: if u < vℓ then
6: j = ℓ− 1;
7: else if u > vℓ then
8: i = ℓ+ 1;
9: else

10: return ℓ; // found

11: end if
12: end while
13: return n+ 1; // not found

Worst-case complexity: O(logn) (by INF311)

INF421, Lecture 5 – p. 12

Tables

INF421, Lecture 5 – p. 13

The data structure

A table generalizes the concept of array: it maps a key k ∈ K to a
record u ∈ U

We assume that each record u ∈ U is given with its corresponding
key

Examples: telephone directory, nameservers, databases

Mathematically, tables are used to model injective maps τ : K → U

If u ∈ U is associated to two different keys k, k′ ∈ K, the data for u is
duplicated in memory, so that τ remains injective

Basic operations:

insert(u): insert a new record u in the table

find(k): determine if a given key k appears in the table

remove(k): delete a record with key k from the table

A good table implementation has O(1) for all these methods

INF421, Lecture 5 – p. 14

Searching tables

Searching a table for a given key is an extremely
important problem (also known as table look-up problem)

Needs to be solved as efficiently as possible

E.g. in Lecture 2, I stated that we could find whether an
arc was in a certain table (in BFS) in O(1)

However:
Sequential search: O(n)

Binary search: O(log n)

How do we look a key up in O(1)?

INF421, Lecture 5 – p. 15

Motivating examples

INF421, Lecture 5 – p. 16

Telephone directory

τ maps the set K of all personal names to a set U of
telephone numbers

Clearly, not all names are mapped, but only those of
existing people having telephones: | dom τ | ≪ |K|

Two trivial solutions:
a table τ : K → U (which lists all possible names, and τ(k) = ⊥ if k

is not the name of an existing person with a telephone)

a table τ ′ : dom τ → U which only lists existing people
with telephones

τ : O(1) find but O(|K|) space (impractical)

τ ′: O(| dom τ |) find if K is unsorted, O(log | dom τ |) if
sorted (we want O(1))

INF421, Lecture 5 – p. 17

Comparing Java objects

An object could occupy a fairly large chunk of memory
(e.g. a whole database table)

Sometimes we wish to test whether two objects a, b in
memory are equal

Requires a byte comparison: O(max(|a|, |b|)): inefficient

How do we do it in O(1)?

INF421, Lecture 5 – p. 18

Back to tables

INF421, Lecture 5 – p. 19

Tables in arrays

Usually, |K| is monstrously large
nameserver : K =set of fully qualified domain names
database : K =set of all possible entries from an index
field

Trivial implementation — array of size |K|: impossible

Notice that | dom τ | is usually much smaller than |K|

Consider a map h : K → I where I is a set of indices
(which could be integers, or memory addresses), and a
hash table σ : I → U

Then, if u = τ(k), u is stored in σ at index h(k)

Look-up in σ rather than τ

INF421, Lecture 5 – p. 20

Clarification I

We’re concerned with three sets:
U is the set of records
K is the set of keys
I is the set of indices

. . . and three maps:
τ : K → U : given a k ∈ K, is it in dom τ?
h : K → I: maps keys to a smaller set of indices
σ : I → U : table actually used for storing records

K U

I

τ

h σ

INF421, Lecture 5 – p. 21

Clarification II

If K were small, we could store τ : K → U in an array
with as many components as |K|

This array would be initialized to ⊥ (=not found) if
k 6∈ dom τ , and to the record u = τ(k) otherwise (=found)

Then the question k ∈ dom τ? could be answered in O(1)
by simply looking up the value at position k in this array

But |K| is too large, so we map dom τ to a set I of
indices with |I| ≈ | dom τ |, using a map h : K → I, and
store records in hash table σ : I → U

We use the O(1) table look-up method on the array σ

The map h apparently reduces O(|K|) to O(1)

Where am I cheating?

INF421, Lecture 5 – p. 22

Clarification III

Since the size of K is the problem, why didn’t I simply
index σ by dom τ? Why introducing the function h at all?

Consider that dom τ (K, but dom τ might well contain
small as well as large keys in K

In order to find an array element in O(1), the array
components must be stored contiguously

If K = {0, 1, . . . , 1050 − 1} and dom τ = {0, 1050 − 1}, the
fact that | dom τ | = 2 is useless: we must index the array
over the whole of K

However, by defining I = {0, 1} and h(k) = k mod 2, we
can really use an array of length 2

INF421, Lecture 5 – p. 23

A very special case
K = I = {0x0,0x1,0x2,0x3,0x4} (set of addresses)

dom τ = {0x0,0x3,0x4}

I = K U

0x0 1

0x1 0

0x2 0
0x3 1
0x4 1

Let h : K → I be the identity function

To find whether k ∈ K is in dom τ , look at σ(h(k)):
k ∈ dom τ iff it is 1 (answer in time O(1))

How far can we generalize this concept?
INF421, Lecture 5 – p. 24

Address book again

In an address book, K is the set of all names

I is the set of all (capital) letters

h maps a surname to its initial letter

Assuming all our names start with a different letter,
we’re in business

Otherwise, we have collisions (see later)

INF421, Lecture 5 – p. 25

Hashing

INF421, Lecture 5 – p. 26

Main idea

The main insight of these examples is that
the index h(k) is obtained from the key k

Idea
Construct each index from the corresponding key

For example, if the key is the string Leo, we could take
the ASCII codes of all characters and sum them
together

This gives h(Leo) = 76 + 101 + 111 = 288: we store Leo
in the table σ at position 288

If we use the same rule for every key, we have an
implementation of h

INF421, Lecture 5 – p. 27

Hash functions

I wrote “we could sum the ASCII codes of the characters”

Sounds a little vague. . . why sum? why not multiply? why not raise them to a prime

power, sum them, then reduce the sum modulo a prime?

Let H be the set of all programs h which:
take keys in K as input

output indices in I as output

run fast

Each h ∈ H defines a hash function h : K → I

We initialize σ to the “not found” value ⊥

We store u = τ(k) in σ at position h(k)

INF421, Lecture 5 – p. 28

Hash speed

How fast should h be in order to define a useful hash
function?

We assume the maximum size ℓ of the memory taken to
store an element of K to be constant with respect to
| dom τ |

In other words: keys have the same size ℓ independently of
how many we store in τ

We require h to run in time proportional to some
function of ℓ

This means h runs in O(1) with respect to | dom τ |

INF421, Lecture 5 – p. 29

Example with names

Consider the set of names {Tim, John,Leo}

We store names as char arrays using ASCII codes:

Tim 54 69 6D
Jon 4A 6F 6E
Leo 4C 65 6F

We now form the map h as follows:

h(Tim) = 0x0054696D
h(John) = 0x004A6F6E
h(Leo) = 0x004C656F

For k ∈ K we can store τ(k) in σ at the address h(k)

Requires large hash table, but computing h is O(1)

INF421, Lecture 5 – p. 30

A general hash function

All computer-representable data can be written as byte sequences of
various lengths

Each byte holds an integer in the range 0, . . . , 255

Hence, we can assume K to be a set of m finite integer sequences
(with m large)

We also assume that all sequences in k = (k1, . . . , kℓ) ∈ K have the
same length ℓ (if not, pad shorter sequences with initial zeroes)

p: smallest prime ≥ |U |, let I = {0, . . . , p− 1}

For each a ∈ Iℓ, the following is a hash function:

ha(k) = ak mod p (1)

ak is the scalar product
∑

j≤ℓ ajkj of a and k

ha maps K to I,

computing ha is O(ℓ) as required, and very fast in practice

INF421, Lecture 5 – p. 31

Some hash functions

Up to now, we’ve seen four types of hash functions

The identity h(k) = k (first example with K = I)

The projection h(k) = kj for some j ≤ |k| (address book)

The base change h((u1, . . . , un)) =
∑

j≤n ujb
j−1,

where b is “large enough” (table of first names)

The scalar product by a ∈ Nn modulo p:

ha((k1, . . . , kn)) =

∑

j≤n

ajkj

 mod p

Identity and base change are not often used:

Projection and scalar product modulo p are used in practice

INF421, Lecture 5 – p. 32

Collisions

INF421, Lecture 5 – p. 33

What can go wrong

Consider the scalar product modulo p with a = (2, 3, 5)
and p = 7

Let k = (1, 1, 1) and k′ = (3, 2, 1)

We have:

ha(k) = 2 + 3 + 5 mod 7 = 3 = 6 + 6 + 5 mod 7 = ha(k
′)

How can we store both k and k′ at index 3 in σ?

This is called a collision

It happens when hash functions are not injective

INF421, Lecture 5 – p. 34

Table injectivity

Recall we store u = τ(k) at σ(h(k))

⇒ ∀k ∈ dom τ (τ(k) = σ(h(k)))

Since τ is injective, k 6= k′ ⇒ τ(k) 6= τ(k′)

Let u = τ(k) and u′ = τ(k′)

If h fails to be injective on {k, k′}, there is an i ∈ I such
that h(k) = i = h(k′)

This means that both u, u′ should both be stored at σ(i)

Impossible as long as the hash table σ is implemented
as an array

INF421, Lecture 5 – p. 35

Hashes do not inject
A sad fact of life: most hash functions are not injective

There are |I||K| functions from K → I, all could
potentially be hash functions

If |I| < |K|, none is injective

If |I| ≥ |K|:
there are |I | ways to choose the image of the first element of K,

|I | − 1 ways to choose the second, and so on

get

|I |

|K|

 injective functions K → I

If |K| = 31 and |I| = 41, there are around 1050 functions,
only 1043 of which are injective (one in ten million: rare)

Thanks to D. Knuth for this calculation

INF421, Lecture 5 – p. 36

Resolving collisions: chaining
The array σ maps I to the power set of U

I.e. σ(i) stores the set of all u ∈ U having keys which all
hash to i

In this context, such sets are also called buckets

We can implement these sets as lists

1

2

3

f

hp

m

a

b

0

⊥

⊥

⊥
⊥

σ

h(a) = h(f) = 0

h(p) = h(b) = h(h) = 1

h(m) = 2

⊥ stands for the null reference
INF421, Lecture 5 – p. 37

Implementation

INF421, Lecture 5 – p. 38

Implementation: find

find(k) {

i = h(k)
if σ(i) = ⊥ then

return ⊥; // not found

else
return σ(i).find(u);

end if
}

Note : the list’s find returns a reference to list element
containing u or ⊥ if u is not in the list

INF421, Lecture 5 – p. 39

Implementation: insert

insert(u) {

σ(h(τ−1(u))).add(u); // uses the list’s add

}

remove(k) {

t = find(k);
if t 6= ⊥ then
σ(h(k)).remove(t); // t points to the list node with u

end if
}

INF421, Lecture 5 – p. 40

Complexity
All the table methods employ the underlying list
methods

In particular, find is O(list.size()) and is used by
all three methods

However, if there are no collisions, the lists all have size
1, so methods are O(1) as required

Choose h so that the probability of collisions is low

Collisions are “evenly spread” over the keys

Aim to have short lists of similar size

Can show that avg. case complexity is O(1 + α)

where α = | ran τ |/|I|

INF421, Lecture 5 – p. 41

Hash function implementation

Above code assumes h to be available

Designing good hash functions is very difficult

So difficult, in fact, as to require several clock cycles

This computer work, as any useful work, is worth some
money

http://bitcoin.org/

Moreover, this work prevents spam
http://hashcash.org/

Java provides a ready-made method hashCode()
which applies to all classes

However, an ad-hoc implementation is often needed

INF421, Lecture 5 – p. 42

Testing Java object equality

INF421, Lecture 5 – p. 43

Perfect hash
Let a, b are Java (or C++) objects of a class C

Suppose they have a large size when stored in memory

Suppose also you want to test whether a=b

Byte-comparison takes O(max(|a|, |b|)) (too long)

Consider a hash function h : K → I where K = C and I are integers
modulo a given prime p

Since we can never allow h(a) = h(b) whenever a 6= b, h must be
injective

An injective hash function is also known as a perfect hash function

A perfect hash function is minimal (MPHF) if | dom τ | = |I |

MPHFs can be found in time O(| dom τ |) [Czech, Majewski, 1992]

This requires dom τ to be known in advance: impractical for transient
memory objects

INF421, Lecture 5 – p. 44

Or else. . .

Use normal hash functions

Design them so that the chances of a collision are as low as possible

Only test for difference rather than equality

If h(a) 6= h(b), then certainly a 6= b

If h(a) = h(b), it may be because a = b or because of a collision

Only perform lengthy byte comparisons whenever h(a) = h(b)

Remark that there are |I | pairs i, j ∈ I such that i = j but |I|(|I|−1)
2

unordered pairs with i 6= j

Probability that h(a) = h(b): 2
|I|−1

Most comparisons are expected to take O(1), O(1
|I|) are expected to

take O(max(|a|, |b|))

INF421, Lecture 5 – p. 45

Appendix

INF421, Lecture 5 – p. 46

The obvious won’t work

Why h(k) should be computed in function of k

Let K =all words and dom τ = {Leo, Jon,Tim, Joe, . . .}

Why not let h(Leo) = 1, h(Jon) = 2 and so on?

Store “Joe” in σ(h(Joe)) = σ(4)

Find if “Joe” is in dom τ : see if σ(4) = ⊥ or not

Trouble : for a key k ∈ dom τ , how do you find the value of
h(k)?

Have to search the sequence of pairs
((Leo, 1), (Jon, 2), . . .)

O(n) if sequence unsorted, O(log n) if sorted

Process fails to be O(1)

INF421, Lecture 5 – p. 47

Open addressing

Often, dom σ (I

⇒ some hash values in I are never used

⇒ hash table has unused entries

Can use them to store colliding keys

If h(k) = h(k′) = i with k 6= k′, store τ(k) = u at σ(i) and
τ(k′) = u′ at first unused hash table entry after the i-th
one

INF421, Lecture 5 – p. 48

Open addressing: collision

...
i− 1

i u

i+ 1 w

i+ 2 u′

...

INF421, Lecture 5 – p. 49

Open addressing:insert

insert(u)

i = h(τ−1(u));
c = 0;
while c < |σ| ∧ σ(i) 6= ⊥ do
i← (i+ 1) mod |σ|;
c← c+ 1;

end while
if c ≥ |σ| then

error : hash table full;
else
σ(i) = u;

end if

INF421, Lecture 5 – p. 50

Open addressing:find

find(k)

i = h(k);
c = 0;
while c < |σ| ∧ τ−1(σ(i)) 6= k do
i← (i+ 1) mod |σ|;
c← c+ 1;

end while
if c ≥ |σ| then

return ⊥;
else

return σ(i);
end if

remove is not easy to implement

INF421, Lecture 5 – p. 51

An implementation secret

In the pseudocodes, I’ve been referring to τ(k) and
τ−1(u) as if they’d be easy to compute

That is mathematical notation: I simply meant “the record
associated with the key k” and “the key associated with
the record u”

In an implementation, store pairs 〈k, u〉 in the hash table

Then σ : I → K × U

Pseudocode adapts perfectly: τ, τ−1 simply mean “the
other element of the pair”

INF421, Lecture 5 – p. 52

	Course
	Lecture summary
	Why?
	The minimal knowledge
	Minimal technical knowledge
	Searching
	The set element problem
	Sequential search
	Eliminate a test
	Self-organizing search
	Binary search
	Tables
	The data structure
	Searching tables
	Motivating examples
	Telephone directory
	Comparing Java objects
	Back to tables
	Tables in arrays
	Clarification I
	Clarification II
	Clarification III
	A very special case
	Address book again
	Hashing
	Main idea
	Hash functions
	Hash speed
	Example with names
	A general hash function
	Some hash functions
	Collisions
	What can go wrong
	Table injectivity
	Hashes do not inject
	Resolving collisions: chaining
	Implementation
	Implementation: {	t find}
	Implementation: {	t insert}
	Complexity
	Hash function implementation
	Testing Java object equality
	Perfect hash
	Or elsedots
	Appendix
	The obvious won't work
	Open addressing
	Open addressing: collision
	Open addressing: {	t insert}
	Open addressing: {	t find}
	An implementation secret

