INF421, Lecture 5 Hashing

Leo Liberti

LIX, École Polytechnique, France

Course

- Objective: to teach you some data structures and associated algorithms
- Evaluation: TP noté en salle info le 16 septembre, Contrôle à la fin. Note: $max(CC, \frac{3}{4}CC + \frac{1}{4}TP)$
- Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books:

- 1. Ph. Baptiste & L. Maranget, *Programmation et Algorithmique*, Ecole Polytechnique (Polycopié), 2006
- 2. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
- 3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
- 4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
- Website: www.enseignement.polytechnique.fr/informatique/INF421

Why?

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 5 - p. 2

Lecture summary

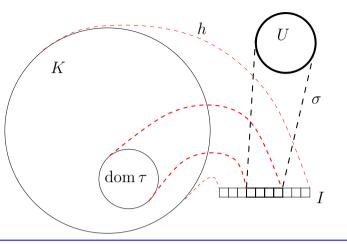
- Searching
- Tables
- Hashing
- Collisions
- Implementation

Address book:

- 1. each page corresponds to a character
- 2. page with character k contains all names beginning with k
- 3. easy to search: immediately find the correct page, then scan the list, which is at most as long as the page
- Can we use a list of pairs (name,telephone)? Slow to search
- Can we use a table name → telephone? Difficult to extend its size

Hash tables are the appropriate data structures

The minimal knowledge



- K a very large set of keys; U: a set of objects; $\tau: K \to U$: a table
- **9** Assume K too large to store, but dom τ is small
- Find a function $h: K \to I$ with $I = \{0, 1, \dots, p-1\}$ and $|I| \approx |U|$, then store
 - $u=\tau(k)$ in array element $\sigma(i)$ where i=h(k)

INF421, Lecture 5 - p. 5

ECOLE

The set element problem

One way to address collisions is to let $\sigma(i) = \{u \in U \mid h(\tau^{-1}(u)) = i\}$

Minimal technical knowledge

If τ was an array, $\tau(k) = u$ if $k \in \operatorname{dom} \tau$ or \perp if $k \notin \operatorname{dom} \tau$: O(1)

Use hash table $\sigma: I \to U$ on an index set I with $|I| \approx |\operatorname{dom} \tau| \ll |K|$

Get an injective *table function* $\tau : K \to U$, with dom $\tau \subsetneq K$ Given a key $k \in K$, determine whether $k \in \text{dom } \tau$

Need a *hash function* $h: K \to I$ to map keys to indices Store record u in σ at position h(k): get $\sigma(h(k)) = u$

 K_{-}

Scheme only works if h is injective, otherwise get collisions

K = keys, U = records

Associate some keys with records

However, |K| too large to be in an array

Maps σ , h, τ must be such that $\tau = \sigma \circ h$:

If this holds, then $k \in \operatorname{dom} \tau \Leftrightarrow h(k) \in I$

Look h(k) up in array σ in O(1)

SET ELEMENT PROBLEM (SEP). Given a set U, a set $V \subseteq U$ and an element $u \in U$, determine whether $u \in V$

- Fundamental problem in computer science (and mathematics)
- Also known as the searching problem, the find problem, in some context the feasibility problem, and no doubt in several other ways too
- For computer implementations, one often also requires the index of u in V if the answer to the SEP is YES

Searching

Sequential search

If the set V is stored as a sequence (v₁, v₂, ..., v_n), can perform sequential search:

```
1: for i \leq n do
```

```
2: if v_i = u then
```

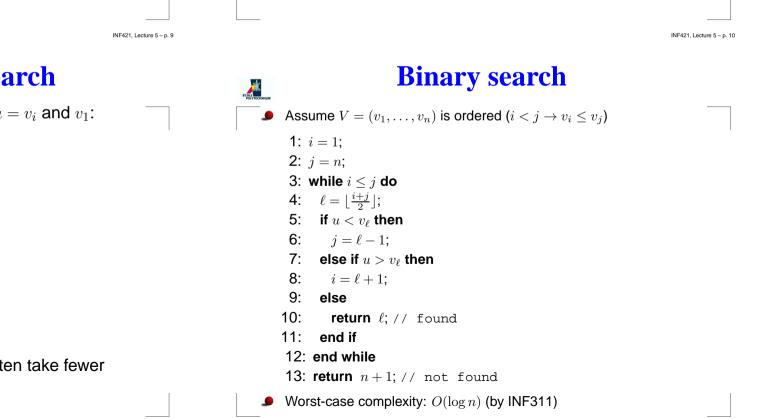
- 3: return *i*; // found
- 4: **end if**
- 5: **end for**
- 6: return n+1;// not found
- If seq. search returns n + 1, $u \notin V$, otherwise $u \in V$ and the return value is the *index* of u in V
- Worst-case complexity: O(n)

Eliminate a test

- 1: Let $v_{n+1} = u$
- 2: for $i \in \mathbb{N}$ do
- 3: if $v_i = u$ then
- 4: **return** *i*;
- 5: **end if**
- 6: end for

Gets rid of test $i \leq n$ at each iteration

This "trick" already seen in Lecture 1



Self-organizing search

- Each time $u \in V$ at position *i*, swap $u = v_i$ and v_1 :
 - 1: Let $v_{n+1} = u$
 - 2: for $i \in \mathbb{N}$ do
 - 3: if $v_i = u$ then
 - 4: if $i \leq n$ then
 - 5: swap(v, 1, i);
 - 6: **return** 1;
 - 7: **else**
 - 8: return n+1;
 - 9: **end if**
 - 10: **end if**
 - 11: end for
- Elements that are sought for most often take fewer iterations to be found
- Still O(n) worst-case complexity

Tables

The data structure

- A table generalizes the concept of array: it maps a key $k \in K$ to a record $u \in U$
- We assume that each record u ∈ U is given with its corresponding key
- Examples: telephone directory, nameservers, databases
- Mathematically, tables are used to model injective maps $\tau: K \to U$
- If u ∈ U is associated to two different keys k, k' ∈ K, the data for u is duplicated in memory, so that τ remains injective

Basic operations:

- insert(u): insert a new record u in the table
- find(k): determine if a given key k appears in the table
- remove(k): delete a record with key k from the table
- A good table implementation has O(1) for all these methods

INF421, Lecture 5 - p. 14

Searching tables

- Searching a table for a given key is an extremely important problem (also known as table look-up problem)
- Needs to be solved as efficiently as possible
- E.g. in Lecture 2, I stated that we could find whether an arc was in a certain table (in BFS) in O(1)
- However:
 - Sequential search: O(n)
 - Binary search: $O(\log n)$
- How do we look a key up in O(1)?

Motivating examples

Telephone directory

- *τ* maps the set *K* of all personal names to a set *U* of telephone numbers
- Clearly, not all names are mapped, but only those of existing people having telephones: $|\operatorname{dom} \tau| \ll |K|$
- Two trivial solutions:
 - a table $\tau: K \to U$ (which lists all possible names, and $\tau(k) = \bot$ if k is not the name of an existing person with a telephone)
 - a table $\tau' : \operatorname{dom} \tau \to U$ which only lists existing people with telephones
- τ : O(1) find but O(|K|) space (impractical)
- $\tau': O(|\operatorname{dom} \tau|)$ find if K is unsorted, $O(\log |\operatorname{dom} \tau|)$ if sorted (we want O(1))

Back to tables

Comparing Java objects

- An object could occupy a fairly large chunk of memory (e.g. a whole database table)
- Sometimes we wish to test whether two objects a, b in memory are equal
- Requires a byte comparison: O(max(|a|, |b|)): inefficient
- How do we do it in O(1)?

INF421, Lecture 5 - p. 18

Tables in arrays

- Usually, |K| is monstrously large
 - nameserver: K = set of fully qualified domain names
 - database: K =set of all possible entries from an index field
- Trivial implementation array of size |K|: impossible
- Notice that $|\operatorname{dom} \tau|$ is usually much smaller than |K|
- Consider a map $h: K \to I$ where I is a set of *indices* (which could be integers, or memory addresses), and a hash table $\sigma: I \to U$
- Then, if $u = \tau(k)$, u is stored in σ at index h(k)
- **9** Look-up in σ rather than τ

Clarification I

- We're concerned with three sets:
 - U is the set of records
 - K is the set of keys
 - I is the set of indices
- ...and three maps:
 - $\tau: K \to U$: given a $k \in K$, is it in dom τ ?
 - $h: K \to I$: maps keys to a smaller set of indices
 - $\sigma: I \to U$: table actually used for storing records

$K \xrightarrow{\tau} U$

Clarification II

- If *K* were small, we could store $\tau : K \to U$ in an array with as many components as |K|
- This array would be initialized to ⊥ (=not found) if k ∉ dom τ, and to the record u = τ(k) otherwise (=found)
- Then the question $k \in \text{dom } \tau$? could be answered in O(1) by simply looking up the value at position k in this array
- But |K| is too large, so we map $\operatorname{dom} \tau$ to a set I of indices with $|I| \approx |\operatorname{dom} \tau|$, using a map $h: K \to I$, and store records in hash table $\sigma: I \to U$
- ${\ensuremath{\,{\rm S}}}$ We use the O(1) table look-up method on the array σ
- The map h apparently reduces O(|K|) to O(1)

Where am I cheating?

INF421, Lecture 5 - p. 22

Clarification III

- Since the size of *K* is the problem, why didn't I simply index σ by dom τ ? Why introducing the function *h* at all?
- Consider that dom $\tau \subsetneq K$, but dom τ might well contain small as well as large keys in K
- In order to find an array element in O(1), the array components must be stored contiguously
- If $K = \{0, 1, \dots, 10^{50} 1\}$ and dom $\tau = \{0, 10^{50} 1\}$, the fact that $|\operatorname{dom} \tau| = 2$ is useless: we must index the array over the whole of K
- However, by defining $I = \{0, 1\}$ and $h(k) = k \mod 2$, we can really use an array of length 2

A very special case

- $K = I = \{0x0, 0x1, 0x2, 0x3, 0x4\}$ (set of addresses)
- **9** dom $\tau = \{0x0, 0x3, 0x4\}$

I = K	U
0x0	1
0x1	0
0x2	0
0x3	1
0x4	1

- Let $h: K \to I$ be the identity function
- To find whether $k \in K$ is in dom τ , look at $\sigma(h(k))$: $k \in \operatorname{dom} \tau$ iff it is 1 (answer in time O(1))

How far can we generalize this concept?

Address book again

- In an address book, K is the set of all names
- I is the set of all (capital) letters
- h maps a surname to its initial letter
- Assuming all our names start with a different letter, we're in business
- Otherwise, we have collisions (see later)

INF421. Lecture 5 – p. 26

Main idea

• The main insight of these examples is that the index h(k) is obtained from the key k

Idea Construct each index from the corresponding key

۹

- For example, if the key is the string Leo, we could take the ASCII codes of all characters and sum them together
- This gives h(Leo) = 76 + 101 + 111 = 288: we store Leo in the table σ at position 288
- If we use the same rule for every key, we have an implementation of h

Hash functions

- I wrote "we could sum the ASCII codes of the characters"
- Sounds a little vague... why sum? why not multiply? why not raise them to a prime power, sum them, then reduce the sum modulo a prime?
- Let \mathcal{H} be the set of all programs h which:
 - take keys in *K* as input
 - output indices in I as output
 - run fast
- Each $h \in \mathcal{H}$ defines a hash function $h: K \to I$

We initialize σ to the "not found" value \perp

We store $u = \tau(k)$ in σ at position h(k)

Hash speed

- How fast should h be in order to define a useful hash function?
- We assume the maximum size ℓ of the memory taken to store an element of K to be constant with respect to $|\operatorname{dom} \tau|$
- In other words: keys have the same size ℓ independently of how many we store in τ
- We require h to run in time proportional to some function of l
- This means h runs in O(1) with respect to $|\operatorname{dom} \tau|$

Example with names

- Consider the set of names {Tim, John, Leo}
- We store names as char arrays using ASCII codes:

Tim	54	69	6D
Jon	4A	6F	6E
Leo	4C	65	6F

We now form the map h as follows:

h(Tim) = 0x0054696Dh(John) = 0x004A6F6Eh(Leo) = 0x004C656F

• For $k \in K$ we can store $\tau(k)$ in σ at the address h(k)

Requires large hash table, but computing $h \mbox{ is } {\cal O}(1)$

INF421, Lecture 5 - p. 30

L

INF421, Lecture 5 - p. 29

Some hash functions

- Up to now, we've seen four types of hash functions
 - The identity h(k) = k (first example with K = I)
 - The projection $h(k) = k_j$ for some $j \le |k|$ (address book)
 - The base change $h((u_1, ..., u_n)) = \sum_{j \le n} u_j b^{j-1}$, where *b* is "large enough" (table of first names)
 - The scalar product by $a \in \mathbb{N}^n$ modulo p:

$$h_a((k_1,\ldots,k_n)) = \left(\sum_{j \le n} a_j k_j\right) \mod p$$

- Identity and base change are not often used:
- Projection and scalar product modulo p are used in practice

A general hash function

- All computer-representable data can be written as byte sequences of various lengths
- Each byte holds an integer in the range $0, \ldots, 255$
- Hence, we can assume K to be a set of m finite integer sequences (with m large)
- We also assume that all sequences in $k = (k_1, ..., k_\ell) \in K$ have the same length ℓ (if not, pad shorter sequences with initial zeroes)
- p: smallest prime $\geq |U|$, let $I = \{0, \dots, p-1\}$
- For each $a \in I^{\ell}$, the following is a hash function:

$$h_a(k) = ak \mod p$$

- ak is the scalar product $\sum_{j < \ell} a_j k_j$ of a and k
- h_a maps K to I,
- computing h_a is $O(\ell)$ as required, and very fast in practice

(1)

Collisions

What can go wrong

- Consider the scalar product modulo p with a = (2, 3, 5)and p = 7
- Let k = (1, 1, 1) and k' = (3, 2, 1)
- We have:
 - $h_a(k) = 2 + 3 + 5 \mod 7 = 3 = 6 + 6 + 5 \mod 7 = h_a(k')$
- ${}_{igstackip}$ How can we store both k and k' at index 3 in σ ?
- This is called a collision
- It happens when hash functions are not injective

INF421, Lecture 5 - p. 34

Table injectivity

- Recall we store $u = \tau(k)$ at $\sigma(h(k))$
- Since τ is injective, $k \neq k' \Rightarrow \tau(k) \neq \tau(k')$
- Let $u = \tau(k)$ and $u' = \tau(k')$
- If *h* fails to be injective on $\{k, k'\}$, there is an *i* ∈ *I* such that h(k) = i = h(k')
- This means that both u, u' should both be stored at $\sigma(i)$
- Impossible as long as the hash table σ is implemented as an array

Hashes do not inject

- A sad fact of life: most hash functions are not injective
- There are $|I|^{|K|}$ functions from $K \to I$, all could potentially be hash functions
- If |I| < |K|, none is injective
- If $|I| \ge |K|$:

1

- there are |I| ways to choose the image of the first element of K,
- |I| 1 ways to choose the second, and so on

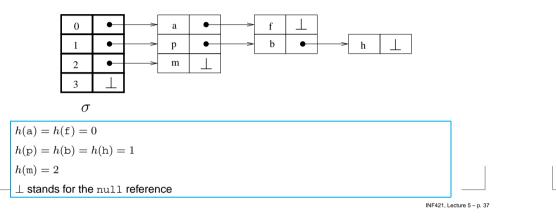
• get
$$\begin{pmatrix} |I| \\ |K| \end{pmatrix}$$
 injective functions $K \to I$

If |K| = 31 and |I| = 41, there are around 10^{50} functions, only 10^{43} of which are injective (*one in ten million: rare*)

Thanks to D. Knuth for this calculation

Resolving collisions: chaining

- The array σ maps I to the power set of U
- I.e. $\sigma(i)$ stores the set of all *u* ∈ *U* having keys which all hash to *i*
- In this context, such sets are also called buckets
- We can implement these sets as lists



Implementation: find

```
• find(k) {

i = h(k)

if \sigma(i) = \bot then

return \bot; // not found

else

return \sigma(i).find(u);

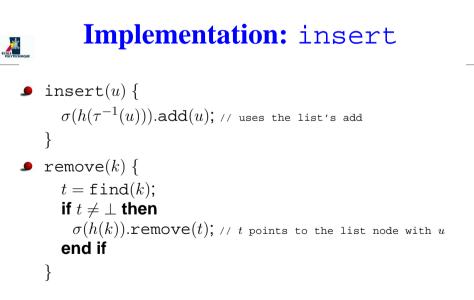
end if

}
```

Note: the list's find returns a reference to list element containing u or \perp if u is not in the list

INF421, Lecture 5 - p. 39

Implementation



ECOLI

Complexity

- All the table methods employ the underlying list methods
- In particular, find is O(list.size()) and is used by all three methods
- However, if there are no collisions, the lists all have size
 1, so methods are O(1) as required
- Choose h so that the probability of collisions is low
- Collisions are "evenly spread" over the keys
- Aim to have short lists of similar size

Can show that avg. case complexity is $O(1 + \alpha)$	
where $\alpha = \operatorname{ran} \tau / I $	

Testing Java object equality

Hash function implementation

- Above code assumes h to be available
- Designing good hash functions is very difficult
- So difficult, in fact, as to require several clock cycles
- This computer work, as any useful work, is worth some money

http://bitcoin.org/

- Moreover, this work prevents spam http://hashcash.org/
- Java provides a ready-made method hashCode() which applies to all classes
- However, an ad-hoc implementation is often needed

INF421, Lecture 5 - p. 42

Perfect hash

- Let a, b are Java (or C++) objects of a class C
- Suppose they have a large size when stored in memory
- Suppose also you want to test whether a=b
- **9** Byte-comparison takes $O(\max(|a|, |b|))$ (too long)
- Consider a hash function $h : K \to I$ where K = C and I are integers modulo a given prime p
- Since we can never allow h(a) = h(b) whenever $a \neq b$, h must be injective
- An injective hash function is also known as a perfect hash function
- A perfect hash function is minimal (MPHF) if $|\operatorname{dom} \tau| = |I|$
- MPHFs can be found in time $O(|\operatorname{dom} \tau|)$ [Czech, Majewski, 1992]
- This requires $\operatorname{dom} \tau$ to be known in advance: impractical for transient memory objects

Or else...

- Use normal hash functions
- Design them so that the chances of a collision are as low as possible
- Only test for *difference* rather than equality
- If $h(a) \neq h(b)$, then certainly $a \neq b$
- If h(a) = h(b), it may be because a = b or because of a collision
- Only perform lengthy byte comparisons whenever h(a) = h(b)
- Remark that there are |I| pairs $i, j \in I$ such that i = j but $\frac{|I|(|I|-1)}{2}$ unordered pairs with $i \neq j$
- **Probability that** h(a) = h(b): $\frac{2}{|I|-1}$
- Most comparisons are expected to take O(1), O(¹/_{|I|}) are expected to take O(max(|a|, |b|))

The obvious won't work

Why h(k) should be computed in function of k

- Let $K = \text{all words and } \text{dom } \tau = \{\text{Leo}, \text{Jon}, \text{Tim}, \text{Joe}, \ldots\}$
- Why not let h(Leo) = 1, h(Jon) = 2 and so on?
- Store "Joe" in $\sigma(h(\text{Joe})) = \sigma(4)$
- Find if "Joe" is in dom τ : see if $\sigma(4) = \bot$ or not
- Trouble: for a key $k \in \operatorname{dom} \tau$, how do you find the value of h(k)?
- Have to search the sequence of pairs ((Leo, 1), (Jon, 2), ...)
- O(n) if sequence unsorted, $O(\log n)$ if sorted

Process fails to be O(1)

Appendix

Open addressing

- Often, dom $\sigma \subsetneq I$
- \Rightarrow some hash values in *I* are never used
- \Rightarrow hash table has unused entries
- Can use them to store colliding keys
- If h(k) = h(k') = i with $k \neq k'$, store $\tau(k) = u$ at $\sigma(i)$ and $\tau(k') = u'$ at first unused hash table entry after the *i*-th one

ECOLE POLYTECHNIQUE

Open addressing: collision

:	
i-1	
i	u
i+1	w
i+2	u'
:	

Open addressing: find

```
• find(k)

i = h(k);

c = 0;

while c < |\sigma| \land \tau^{-1}(\sigma(i)) \neq k do

i \leftarrow (i+1) \mod |\sigma|;

c \leftarrow c+1;

end while

if c \ge |\sigma| then

return \perp;

else

return \sigma(i);

end if
```

Open addressing: insert

```
\begin{aligned} & \text{insert}(u) \\ & i = h(\tau^{-1}(u)); \\ & c = 0; \\ & \text{while } c < |\sigma| \land \sigma(i) \neq \bot \text{ do} \\ & i \leftarrow (i+1) \mod |\sigma|; \\ & c \leftarrow c+1; \\ & \text{end while} \\ & \text{if } c \ge |\sigma| \text{ then} \\ & \text{error: } hash \text{ table full;} \\ & \text{else} \\ & \sigma(i) = u; \\ & \text{end if} \end{aligned}
```

INF421, Lecture 5 - p. 50

An implementation secret

- In the pseudocodes, I've been referring to τ(k) and τ⁻¹(u) as if they'd be easy to compute
- That is mathematical notation: I simply meant "the record associated with the key k" and "the key associated with the record u"
- In an implementation, store pairs $\langle k, u \rangle$ in the hash table
- Then $\sigma: I \to K \times U$
- Pseudocode adapts perfectly: τ, τ⁻¹ simply mean "the other element of the pair"

remove is not easy to implement