
INF421, Lecture 4
Sorting

Leo Liberti

LIX, École Polytechnique, France

INF421, Lecture 4 – p. 1

Course

Objective: to teach you some data structures and associated

algorithms

Evaluation: TP noté en salle info le 16 septembre, Contrôle à la fin.

Note: max(CC, 3
4CC + 1

4TP)

Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books:

1. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

2. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

Website: www.enseignement.polytechnique.fr/informatique/INF421

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 4 – p. 2

Lecture summary

Sorting complexity in general

Mergesort

Quicksort

Two-way partition

INF421, Lecture 4 – p. 3

The minimal knowledge
mergeSort(s1, . . . , sn)

m = ⌊n
2
⌋;

s′ = mergeSort(s1, . . . , sm);

s′′ = mergeSort(sm+1, . . . , sn);

merge s′, s′′ such that result s̄ is sorted;

return s̄;

Split in half, recurse on

shorter subsequences, then

do some work to reassemble

them

quickSort(s1, . . . , sn)

p = sk for some k;

s′ = (si | i 6= k ∧ si < p);

s′′ = (si | i 6= k ∧ si ≥ p);

return (quickSort(s′), p, quickSort(s′′));

Choose a value p, split

s.t. left subseq. has values

< p, right subseq. has values

≥ p, recurse on subseq.

twoWaySort(s1, . . . , sn) ∈ {0, 1}
n

i = 1; j = n

while i ≤ j do

if si = 0 them i← i+ 1

else if sj = 1 then j ← j − 1

else swap si, sj ; i++; j-- endif

end while

Only applies to binary se-

quences. Move i to leftmost

1 and j to rightmost 0. These

are out of place, so swap

them; continue until i, j meet

INF421, Lecture 4 – p. 4

The sorting problem

Consider the following problem:

SORTING PROBLEM (SP). Given a sequence s =
(s1, . . . , sn), find a permutation π ∈ Sn of n symbols
such that: following property:

∀1 ≤ i < j ≤ n (sπ(i) ≤ sπ(j)),

where Sn is the symmetric group of order n

INF421, Lecture 4 – p. 5

The sorting problem

Consider the following problem:

SORTING PROBLEM (SP). Given a sequence s =
(s1, . . . , sn), find a permutation π ∈ Sn of n symbols
such that: following property:

∀1 ≤ i < j ≤ n (sπ(i) ≤ sπ(j)),

where Sn is the symmetric group of order n

In other words, we want to order s

INF421, Lecture 4 – p. 5

The sorting problem

Consider the following problem:

SORTING PROBLEM (SP). Given a sequence s =
(s1, . . . , sn), find a permutation π ∈ Sn of n symbols
such that: following property:

∀1 ≤ i < j ≤ n (sπ(i) ≤ sπ(j)),

where Sn is the symmetric group of order n

In other words, we want to order s

The type of s (integers, floats and so on) may be important
in order to devise more efficient algorithms: mergeSort
and quickSort are for generic types (we assume no
prior knowledge); in twoWaySort we know the type is
boolean

INF421, Lecture 4 – p. 5

Complexity of a problem?

Can we ask about the complexity of the sorting
problem?

Recall: usually the complexity measures the CPU time
taken by an algorithm

Could ask for the worst-case complexity (over all inputs)
of the best algorithm for solving the problem

But how does one list all possible algorithms for a given

problem?

This question seems ill-defined

INF421, Lecture 4 – p. 6

Comparisons

The crucial elements of sorting algorithms are comparisons: given

si, sj , we can establish the truth or falsity of the statement si ≤ sj

INF421, Lecture 4 – p. 7

Comparisons

The crucial elements of sorting algorithms are comparisons: given

si, sj , we can establish the truth or falsity of the statement si ≤ sj

We can describe any sorting algorithm by means of a sorting tree

INF421, Lecture 4 – p. 7

Comparisons

The crucial elements of sorting algorithms are comparisons: given

si, sj , we can establish the truth or falsity of the statement si ≤ sj

We can describe any sorting algorithm by means of a sorting tree

E.g. to order s1, s2, s3, a possible sorting tree is as follows:

1
2

2 3

31

32

1 3

s1
?
≤ s2

s1
?
≤ s3s1

?
≤ s3

s2
?
≤ s3s2

?
≤ s3

e

(23) (132) (12) (123)

(13)

INF421, Lecture 4 – p. 7

Sorting trees

Each sorting tree represents a possible way to chain
comparisons as to sort possible inputs

INF421, Lecture 4 – p. 8

Sorting trees

Each sorting tree represents a possible way to chain
comparisons as to sort possible inputs

A sorting tree gives all the possible outputs over all
inputs

INF421, Lecture 4 – p. 8

Sorting trees

Each sorting tree represents a possible way to chain
comparisons as to sort possible inputs

A sorting tree gives all the possible outputs over all
inputs

Any (comparison-based) sorting algorithm corresponds
to a particular sorting tree

INF421, Lecture 4 – p. 8

Sorting trees

Each sorting tree represents a possible way to chain
comparisons as to sort possible inputs

A sorting tree gives all the possible outputs over all
inputs

Any (comparison-based) sorting algorithm corresponds
to a particular sorting tree

The number of (comparison-based) sorting algorithms
is at most the number of sorting trees

INF421, Lecture 4 – p. 8

Sorting trees

Each sorting tree represents a possible way to chain
comparisons as to sort possible inputs

A sorting tree gives all the possible outputs over all
inputs

Any (comparison-based) sorting algorithm corresponds
to a particular sorting tree

The number of (comparison-based) sorting algorithms
is at most the number of sorting trees

Can use sorting trees to express the idea of best possible
(comparison-based) sorting algorithm

INF421, Lecture 4 – p. 8

Best worst-case complexity

Let Tn be the set of all sorting trees for sequences of
length n

INF421, Lecture 4 – p. 9

Best worst-case complexity

Let Tn be the set of all sorting trees for sequences of
length n

Different inputs lead to different ordering permutations
in the leaf nodes of each sorting tree

INF421, Lecture 4 – p. 9

Best worst-case complexity

Let Tn be the set of all sorting trees for sequences of
length n

Different inputs lead to different ordering permutations
in the leaf nodes of each sorting tree

For a sorting tree T ∈ Tn and a π ∈ Sn we denote by
ℓ(T, π) the length of the path in T from the root to the
leaf containing π

INF421, Lecture 4 – p. 9

Best worst-case complexity

Let Tn be the set of all sorting trees for sequences of
length n

Different inputs lead to different ordering permutations
in the leaf nodes of each sorting tree

For a sorting tree T ∈ Tn and a π ∈ Sn we denote by
ℓ(T, π) the length of the path in T from the root to the
leaf containing π

Best worst-case complexity is, for each n ≥ 0:

Bn = min
T∈Tn

max
π∈Sn

ℓ(T, π).

INF421, Lecture 4 – p. 9

Best worst-case complexity

Let Tn be the set of all sorting trees for sequences of
length n

Different inputs lead to different ordering permutations
in the leaf nodes of each sorting tree

For a sorting tree T ∈ Tn and a π ∈ Sn we denote by
ℓ(T, π) the length of the path in T from the root to the
leaf containing π

Best worst-case complexity is, for each n ≥ 0:

Bn = min
T∈Tn

max
π∈Sn

ℓ(T, π).

It’s remarkable that we can even formally express such an
apparently ill-defined quantity!

INF421, Lecture 4 – p. 9

The complexity of sorting

For any tree T , let |V (T)| be the number of nodes of T

INF421, Lecture 4 – p. 10

The complexity of sorting

For any tree T , let |V (T)| be the number of nodes of T

Tree depth: maximum path length from root to leaf in a tree

INF421, Lecture 4 – p. 10

The complexity of sorting

For any tree T , let |V (T)| be the number of nodes of T

Tree depth: maximum path length from root to leaf in a tree

A binary tree T with depth bounded by k has |V (T)| ≤ 2k

INF421, Lecture 4 – p. 10

The complexity of sorting

For any tree T , let |V (T)| be the number of nodes of T

Tree depth: maximum path length from root to leaf in a tree

A binary tree T with depth bounded by k has |V (T)| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn

INF421, Lecture 4 – p. 10

The complexity of sorting

For any tree T , let |V (T)| be the number of nodes of T

Tree depth: maximum path length from root to leaf in a tree

A binary tree T with depth bounded by k has |V (T)| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn

∀T ∈ Tn, each π ∈ Sn appears in a leaf node of T

INF421, Lecture 4 – p. 10

The complexity of sorting

For any tree T , let |V (T)| be the number of nodes of T

Tree depth: maximum path length from root to leaf in a tree

A binary tree T with depth bounded by k has |V (T)| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn

∀T ∈ Tn, each π ∈ Sn appears in a leaf node of T

⇒ Any T ∈ Tn has at least n! leaf nodes, i.e. |V (T)| ≥ n!

INF421, Lecture 4 – p. 10

The complexity of sorting

For any tree T , let |V (T)| be the number of nodes of T

Tree depth: maximum path length from root to leaf in a tree

A binary tree T with depth bounded by k has |V (T)| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn

∀T ∈ Tn, each π ∈ Sn appears in a leaf node of T

⇒ Any T ∈ Tn has at least n! leaf nodes, i.e. |V (T)| ≥ n!

Hence, n! ≤ 2Bn , which implies Bn ≥ ⌈log n!⌉

INF421, Lecture 4 – p. 10

The complexity of sorting

For any tree T , let |V (T)| be the number of nodes of T

Tree depth: maximum path length from root to leaf in a tree

A binary tree T with depth bounded by k has |V (T)| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn

∀T ∈ Tn, each π ∈ Sn appears in a leaf node of T

⇒ Any T ∈ Tn has at least n! leaf nodes, i.e. |V (T)| ≥ n!

Hence, n! ≤ 2Bn , which implies Bn ≥ ⌈log n!⌉

By Stirling’s approx., log n! = n log n− 1
ln 2n+O(log n)

INF421, Lecture 4 – p. 10

The complexity of sorting

For any tree T , let |V (T)| be the number of nodes of T

Tree depth: maximum path length from root to leaf in a tree

A binary tree T with depth bounded by k has |V (T)| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn

∀T ∈ Tn, each π ∈ Sn appears in a leaf node of T

⇒ Any T ∈ Tn has at least n! leaf nodes, i.e. |V (T)| ≥ n!

Hence, n! ≤ 2Bn , which implies Bn ≥ ⌈log n!⌉

By Stirling’s approx., log n! = n log n− 1
ln 2n+O(log n)

⇒ Bn is bounded below by a function proportional to n log n

(we say Bn is Ω(n log n))

INF421, Lecture 4 – p. 10

Today’s magic result: first part

Complexity of sorting:

Ω(n log n)

INF421, Lecture 4 – p. 11

Simple sorting algorithms

INF421, Lecture 4 – p. 12

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2),∅

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

→ (3, 4, 2), (1)

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

→ (3 , 4), (1, 2)

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

→ (4), (1, 2, 3)

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

→ (1, 2, 3, 4)

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2), (1)→ (3 , 4), (1, 2)→ (4), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
in its proper position of the sorted sequence

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2), (1)→ (3 , 4), (1, 2)→ (4), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
in its proper position of the sorted sequence

(3 , 1, 4, 2)

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2), (1)→ (3 , 4), (1, 2)→ (4), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
in its proper position of the sorted sequence

→ (1 , 4, 2), (3)

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2), (1)→ (3 , 4), (1, 2)→ (4), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
in its proper position of the sorted sequence

→ (4 , 2), (1, 3)

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2), (1)→ (3 , 4), (1, 2)→ (4), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
in its proper position of the sorted sequence

→ (2), (1, 3, 4)

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2), (1)→ (3 , 4), (1, 2)→ (4), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
in its proper position of the sorted sequence

→ (1, 2, 3, 4)

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2), (1)→ (3 , 4), (1, 2)→ (4), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
in its proper position of the sorted sequence

(3 , 1, 4, 2)→ (1 , 4, 2), (3)→ (4 , 2), (1, 3)→ (2), (1, 3, 4)→ (1, 2, 3, 4)

INF421, Lecture 4 – p. 13

Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2), (1)→ (3 , 4), (1, 2)→ (4), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
in its proper position of the sorted sequence

(3 , 1, 4, 2)→ (1 , 4, 2), (3)→ (4 , 2), (1, 3)→ (2), (1, 3, 4)→ (1, 2, 3, 4)

Both are O(n2); insertion sort is fast for small |s|

INF421, Lecture 4 – p. 13

Mergesort

INF421, Lecture 4 – p. 14

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)

(1 ,3,4,9)
→ ∅

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2 ,3,5,6)

(1,3,4,9)
→ (1)

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2, 3 ,5,6)

(1,3,4,9)
→ (1, 2)

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)

(1, 3 ,4,9)
→ (1, 2, 3)

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)

(1,3, 4 ,9)
→ (1, 2, 3, 3)

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3, 5 ,6)

(1,3,4,9)
→ (1, 2, 3, 3, 4)

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5, 6)

(1,3,4,9)
→ (1, 2, 3, 3, 4, 5)

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)

(1,3,4, 9)
→ (1, 2, 3, 3, 4, 5, 6)

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)
(1,3,4,9)

→ (1, 2, 3, 3, 4, 5, 6, 9) = s̄

INF421, Lecture 4 – p. 15

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: the first half is s′ = (5, 3, 6, 2) and the
second is s′′ = (1, 9, 4, 3)

Sort s′, s′′: since |s′| < |s| and |s′′| < |s| we can use
recursion; base case is when |s| ≤ 1

If |s| ≤ 1 then s is already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)
(1,3,4,9)

→ (1, 2, 3, 3, 4, 5, 6, 9) = s̄

Return s̄

INF421, Lecture 4 – p. 15

Merge

merge(s′, s′′): merges two sorted sequences s′, s′′ in a
sorted sequence containing all elements in s′, s′′

INF421, Lecture 4 – p. 16

Merge

merge(s′, s′′): merges two sorted sequences s′, s′′ in a
sorted sequence containing all elements in s′, s′′

Since s′, s′′ are both already sorted, merging them so
that the output is sorted is efficient

Read first (and smallest) elements of s′, s′′: O(1)

Compare these two elements: O(1)

There are |s| elements to process: O(n)

INF421, Lecture 4 – p. 16

Merge

merge(s′, s′′): merges two sorted sequences s′, s′′ in a
sorted sequence containing all elements in s′, s′′

Since s′, s′′ are both already sorted, merging them so
that the output is sorted is efficient

Read first (and smallest) elements of s′, s′′: O(1)

Compare these two elements: O(1)

There are |s| elements to process: O(n)

You can implement this using lists: if s′ is empty return

s′′, if s′′ is empty return s′, and otherwise compare the
first elements of both and choose smallest

INF421, Lecture 4 – p. 16

Recursive algorithm

mergeSort(s) {

1: if |s| ≤ 1 then
2: return s;
3: else

4: m = ⌊ |s|2 ⌋;

5: s′ = mergeSort(e1, . . . , em);
6: s′′ = mergeSort(em+1, . . . , en);
7: return merge(s′, s′′);
8: end if

}

By INF311, mergeSort has worst-case complexity
O(n log n)

INF421, Lecture 4 – p. 17

Today’s magic result: second part

Complexity of sorting:

Θ(n log n)

A function is Θ(g(n)) if it is both O(g(n)) and Ω(g(n))

INF421, Lecture 4 – p. 18

Quicksort

INF421, Lecture 4 – p. 19

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3 , 6, 2, 1, 9, 4, 3)→ ∅,∅

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3),∅

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6 , 2, 1, 9, 4, 3)→ (3),∅

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3), (6)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2 , 1, 9, 4, 3)→ (3), (6)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2), (6)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1 , 9, 4, 3)→ (3, 2), (6)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1), (6)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9 , 4, 3)→ (3, 2, 1), (6)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1), (6, 9)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4 , 3)→ (3, 2, 1), (6, 9)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1, 4), (6, 9)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1, 4), (6, 9)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1, 4, 3), (6, 9)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1, 4, 3), (6, 9)

Sort s′ = (3, 2, 1, 4, 3) and s′′ = (6, 9): since |s′| < |s| and
|s′′| < |s| we can use recursion; base case |s| ≤ 1

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1, 4, 3), (6, 9)

Sort s′ = (3, 2, 1, 4, 3) and s′′ = (6, 9): since |s′| < |s| and
|s′′| < |s| we can use recursion; base case |s| ≤ 1

Update s to (s′, p, s′′)

INF421, Lecture 4 – p. 20

Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1, 4, 3), (6, 9)

Sort s′ = (3, 2, 1, 4, 3) and s′′ = (6, 9): since |s′| < |s| and
|s′′| < |s| we can use recursion; base case |s| ≤ 1

Update s to (s′, p, s′′)

Notice: in mergeSort, we recurse first, then work on subsequences

afterwards. In quickSort, we work on subsequences first, then recurse

on them afterwards

INF421, Lecture 4 – p. 20

Partition

partition(s): produces two subsequences s′, s′′ of
(s2, . . . , sn) such that:

s′ = (si | i 6= 1 ∧ si < s1)

s′′ = (si | i 6= 1 ∧ si ≥ s1)

INF421, Lecture 4 – p. 21

Partition

partition(s): produces two subsequences s′, s′′ of
(s2, . . . , sn) such that:

s′ = (si | i 6= 1 ∧ si < s1)

s′′ = (si | i 6= 1 ∧ si ≥ s1)

Scan s: if si < s1 put si in s′, otherwise put it in s′′

INF421, Lecture 4 – p. 21

Partition

partition(s): produces two subsequences s′, s′′ of
(s2, . . . , sn) such that:

s′ = (si | i 6= 1 ∧ si < s1)

s′′ = (si | i 6= 1 ∧ si ≥ s1)

Scan s: if si < s1 put si in s′, otherwise put it in s′′

There are |s| − 1 elements to process: O(n)

INF421, Lecture 4 – p. 21

Partition

partition(s): produces two subsequences s′, s′′ of
(s2, . . . , sn) such that:

s′ = (si | i 6= 1 ∧ si < s1)

s′′ = (si | i 6= 1 ∧ si ≥ s1)

Scan s: if si < s1 put si in s′, otherwise put it in s′′

There are |s| − 1 elements to process: O(n)

You can implement this using arrays; moreover, if you

use a swap function such that, given i, j, swaps si with
sj in s, you don’t even need to create any new
temporary array: you can update s “in place”

INF421, Lecture 4 – p. 21

Recursive algorithm

quickSort(s) {

1: if |s| ≤ 1 then
2: return ;
3: else
4: (s′, s′′) = partition(s);
5: quickSort(s′);
6: quickSort(s′′);
7: s← (s′, s1, s

′′);
8: end if

}

INF421, Lecture 4 – p. 22

Complexity

Worst-case complexity: O(n2)

Average-case complexity: O(n log n)

Very fast in practice

INF421, Lecture 4 – p. 23

Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1

INF421, Lecture 4 – p. 24

Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1

Recursion level 1: p = n, s′ = (n− 1, . . . , 1), s′′ = ∅

INF421, Lecture 4 – p. 24

Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1

Recursion level 1: p = n, s′ = (n− 1, . . . , 1), s′′ = ∅

Recursion level 2: p = n− 1, s′ = (n− 2, . . . , 1), s′′ = ∅

INF421, Lecture 4 – p. 24

Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1

Recursion level 1: p = n, s′ = (n− 1, . . . , 1), s′′ = ∅

Recursion level 2: p = n− 1, s′ = (n− 2, . . . , 1), s′′ = ∅

And so on, down to p = 1 (base case)

INF421, Lecture 4 – p. 24

Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1

Recursion level 1: p = n, s′ = (n− 1, . . . , 1), s′′ = ∅

Recursion level 2: p = n− 1, s′ = (n− 2, . . . , 1), s′′ = ∅

And so on, down to p = 1 (base case)

Each partitioning call takes O(n)

INF421, Lecture 4 – p. 24

Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1

Recursion level 1: p = n, s′ = (n− 1, . . . , 1), s′′ = ∅

Recursion level 2: p = n− 1, s′ = (n− 2, . . . , 1), s′′ = ∅

And so on, down to p = 1 (base case)

Each partitioning call takes O(n)

Get O(n2)

INF421, Lecture 4 – p. 24

2-Way partitioning

INF421, Lecture 4 – p. 25

Definition by example

Input: (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)
Desired output: (0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

INF421, Lecture 4 – p. 26

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

INF421, Lecture 4 – p. 27

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

INF421, Lecture 4 – p. 27

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

INF421, Lecture 4 – p. 27

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

INF421, Lecture 4 – p. 27

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(1 , 0, 0, 1, 1, 0, 0, 0 , 1, 1)

INF421, Lecture 4 – p. 27

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0, 1, 1, 0, 0,1, 1, 1)

INF421, Lecture 4 – p. 27

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0, 1 , 1, 0, 0 , 1, 1, 1)

INF421, Lecture 4 – p. 27

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0,0, 1, 0,1, 1, 1, 1)

INF421, Lecture 4 – p. 27

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0, 0, 1 , 0 , 1, 1, 1, 1)

INF421, Lecture 4 – p. 27

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0, 0,0,1, 1, 1, 1, 1)

INF421, Lecture 4 – p. 27

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

INF421, Lecture 4 – p. 27

Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(1, 0, 0, 1, 1, 0, 0, 0, 1, 1)→ (0, 0, 0, 1, 1, 0, 0,1, 1, 1)→

(0, 0, 0,0, 1, 0,1, 1, 1, 1)→ (0, 0, 0, 0,0,1, 1, 1, 1, 1)

INF421, Lecture 4 – p. 27

The algorithm

i = 0; j = n− 1;
while i ≤ j do
if si = 0 then
i← i+ 1;

else if sj = 1 then
j ← j − 1;

else
swap(s, i, j);
i← i+ 1;
j ← j − 1;

end if
end while

INF421, Lecture 4 – p. 28

Worst-case complexity

Occurs with input (1, . . . , 1, 0, . . . , 0) where number of 1’s
are around the same as the number of 0’s

Requires ⌊n2 ⌋ swaps

Worst-case O(n)

INF421, Lecture 4 – p. 29

A paradox?

At the outset, we proved that sorting had complexity
Θ(n log n)

INF421, Lecture 4 – p. 30

A paradox?

At the outset, we proved that sorting had complexity
Θ(n log n)

But 2-way partioning requires only O(n)

INF421, Lecture 4 – p. 30

A paradox?

At the outset, we proved that sorting had complexity
Θ(n log n)

But 2-way partioning requires only O(n)

Contradiction? Paradox?

INF421, Lecture 4 – p. 30

A paradox?

At the outset, we proved that sorting had complexity
Θ(n log n)

But 2-way partioning requires only O(n)

Contradiction? Paradox?

Only apparent: the initial theorem was under the
following assumptions:

no prior knowledge on the type of input (“general input”)

only comparison-based algorithms are concerned

INF421, Lecture 4 – p. 30

A paradox?

At the outset, we proved that sorting had complexity
Θ(n log n)

But 2-way partioning requires only O(n)

Contradiction? Paradox?

Only apparent: the initial theorem was under the
following assumptions:

no prior knowledge on the type of input (“general input”)

only comparison-based algorithms are concerned

Neither assumption is true for 2-way partitioning

we know that the input sequence is of binary type

the algorithm never uses a comparison

INF421, Lecture 4 – p. 30

Appendix
[P. Cameron, Combinatorics]

INF421, Lecture 4 – p. 31

Quicksort: average complexity 1/10

Let n = |s|

Let qn be the average number of comparisons taken by
quickSort

partition(s) involves n− 1 comparisons

Assume the pivot p = s1 is the k-th smallest element of s

Then, recursion takes qk−1 + qn−k comparisons on
average

Average this over the n values that k can take

This implies:

qn = n− 1 +
1

n

n
∑

k=1

(qk−1 + qn−k) (1)

INF421, Lecture 4 – p. 32

Quicksort: average complexity 2/10

Notice that in the sum
∑n

k=1(qk−1 + qn−k), each qk
occurs twice

k qk−1 qn−k

1 q0 qn−1

2 q1 qn−2
...

...
...

n− 1 qn−2 q1

n qn−1 q0

Hence we can write:

qn = n− 1 +
2

n

n−1
∑

k=0

qk (2)

INF421, Lecture 4 – p. 33

Quicksort: average complexity 3/10

Equation (2) is a recurrence relation

A solution of a recurrence relation is a closed-form
expression for qn which does not include the symbol qk
for any integer k ≥ 0

One solution method consists in writing the solution as
the infinite sequence (q0, q1, q2, . . . , qn, . . .) as a formal

power series:

Q(t) =
∑

n≥0

qnt
n

(3)

If Q(t) is known, then the value for each qn can also be
obtained:

Differentiate Q(t) n times with respect to t, set t = 0, and
divide the result by n (why does this work?)

INF421, Lecture 4 – p. 34

Quicksort: average complexity 4/10

Multiply each side of the recurrence relation (2) by ntn

and sum over all n ≥ 0, get:

∑

n≥0

nqnt
n =

∑

n≥0

n(n− 1)tn + 2
∑

n≥0

(

n−1
∑

k=0

qk

)

tn (4)

We now replace each of these three terms so as to be
able to derive a more convenient expression for Q(t)

INF421, Lecture 4 – p. 35

Quicksort: average complexity 5/10

Differentiate Q(t) with respect to t and multiply by t to get an

expression for the first term:

t
dQ(t)

dt
= t

∑

n≥0

nqnt
n−1 =

∑

n≥0

nqnt
n, (5)

We saw in Lecture 1 (proof of Thm. on slide 26) that
∑

n≥0 t
n = 1

1−t

Differentiate this equation twice with respect to t, we get:

∑

n≥0

n(n− 1)tn−2 =
2

(1− t)3
(6)

Now multiply both members by t2 to get an expression for the second

term:
∑

n≥0

n(n− 1)tn =
2t2

(1− t)3
(7)

INF421, Lecture 4 – p. 36

Quicksort: average complexity 6/10

Now for the third: the n-th term of the sum
∑

n≥0(
∑n−1

k=0 qk)t
n can be written as

n−1
∑

k=0

tn−k(qkt
k)

Hence, the whole sum over n can be written as the
following product (convince yourself that this is true):

(t+ t2 + t3 + . . .)(q0 + q1t+ q2t
2 + q3t

3 + . . .)

The first factor is
∑

n≥0 t
n = 1

1−t
, and the second is

simply the expression for Q(t)

Hence, the third term is
2tQ(t)
1−t

INF421, Lecture 4 – p. 37

Quicksort: average complexity 7/10

Putting it all together, we obtain a first-order differential equation for

Q(t):

tQ′(t) =
2t2

(1− t)3
+

2t

1− t
Q(t) (8)

Remark that if we differentiate the expression (1− t)2Q(t) (which I pulled

out of a hat, or did I?) w.r.t. t, we get:

d

dt
((1− t)2Q(t)) = (1− t)2Q′(t)− 2(1− t)Q(t) (9)

We rearrange the terms of Eq. (8) to get:

tQ′(t)−
2t

1− t
Q(t) =

2t2

(1− t)3
(10)

We multiply Eq. (10) through by
(1−t)2

t
and get:

(1− t)2Q′(t)− 2(1− t)Q(t) =
2t

1− t
(11)

INF421, Lecture 4 – p. 38

Quicksort: average complexity 8/10

The RHS of Eq. (9) is the same as the LHS of Eq. (11),
hence we can rewrite Eq. 9 as:

d

dt
((1− t)2Q(t)) =

2t

1− t
(12)

Now, straightforward integration w.r.t. t yields:

Q(t) =
−2(t+ log(1− t))

(1− t)2
(13)

INF421, Lecture 4 – p. 39

Quicksort: average complexity 9/10

The next step consists in writing the power series for log

and 1/(1− t)2, rearrange them in a product, and read off
the coefficient qn of the term in tn. Without going into
details, this yields:

qn = 2(n+ 1)

n
∑

k=1

1

k
− 4n (14)

for all n ≥ 0

For all n ≥ 0, the term
∑n

k=1
1
k

is an approximation of:

∫ n

1

1

x
dx = log(n) +O(1) (15)

INF421, Lecture 4 – p. 40

Quicksort: average complexity 10/10

Finally, we get an asymptotic expression for qn:

∀n ≥ 0 qn = 2n log(n) +O(n) (16)

This shows that the average number of comparisons
taken by quickSort is O(n log n)

INF421, Lecture 4 – p. 41

End of Lecture 4

INF421, Lecture 4 – p. 42

	Course
	Lecture summary
	The minimal knowledge
	The sorting problem
	The sorting problem
	The sorting problem

	Complexity of a problem?
	Comparisons
	Comparisons
	Comparisons

	Sorting trees
	Sorting trees
	Sorting trees
	Sorting trees
	Sorting trees

	Best worst-case complexity
	Best worst-case complexity
	Best worst-case complexity
	Best worst-case complexity
	Best worst-case complexity

	The complexity of sorting
	The complexity of sorting
	The complexity of sorting
	The complexity of sorting
	The complexity of sorting
	The complexity of sorting
	The complexity of sorting
	The complexity of sorting
	The complexity of sorting

	Today's magic result: first part
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms
	Simple sorting algorithms

	Mergesort
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer

	Merge
	Merge
	Merge

	Recursive algorithm
	Today's magic result: second part
	Quicksort
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer
	Divide-and-conquer

	Partition
	Partition
	Partition
	Partition

	Recursive algorithm
	Complexity
	Worst-case complexity
	Worst-case complexity
	Worst-case complexity
	Worst-case complexity
	Worst-case complexity
	Worst-case complexity

	2-Way partitioning
	Definition by example
	Iterating swaps
	Iterating swaps
	Iterating swaps
	Iterating swaps
	Iterating swaps
	Iterating swaps
	Iterating swaps
	Iterating swaps
	Iterating swaps
	Iterating swaps
	Iterating swaps
	Iterating swaps

	The algorithm
	Worst-case complexity
	A paradox?
	A paradox?
	A paradox?
	A paradox?
	A paradox?

	Appendix \ $[$P.~Cameron, {it Combinatorics}$]$
	Quicksort: average complexity 1/10
	Quicksort: average complexity 2/10
	Quicksort: average complexity 3/10
	Quicksort: average complexity 4/10
	Quicksort: average complexity 5/10
	Quicksort: average complexity 6/10
	Quicksort: average complexity 7/10
	Quicksort: average complexity 8/10
	Quicksort: average complexity 9/10
	Quicksort: average complexity 10/10
	End of Lecture 4

