
INF421, Lecture 3
Stacks and recursion

Leo Liberti

LIX, École Polytechnique, France

INF421, Lecture 3 – p. 1

Course
Objective : to teach you some data structures and associated
algorithms

Evaluation : TP noté en salle info le 16 septembre, Contrôle à la fin.
Note: max(CC, 3

4
CC + 1

4
TP)

Organization : fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books :
1. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

2. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

Website : www.enseignement.polytechnique.fr/informatique/INF421

Contact : liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 3 – p. 2

Lecture summary

Function calls

Stacks and applications

Recursion

INF421, Lecture 3 – p. 3

Function calls

INF421, Lecture 3 – p. 4

What is a function call?

A recipe is a program, you are the CPU, your kitchen is the memo ry

Salad and walnuts recipe

1. add the salad

2. add the walnuts

3. add vinaigrette

4. toss and serve

Seems simple enough, but when you get to Step 3 you
realize that in order to add the vinaigrette you need to
prepare it first!

So you leave everything as is, mix oil and vinegar, add
salt, then resume the recipe from where you’d left it

You just called a function

INF421, Lecture 3 – p. 5

Functions essentials
A function call is a diversion from the sequential instructions order

you need to know where to go next

you need to store the current instruction address so you can
resume execution once the function terminates

f calls g:
f

g

call to g

Assume f calls g and g calls h, and h is currently executing

In order for f to resume control, g must have terminated first
f

g

h

h cannot pass control to f directly

INF421, Lecture 3 – p. 6

Saving the state

Every function defines a “naming scope” (denote an
entity x defined within a function f by f::x)

If f calls g, both may define a local variable x, but f::x
and g::x refer to different memory cells

Before calling g, f must therefore save its current state:
the name and address of each local variable in f

the address of the instruction just after “call g” in f

When g ends, the current state of f is retrieved, and f
resumes

Need a data structure for saving current states

As function calls are very common, it must be as simple
and efficient as possible

INF421, Lecture 3 – p. 7

Argument passing
x a variable in f , and g needs to access it:

f calls g(x)

Let variable x name a cell with address Ax and value Vx
Passing by reference: g(Ax)

if g changes Vx then the change is visible in f

Passing by value: g(Vx)

if g changes Vx then the change is not visible in f

This is a model, not the actual implementation used by
languages

In practice, Java behaves as if basic types (char, int,

long, float, double) were passed by value, and
composite types by reference

INF421, Lecture 3 – p. 8

Passing by reference

ref
AxAx

2

f g(x)

x executed: x = 2

When g terminates, the new value of x is available to f

INF421, Lecture 3 – p. 9

Passing by value

copy

Ax Bx

1 2

f g(x)

xx

executed: x = 2

When g terminates, the new value of x is lost

INF421, Lecture 3 – p. 10

Current states are saved to a stack

f calls g calls h

Memory

CPU is
executing

current state of f

current state of g

g::call h

push

top

INF421, Lecture 3 – p. 11

Stacks and applications

INF421, Lecture 3 – p. 12

Stack

Linear data structure

Accessible from only one end (top)

Operations:
add a data node on the top (push data)

remove a data node from the top (pop data)

test whether stack is empty

Every operation must be O(1)

Don’t need insertion/removal from the middle: can
implement using arrays

INF421, Lecture 3 – p. 13

Hack the stack

Back in 1996, hackers would get into systems by writing disguised code in the execution stack

INF421, Lecture 3 – p. 14

How does it work? 1/2

bottom

top

h::x = 1

h::y = 2

:

:

:

address Ah in g to pass
control to at end of h

g::x = 10

g::t = "url"

address Ag in f to pass
control to at end of g

f::y = 6.2

f::t = "config"

address Af in main to
pass control to at end of f

10

x

"url"

t

t

. . . Ag

u r l 1 A 6 4

address where Ag is stored

g::t: user input (e.g. URL from browser)

Code for g does not check input length

User might input strings longer than 3 chars

For example, input "leo5B"

INF421, Lecture 3 – p. 15

How does it work? 2/2

bottom

top

h::x = 1

h::y = 2

:

:

:

address Ah in g to pass
control to at end of h

g::x = 10

g::t = "url"

address Ag in f to pass
control to at end of g

f::y = 6.2

f::t = "config"

address Af in main to
pass control to at end of f

10

x

"url"

t

t

. . . Ag

l e o 5 B 6 4

address where Ag is stored

User input t = "leo5B" changes return addr

Ag =0x1A64 becomes A′ =0x5B64

When g ends, CPU jumps to address A′ 6= Ag

Set it up so that code at A′ opens a root shell

Machine hacked

INF421, Lecture 3 – p. 16

The Tower of Hanoi

Move stack of discs to different pole, one at a time, no larger over smaller

INF421, Lecture 3 – p. 17

Checking brackets

Given a mathematical sentence with two types of brackets
“()” and “[]”, write a program that checks whether they
have been embedded correctly

1. s: the input string

2. for each i from 1 to |s|:
(a) if si is an open bracket, push the corresponding

closing bracket on the stack
(b) if si is a closing bracket, pop a char t from the stack:

if the stack is empty, error : too many closing
brackets
if t 6= si, error : closing bracket has wrong type

3. if stack is not empty, error : not enough closing brackets

INF421, Lecture 3 – p. 18

Code for checking brackets
input string s; stack T ; int i = 0;
while (i ≤ s.length) do

if (si = ’(’) then
T.push(’)’);

else if (si = ’[’) then
T.push(’]’);

else if (si ∈ {’)’, ’]’}) then
if (T.isEmpty()) then

error: too many closing brackets;
else

t = T.pop();
if (t 6= si) then

error: wrong closing bracket type at i;
end if

end if
end if
i = i+ 1;

end while
if (¬T.isEmpty()) then

error: not enough closing brackets;
end if

INF421, Lecture 3 – p. 19

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented
as a subset of operations of lists or vectors. Here are some reasons
why you might want to rewrite a stack code

You’re a student and learning to program

You’re writing an interpreter or a compiler

You’re writing an operating system

You’re writing some graphics code which must execute
blighteningly fast and existing libraries are too slow

You’re a security expert wishing to write an
unsmashable stack

You’re me trying to teach you stacks

INF421, Lecture 3 – p. 20

Recursion

INF421, Lecture 3 – p. 21

Compare iteration and recursion

while (true) do
print "hello";

end while

function f() {

print "hello";
f();

}

f();

both programs yield the same infinite loop

What are the differences?

Why should we bother?

INF421, Lecture 3 – p. 22

Difference? Forget assignments

input n;
r = 1
for (i = 1 to n) do
r = r × i

end for
output r

function f(n) {

if (n = 0) then
return 1

end if
return n× f(n− 1)

}

f(n);

Both programs compute n!

Iterative version has assignments, recursive version does not

Every computable function can be computed by means of {tests,
assignments, iterations} or {tests, recursion}

For language expressivity: “recursion = assignment + iteration”
Don’t forget that calling a function implies saving the current state on a stack

(in recursion there is an implicit assignment of variable values to the stack memory)

INF421, Lecture 3 – p. 23

Termination

Make sure your recursions terminate

For example: if f(n) is recursive,

recurse on smaller integers, e.g. f(n− 1) or f(n/2)

provide “base cases” where you do not recurse, e.g. f(0) or f(1)

Compare with induction: prove a statement for n = 0 and prove that if it
holds for all i < n then it holds for n too; conclude it holds for all n

Typically, a recursive algorithm f(n) is as follows:

if n is a “base case” then
compute f(n) directly, do not recurse

else
recurse on f(i) with some i < n

end if

INF421, Lecture 3 – p. 24

Should we bother? Explore this tree

1

5

6

2

43

Try instructing the computer to ex-
plore this tree structure in “depth-
first order” (i.e. so that it prints
1, 2, 3, 4, 5, 6)

Encoding: use a
jagged array A

A1: A11 = 2, A12 = 5
A2: A21 = 3, A22 = 4
A3: ∅
A4: ∅
A5: A51 = 6
A6: ∅

Aij = label of j-th child of node i

INF421, Lecture 3 – p. 25

The iterative failure
int a = 1;
print a;
for (int z = 1 to |Aa|) do
int b = Aaz;
print b;
for (int y = 1 to |Ab|) do
int c = Aby;
print c;
. . .

end for
end for

1

5

6

2

43

Must the code change according to the tree structure???

We want one code which works for all trees!

INF421, Lecture 3 – p. 26

Rescued by recursion

function f(int ℓ) {

print ℓ;
for (int i = 1 to |Aℓ|) do
f(Aℓi);

end for
}

main() { f(1); }

1

A12 = 5

A51 = 6

A11 = 2

A22 = 4A21 = 3

1. ℓ = 1; print 1
2. |A1| = 2; i = 1
3. call f(A11 = 2) [push ℓ = 1]
4. ℓ = 2; print 2
5. |A2| = 2; i = 1
6. call f(A21 = 3) [push ℓ = 2]
7. ℓ = 3; print 3
8. A3 = ∅

9. return [pop ℓ = 2]
10. |A2| = 2; i = 2
11. call f(A22 = 4) [push ℓ = 2]
12. ℓ = 4; print 4
13. A4 = ∅

14. return [pop ℓ = 2]
15. return [pop ℓ = 1]
16. |A1| = 2; i = 2
17. call f(A12 = 5) [push ℓ = 1]
18. ℓ = 5; print 5
19. |A5| = 1; i = 1
20. call f(A51 = 6) [push ℓ = 5]
21. ℓ = 6; print 6
22. A6 = ∅

23. return [pop ℓ = 5]
24. return [pop ℓ = 1]
25. return; end

INF421, Lecture 3 – p. 27

Recursion power

At first sight, recursion can express programs that
iterations cannot!

As mentioned above, the “expressive power” of
recursion and that of iteration are the same
you can write the programs either way

However, certain programs are more easily written with
iteration, and some other with recursion

Warning : always make sure your recursion terminates!
There must be some “base cases” which do not recurse

Write a program that lists all permutations of n elements

INF421, Lecture 3 – p. 28

Listing permutations
Given an integer n > 1, list all permutations {1, . . . , n}

Example, n = 4

Suppose you already listed all permutations of {1, 2, 3}:

(1, 2, 3), (1, 3, 2), (3, 1, 2), (3, 2, 1), (2, 3, 1), (2, 1, 3)

Write each 4 times, and write the number 4 in every
position: 1 2 3 4

1 2 4 3
1 4 2 3
4 1 2 3

1 3 2 4

1 3 4 2
1 4 3 2
4 1 3 2

3 1 2 4

3 1 4 2
3 4 1 2
4 3 1 2

3 2 1 4

3 2 4 1
3 4 2 1
4 3 2 1

2 3 1 4

2 3 4 1
2 4 3 1
4 2 3 1

2 1 3 4

2 1 4 3
2 4 1 3
4 2 1 3

INF421, Lecture 3 – p. 29

The algorithm
If you can list permutations for n− 1, you can do it for n

Base case : n = 1 yields the permutation (1) (no recursion)

function permutations(n) {

1: if (n = 1) then
2: L = {(1)};
3: else
4: L′ = permutations(n− 1);
5: L = ∅;
6: for ((π1, . . . , πn−1) ∈ L′) do
7: for (i ∈ {1, . . . , n}) do
8: L← L ∪ {(π1, . . . , πi−1, n, πi, . . . , πn−1)};
9: end for

10: end for
11: end if
12: return L;

}
INF421, Lecture 3 – p. 30

Implementation details

L,L′ are (mathematical) sets: how do we implement them?

given list (π1, . . . , πn−1), need to produce list
(π1, . . . , πi−1, i, n, . . . , πn−1): how do we implement these lists?

Needed operations :
Size of L known a priori: |L| = n!

scan all elements of set L′ in some order (for at Step 6)

insert a node at arbitrary position in list (π1, . . . , πn−1) at
Step 8

add an element to set L

L′, L must have the same type by Steps 4, 12

L′, L can be arrays

(π1, . . . , πn−1) can be a singly-linked (or doubly-linked) list

INF421, Lecture 3 – p. 31

Hanoi tower
Recursive approach

In order to move k discs from stack 1 to stack 3:

1. move topmost k − 1 discs on stack 1 to stack 2

2. move largest disc on stack 1 to stack 3

3. move k − 1 discs on stack 2 to stack 3

Reduce the problem to subproblem with k − 1 discs

Assumption : subproblems for k − 1 at Steps 1 and 3
are the same type of problem as for k
The assumption holds because the disc being moved at Step 2 is the largest: a

Hanoi tower game “works the same way” if you add largest discs at the bottom

of the stacks

Do you need stacks to implement this algorithm?

INF421, Lecture 3 – p. 32

Appendix

INF421, Lecture 3 – p. 33

Recursion in logic

Axioms : sentences that are true by definition

Φ ⊢ ψ: sentence ψ is a logical consequence of
sentences in set Φ

Theory : set of sentences T containing set of axioms A
such that for each φ ∈ T , A ⊢ φ

A theory is consistent when it does not contain pairs of
contradictory sentences φ,¬φ

A theory is complete when every true statement is in the
theory

Suppose T is a theory that can define the natural
numbers

Recursive definition : let γ be defined as T 6⊢ γ

INF421, Lecture 3 – p. 34

Gödel’s theorem
Show that if T is consistent, then it cannot be complete

Assume T is consistent, and aim to show that there
exists a true sentence which is not in T

Consider γ: by tertium non datur, exactly one sentence in
{γ,¬γ} is true

Aim to show that neither is in T

Is γ ∈ T? If so, then T ⊢ γ, which means that
T ⊢ (T 6⊢ γ), i.e. T 6⊢ γ, i.e. γ 6∈ T (contradiction)

Is ¬γ ∈ T? If so, then T ⊢ ¬γ, i.e. T ⊢ ¬(T 6⊢ γ), that is
T ⊢ (T ⊢ γ), thus T ⊢ γ

In other words, assuming T ⊢ ¬γ leads to T ⊢ γ, which
implies that T is inconsistent (contradiction)

Hence T is incomplete
INF421, Lecture 3 – p. 35

Does this recursion terminate?

Not immediately evident that the recursive definition
T 6⊢ γ has a “base case”

The most difficult part of Gödel’s proof is to encode all
the logic he needed for his argument within positive
integers

In particular, he was able to provide a “finiteness proof”
for his recursive definition

INF421, Lecture 3 – p. 36

	Course
	Lecture summary
	Function calls
	What is a function call?
	Functions essentials
	Saving the state
	Argument passing
	Passing by reference
	Passing by value
	Current states are saved to a stack
	Stacks and applications
	Stack
	Hack the stack
	How does it work? 1/2
	How does it work? 2/2
	The Tower of Hanoi
	Checking brackets
	Code for checking brackets
	Usefulness
	Recursion
	Compare iteration and recursion
	Difference? Forget assignments
	Termination
	Should we bother? Explore this tree
	The iterative failure
	Rescued by recursion
	Recursion power
	Listing permutations
	The algorithm
	Implementation details
	Hanoi tower
	Appendix
	Recursion in logic
	G"odel's theorem
	Does this recursion terminate?

