INF421, Lecture 3 Stacks and recursion

Leo Liberti

LIX, École Polytechnique, France

Course

- Objective: to teach you some data structures and associated algorithms
- Evaluation: TP noté en salle info le 16 septembre, Contrôle à la fin. Note: $\max(CC, \frac{3}{4}CC + \frac{1}{4}TP)$
- Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)
- Books:

- 1. Ph. Baptiste & L. Maranget, *Programmation et Algorithmique*, Ecole Polytechnique (Polycopié), 2006
- 2. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
- 3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
- 4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

Lecture summary

- Function calls
- Stacks and applications
- Recursion

INE421. Lecture 3 - p. 1

Function calls

What is a function call?

A recipe is a program, you are the CPU, your kitchen is the memory

Salad and walnuts recipe

- 1. add the salad
- 2. add the walnuts
- 3. add vinaigrette
- 4. toss and serve
- Seems simple enough, but when you get to Step 3 you realize that in order to add the vinaigrette you need to prepare it first!
- So you leave everything as is, mix oil and vinegar, add salt, then resume the recipe from where you'd left it
- You just called a function

Saving the state

- Every function defines a "naming scope" (denote an entity *x* defined within a function *f* by *f*::*x*)
- If f calls g, both may define a local variable x, but f::x and g::x refer to different memory cells
- Before calling g, f must therefore save its current state:
 - the name and address of each local variable in f
 - the address of the instruction just after "call g" in f
- When g ends, the current state of f is retrieved, and f resumes
- Need a data structure for saving current states
- As function calls are very common, it must be as simple and efficient as possible

Functions essentials

- A function call is a diversion from the sequential instructions order
 - you need to know where to go next
 - you need to store the current instruction address so you can resume execution once the function terminates

- Assume f calls g and g calls h, and h is currently executing
- In order for f to resume control, g must have terminated first

h cannot pass control to f directly

INF421, Lecture 3 - p. 6

Argument passing

x a variable in f, and g needs to access it: f calls g(x)

- Let variable x name a cell with address A_x and value V_x
- Passing by reference: g(A_x)
 if g changes V_x then the change is visible in f
- Passing by value: g(V_x)
 if g changes V_x then the change is not visible in f
- This is a *model*, not the actual implementation used by languages
- In practice, Java behaves as if basic types (char, int, long, float, double) were passed by value, and composite types by reference

Stack

- Linear data structure
- Accessible from only one end (top)
- **Operations:**
 - add a data node on the top (push data)
 - remove a data node from the top (pop data)
 - test whether stack is empty
- Every operation must be O(1)
- Don't need insertion/removal from the middle: can implement using arrays

Hack the stack

.oO Phrack 49 0o.

Volume Seven, Issue Forty-Nine

File 14 of 16

BugTrag, r00t, and Underground.Org bring you

Smashing The Stack For Fun And Profit xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

> by Aleph One aleph1@underground.org

`smash the stack` [C programming] n. On many C implementations it is possible to corrupt the execution stack by writing past the end of an array declared auto in a routine. Code that does this is said to smash the stack, and can cause return from the routine to jump to a random address. This can produce some of the most insidious data-dependent bugs known to mankind. Variants include trash the stack, scribble the stack, mangle the stack; the term mung the stack is not used, as this is never done intentionally. See spam; see also alias bug, fandango on core, memory leak, precedence lossage, overrun screw.

Back in 1996, hackers would get into systems by writing disguised code in the execution stack

INF421, Lecture 3 - p. 13

How does it work? 1/2

How does it work? 2/2

bottom

Machine hacked

The Tower of Hanoi

Move stack of discs to different pole, one at a time, no larger over smaller

INF421, Lecture 3 - p. 17

Code for checking brackets

input string s; stack T; int i = 0; while $(i \leq s. \text{length})$ do if $(s_i = '(')$ then T.push(')'); else if $(s_i = ' [')$ then T.push(']'); else if $(s_i \in \{ ') ' , '] ' \}$ then if (T.isEmpty()) then error: too many closing brackets; else t = T.pop();if $(t \neq s_i)$ then error: wrong closing bracket type at *i*; end if end if end if i = i + 1;end while if $(\neg T.isEmpty())$ then error: not enough closing brackets; end if

Checking brackets

Given a mathematical sentence with two types of brackets "()" and "[]", write a program that checks whether they have been embedded correctly

- 1. s: the input string
- 2. for each i from 1 to |s|:
 - (a) if s_i is an open bracket, push the corresponding closing bracket on the stack
 - (b) if s_i is a closing bracket, pop a char t from the stack:
 - if the stack is empty, error: too many closing brackets
 - if $t \neq s_i$, error: closing bracket has wrong type
- 3. if stack is not empty, error: not enough closing brackets

```
INF421, Lecture 3 - p. 18
```

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program
- You're writing an interpreter or a compiler
- You're writing an operating system
- You're writing some graphics code which must execute blighteningly fast and existing libraries are too slow
- You're a security expert wishing to write an unsmashable stack
- You're me trying to teach you stacks

Recursion

Compare iteration and recursion

while (true) do print "hello"; end while function f() {
 print "hello";
 f();
}
f();

both programs yield the same infinite loop

What are the differences?

Why should we bother?

INF421, Lecture 3 - p. 22

Difference? Forget assignments

output r

- function f(n) { if (n = 0) then return 1 end if return $n \times f(n - 1)$ } f(n);
- Both programs compute n!
- Iterative version has assignments, recursive version does not
- Every computable function can be computed by means of {tests, assignments, iterations} or {tests, recursion}
- For language expressivity: "recursion = assignment + iteration" Don't forget that calling a function implies <u>saving the current state on a stack</u> (in recursion there is an implicit assignment of variable values to the stack memory)

Termination

- Make sure your recursions terminate
- For example: if f(n) is recursive,
 - recurse on smaller integers, e.g. f(n-1) or f(n/2)
 - ${\ensuremath{\,\bullet\)}}$ provide "base cases" where you do not recurse, e.g. f(0) or f(1)
- Compare with *induction*: prove a statement for n = 0 and prove that if it holds for all i < n then it holds for n too; conclude it holds for all n</p>
- Typically, a recursive algorithm f(n) is as follows:

if n is a "base case" then

compute f(n) directly, do not recurse else recurse on f(i) with some i < n end if

The iterative failure

Must the code change according to the tree structure???

We want one code which works for all trees!

INF421, Lecture 3 - p. 26

Recursion power

- At first sight, recursion can express programs that iterations cannot!
- As mentioned above, the "expressive power" of recursion and that of iteration are the same you can write the programs either way
- However, certain programs are more easily written with iteration, and some other with recursion
- Warning: always make sure your recursion terminates! There must be some "base cases" which do not recurse

Write a program that lists all permutations of n elements

ECOL

Listing permutations

- Given an integer n > 1, list all permutations $\{1, \ldots, n\}$
- Example, n = 4
- Suppose you already listed all permutations of {1,2,3}:

(1, 2, 3), (1, 3, 2), (3, 1, 2), (3, 2, 1), (2, 3, 1), (2, 1, 3)

Write each 4 times, and write the number 4 in every position:

1 1 4	$ \frac{2}{2} 4 1 $	$\frac{3}{4}$ 2 2	4 3 3 3	$\frac{3}{3}$	$ \frac{2}{2} 4 3 $	$\frac{1}{4}$ 2 2	1 1 1
$1 \\ 1 \\ 1 \\ 4$	${3 \atop {4} \atop {1}}$	$2 \\ 4 \\ 3 \\ 3$	${{4}\atop{2}\\{2}\\{2}\\{2}$	$2 \\ 2 \\ 2 \\ 4$	${3 \atop {4} \atop {2}}$	${1 \atop {4 \atop {3 \atop {3} \atop {3} \atop {3} }}}$	4 1 1 1
${3\atop {3\atop {4}}}$	$\begin{array}{c}1\\1\\4\\3\end{array}$	$2 \\ 4 \\ 1 \\ 1$	${{4}\atop{2}\\{2}\\{2}\\{2}}$	$2 \\ 2 \\ 2 \\ 4$	$1 \\ 1 \\ 4 \\ 2$	${ { { { { 1 } \atop { 1 } \atop { 1 } \atop { 1 } } } } } } $	$\frac{4}{3}\\ \frac{3}{3}$

ECOLE

Implementation details

- L, L' are (mathematical) sets: how do we implement them?
- given list (π₁,..., π_{n-1}), need to produce list
 (π₁,..., π_{i-1}, i, n,..., π_{n-1}): how do we implement these lists?
- Needed operations:
 - **Size** of *L* known a priori: |L| = n!
 - **s** scan all elements of set L' in some order (for at Step 6)
 - insert a node at arbitrary position in list $(\pi_1, \ldots, \pi_{n-1})$ at Step 8
 - add an element to set L
 - **•** L', L must have the same type by Steps 4, 12
- I', L can be arrays
- $(\pi_1, \ldots, \pi_{n-1})$ can be a singly-linked (or doubly-linked) list

The algorithm

- If you can list permutations for n-1, you can do it for n
- **9** Base case: n = 1 yields the permutation (1) (no recursion)

function permutations(n) { **1**: if (n = 1) then **2**: $L = \{(1)\};$ 3: else 4: L' = permutations(n-1);5: $L = \emptyset$: for $((\pi_1, ..., \pi_{n-1}) \in L')$ do 6: for $(i \in \{1, ..., n\})$ do 7: $L \leftarrow L \cup \{(\pi_1, \ldots, \pi_{i-1}, n, \pi_i, \ldots, \pi_{n-1})\};$ 8: <u>و</u> end for end for 10: 11: end if 12: return L;

INF421, Lecture 3 - p. 30

Hanoi tower

Recursive approach

In order to move k discs from stack 1 to stack 3:

- 1. move topmost k-1 discs on stack 1 to stack 2
- 2. move largest disc on stack 1 to stack 3
- 3. move k 1 discs on stack 2 to stack 3

Reduce the problem to subproblem with k-1 discs

Assumption: subproblems for k - 1 at Steps 1 and 3 are the same type of problem as for k

The assumption holds because the disc being moved at Step 2 is the largest: a Hanoi tower game "works the same way" if you add largest discs at the bottom of the stacks

Do you need stacks to implement this algorithm?

Appendix

I CONTREMISOR

- Axioms: sentences that are true by definition
- $\Phi \vdash \psi$: sentence ψ is a logical consequence of sentences in set Φ
- Theory: set of sentences *T* containing set of axioms *A* such that for each $\phi \in T$, $A \vdash \phi$

Recursion in logic

- A theory is consistent when it does not contain pairs of contradictory sentences φ, ¬φ
- A theory is complete when every true statement is in the theory
- Suppose T is a theory that can define the natural numbers
- Recursive definition: let γ be defined as $T \not\vdash \gamma$

INF421, Lecture 3 - p. 34

Gödel's theorem

- Show that if *T* is consistent, then it cannot be complete
- Assume T is consistent, and aim to show that there exists a true sentence which is not in T
- Consider γ: by tertium non datur, exactly one sentence in {γ, ¬γ} is true
- Aim to show that neither is in T
- Is $\gamma \in T$? If so, then $T \vdash \gamma$, which means that $T \vdash (T \not\vdash \gamma)$, i.e. $T \not\vdash \gamma$, i.e. $\gamma \notin T$ (contradiction)
- Is $\neg \gamma \in T$? If so, then $T \vdash \neg \gamma$, i.e. $T \vdash \neg (T \nvDash \gamma)$, that is $T \vdash (T \vdash \gamma)$, thus $T \vdash \gamma$
- In other words, assuming $T \vdash \neg \gamma$ leads to $T \vdash \gamma$, which implies that T is inconsistent (contradiction)
- Hence T is incomplete

INF421, Lecture 3 - p. 33

Does this recursion terminate?

- Not immediately evident that the recursive definition T ∀ γ has a "base case"
- The most difficult part of Gödel's proof is to encode all the logic he needed for his argument within positive integers
- In particular, he was able to provide a "finiteness proof" for his recursive definition