
INF421, Lecture 2
Queues

Leo Liberti

LIX, École Polytechnique, France

INF421, Lecture 2 – p. 1

Course

Objective: to teach you some data structures and associated

algorithms

Evaluation: TP noté en salle info le 16 septembre, Contrôle à la fin.

Note: max(CC, 3

4
CC + 1

4
TP)

Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books:

1. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

2. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

Website: www.enseignement.polytechnique.fr/informatique/INF421

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 2 – p. 2

Remarks on TD1

Every object must be initialized

object = something meaningful;

If L is a list of the Java library,

LinkedList<Integer> L = null;

is NOT THE EMPTY LIST!!!!

Try

LinkedList<Integer> L = new LinkedList<Integer>();

instead!

In some implementations of a list, null might be the
empty list, though — just pay attention to the
instructions for using the implementation at hand

INF421, Lecture 2 – p. 3

Answers to your comments

1. Rhythm: most are happy, some find it slow. Your class has a mixed level, it’s

not going to be easy to make everyone happy. I aim to keep the rhythm slow

but escalate the contents’ difficulty

2. Some material not new: this is for pedagogical reasons. If you see

different people presenting the same material in different ways, you’ll

understand it much better. Remember, this is still a foundational

course

3. Slides in print format: OK (you are SPOILED! the slides in print format

were ALREADY on the website, you could have printed them

yourselves!)

4. Code: my slides will contain pseudocode, but I’ll show you some Java

code at the end of each lecture

5. Liveliness: I enjoy lecturing and hope you’ll always find the course

lively, but there will certainly be times when you get bored. I

apologize in advance and hope these will be kept to a minimum

INF421, Lecture 2 – p. 4

Lecture summary

A motivating example

Queues

Breadth-First Search (BFS)

Implementation

INF421, Lecture 2 – p. 5

Motivating example

INF421, Lecture 2 – p. 6

Bus network with timetables

A

1 h:00

2 h:10

3 h:30

B

1 h:00

4 h:20

5 h:40

C

2 h:10

3 h:20

5 h:30

D

4 h:20

5 h:40

6 h:50

E

2 h:05

5 h:10

6 h:30

F

3 h:25

4 h:30

6 h:40

Find a convenient itinerary from 1 to 6, leaving at h:00?

INF421, Lecture 2 – p. 7

The event graph

red arrows: waiting for next bus

1 / 0 0

2 / 1 0

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0E/5

3 / 2 0
C/10

3 / 3 0

A/20 3 / 2 5

5

5 / 3 0

C/10

5

4 / 3 0

F/5

1 0

5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0

6 / 5 0

D/10

1 0

1 0

INF421, Lecture 2 – p. 8

Finding a good itinerary

1 / 0 0

2 / 1 0

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0E/5

3 / 2 0
C/10

3 / 3 0

A/20 3 / 2 5

5

5 / 3 0

C/10

5

4 / 3 0

F/5

1 0

5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0

6 / 5 0

D/10

1 0

1 0

1/00

INF421, Lecture 2 – p. 9

Finding a good itinerary

1/00

2 / 1 0

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0

E/5

3 / 2 0
C/10

3 / 3 0

A/20 3 / 2 5

5

5 / 3 0

C/10

5

4 / 3 0

F/5

1 0

5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0

6 / 5 0

D/10

1 0

1 0

1/00← 1/00

INF421, Lecture 2 – p. 9

Finding a good itinerary

1 / 0 0

2/10

A/10

4/20

B/20

2 / 0 5

5

5 / 1 0E/5

3 / 2 0
C/10

3 / 3 0

A/20
3 / 2 5

5

5 / 3 0

C/10

5

4 / 3 0

F/5

1 0

5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0

6 / 5 0

D/10

1 0

1 0

2/10 4/20

INF421, Lecture 2 – p. 9

Finding a good itinerary

1 / 0 0

2/10

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0E/5

3 / 2 0
C/10

3 / 3 0

A/20
3 / 2 5

5

5 / 3 0

C/10

5

4 / 3 0

F/5

1 0

5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0

6 / 5 0

D/10

1 0

1 0

2/10← 4/20

INF421, Lecture 2 – p. 9

Finding a good itinerary

1 / 0 0

2 / 1 0

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0
E/5

3/20
C/10

3/30

A/20

3 / 2 5

5

5 / 3 0

C/10

5

4 / 3 0

F/5

1 0

5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0
6 / 5 0

D/10

1 0

1 0

4/20 3/20 3/30

INF421, Lecture 2 – p. 9

Finding a good itinerary

1 / 0 0

2 / 1 0

A/10

4/20

B/20

2 / 0 5

5

5 / 1 0E/5

3 / 2 0
C/10

3 / 3 0

A/20 3 / 2 5

5

5 / 3 0

C/10

5

4 / 3 0

F/5

1 0

5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0

6 / 5 0

D/10

1 0

1 0

4/20← 3/20 3/30

INF421, Lecture 2 – p. 9

Finding a good itinerary

1 / 0 0

2 / 1 0

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0E/5

3 / 2 0
C/10

3 / 3 0

A/20 3 / 2 5

5

5 / 3 0

C/10

5

4/30
F/5

1 0

5/40

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0

6 / 5 0

D/10

1 0

1 0

3/20 3/30 4/30 5/40

INF421, Lecture 2 – p. 9

Finding a good itinerary

1 / 0 0

2 / 1 0

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0
E/5

3/20
C/10

3 / 3 0

A/20

3 / 2 5

5

5 / 3 0

C/10

5

4 / 3 0

F/5

1 0

5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0

6 / 5 0

D/10

1 0

1 0

3/20← 3/30 4/30 5/40

INF421, Lecture 2 – p. 9

Finding a good itinerary

1 / 0 0

2 / 1 0

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0E/5

3 / 2 0
C/10

3 / 3 0

A/20
3/25

5

5/30

C/10

5

4 / 3 0
F/5

1 0
5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0
E/20

1 0

6 / 5 0

D/10

1 0

1 0

3/30 4/30 5/40 3/25 5/30

INF421, Lecture 2 – p. 9

Finding a good itinerary

1 / 0 0

2 / 1 0

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0E/5

3 / 2 0
C/10

3/30

A/20 3 / 2 5

5

5 / 3 0

C/10

5

4 / 3 0

F/5

1 0

5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0
6 / 5 0

D/10

1 0

1 0

3/30← 4/30 5/40 3/25 5/30
INF421, Lecture 2 – p. 9

Finding a good itinerary

1 / 0 0

2 / 1 0

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0E/5

3 / 2 0
C/10

3 / 3 0

A/20 3 / 2 5

5

5 / 3 0

C/10

5

4 / 3 0

F/5

1 0

5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0

6 / 5 0

D/10

1 0

1 0

4/30 5/40 3/25 5/30

INF421, Lecture 2 – p. 9

Finding a good itinerary

1 / 0 0

2 / 1 0

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0E/5

3 / 2 0
C/10

3 / 3 0

A/20 3 / 2 5

5

5 / 3 0

C/10

5

4/30

F/5

1 0

5 / 4 0

B/20

D/20

6 / 4 0

F/10

2 0

6 / 3 0

E/20

1 0

6 / 5 0

D/10

1 0

1 0

4/30← 5/40 3/25 5/30

INF421, Lecture 2 – p. 9

Finding a good itinerary

1 / 0 0

2 / 1 0

A/10

4 / 2 0

B/20

2 / 0 5

5

5 / 1 0E/5

3 / 2 0
C/10

3 / 3 0

A/20 3 / 2 5

5

5 / 3 0

C/10

5

4 / 3 0

F/5

1 0

5 / 4 0

B/20

D/20

6/40

F/10

2 0

6 / 3 0

E/20

1 0 6 / 5 0

D/10

1 0

1 0

5/40 3/25 5/30 6/40 found itinerary 1→6 arriving at h:40

INF421, Lecture 2 – p. 9

Retrieving the path

Previous method only gives us the duration, not the
actual path

At each iteration, store nodes out of queue with predecessors

pred node

- 1/00

1/00 2/10

1/00 4/20

2/10 3/20

2/10 3/30

4/20 4/30

4/30 6/40

Now retrieve path backwards: 6/40→4/30→4/20→1/00

and finally invert the path: 1/00→4/20→4/30→6/40
INF421, Lecture 2 – p. 10

This ain’t the fastest

Suppose there is a bus G with timetable 3/25→ 6/30

1/00

2/10

4/20

2/05

5/10

3/20

3/30

3/25

5/30

4/30

5/40

6/40

6/30

6/50

A/10

B/20

5

E/5

C/10

A/20

5

C/10

5

F/5

10

B/20

D/20

F/10

20

E/20

10

D/10

10

10

G/5

3/25 is still in the queue (5/40 3/25 5/30 6/40) at termination, can’t reach 6/30

INF421, Lecture 2 – p. 11

What did we find?

In order to find the fastest itinerary, must change
termination condition
instead of stopping when the arrival node is found,

let τ∗ be the arrival time of best solution so far

let τ ′ be the minimum time of the nodes in the queue

if (τ ′ ≥ τ∗) then

terminate

endif

INF421, Lecture 2 – p. 12

What did we find?

In order to find the fastest itinerary, must change
termination condition
instead of stopping when the arrival node is found,

let τ∗ be the arrival time of best solution so far

let τ ′ be the minimum time of the nodes in the queue

if (τ ′ ≥ τ∗) then

terminate

endif

What are the properties of our itinerary?

INF421, Lecture 2 – p. 12

What did we find?

In order to find the fastest itinerary, must change
termination condition
instead of stopping when the arrival node is found,

let τ∗ be the arrival time of best solution so far

let τ ′ be the minimum time of the nodes in the queue

if (τ ′ ≥ τ∗) then

terminate

endif

What are the properties of our itinerary?

We found the itinerary with fewest changes

where “bus, waiting, bus” counts as two changes, not one

INF421, Lecture 2 – p. 12

What did we find?

In order to find the fastest itinerary, must change
termination condition
instead of stopping when the arrival node is found,

let τ∗ be the arrival time of best solution so far

let τ ′ be the minimum time of the nodes in the queue

if (τ ′ ≥ τ∗) then

terminate

endif

What are the properties of our itinerary?

We found the itinerary with fewest changes

where “bus, waiting, bus” counts as two changes, not one

In order to prove these two statements, we need to
formalize our method into an algorithm

INF421, Lecture 2 – p. 12

What did we find?

In order to find the fastest itinerary, must change
termination condition
instead of stopping when the arrival node is found,

let τ∗ be the arrival time of best solution so far

let τ ′ be the minimum time of the nodes in the queue

if (τ ′ ≥ τ∗) then

terminate

endif

What are the properties of our itinerary?

We found the itinerary with fewest changes

where “bus, waiting, bus” counts as two changes, not one

In order to prove these two statements, we need to
formalize our method into an algorithm

So, we need to describe our “queue” as a data structure
INF421, Lecture 2 – p. 12

Queues

INF421, Lecture 2 – p. 13

Queue operations

In our example, we needed our “queue” to be able to
perform the following operations:

insert an element at the end of the queue

retrieve and delete the element at the beginning of the queue

test if the queue is empty

find the size of the queue

INF421, Lecture 2 – p. 14

Queue operations

In our example, we needed our “queue” to be able to
perform the following operations:

insert an element at the end of the queue

retrieve and delete the element at the beginning of the queue

test if the queue is empty

find the size of the queue

Since these operations were repeated often, we need
them to be O(1)

INF421, Lecture 2 – p. 14

Queue operations

In our example, we needed our “queue” to be able to
perform the following operations:

insert an element at the end of the queue

retrieve and delete the element at the beginning of the queue

test if the queue is empty

find the size of the queue

Since these operations were repeated often, we need
them to be O(1)

Could implement these using:

arrays

Need to simulate insert/delete using pointers

lists

Each insert/delete involves memory allocation

INF421, Lecture 2 – p. 14

Circular arrays

Implementation using a circular array q [Mehlhorn & Sanders’ book]

Uses modular arithmetic (usually pretty fast)

d0

d1

d2

d3⊥

q0

qh

qt

n

qh = d0 (first

element of queue)

qt = ⊥ delimits

the end of the

queue

qi is unused for

0 ≤ i < h and

t < i ≤ n

actual implemen-

tation of a circular

array is simply an

array; but the be-

haviour will be dif-

ferent

INF421, Lecture 2 – p. 15

Read beginning of queue

first() {

return qh;

}

d0

d1

d2

d3⊥

q0

qh

qt

n

INF421, Lecture 2 – p. 16

Delete beginning of queue

popFront() {

p = qh;
h = (h+ 1) mod (n+ 1);
return p;

}

d0

d1

d2

d3⊥

q0

qh

qt

n

INF421, Lecture 2 – p. 17

Insert at the end of queue

pushBack(d) {

assert(size() < n)
qt = d;
t = (t+ 1) mod (n+ 1);
qt = ⊥;

}

d0

d1

d2

d3d

⊥

q0

qh

qt

n

INF421, Lecture 2 – p. 18

Insert at the end (case t = n)

d0

d1

d2
d3d4

d5

d6

d7

d8

⊥

q0

qh

t = n

→

⊥

d0

d1

d2
d3d4

d5

d6

d7

d8

d

t = 0

qh

qn

t = (t+ 1) mod (n+ 1) with t = n implies t = 0

INF421, Lecture 2 – p. 19

Size and emptiness

isEmpty(): if (t = h) then return true; else return false;

⊥

q0

h = t

qn

INF421, Lecture 2 – p. 20

Size and emptiness

isEmpty(): if (t = h) then return true; else return false;

size(): return (t− h+ n+ 1) mod (n+ 1);

d3

d4

⊥d0

d1

d2

q0

qtqh

qn

INF421, Lecture 2 – p. 20

BFS

INF421, Lecture 2 – p. 21

The BFS algorithm

Input: set V , binary relation ∼ on V , and s 6= t ∈ V

1: (Q,<) = {s}; L = {s};
2: while Q 6= ∅ do
3: u = min<Q;
4: Q← Qr {u};
5: for v ∈ V (v ∼ u ∧ v 6∈ L) do
6: if v = t then
7: return “t reachable”;
8: end if
9: Q← Q ∪ {v}, set v = max<Q;

10: L← L ∪ {v};
11: end for
12: end while
13: return “t unreachable”;

INF421, Lecture 2 – p. 22

The order on Q

The ordered set Q is implemented as a queue

INF421, Lecture 2 – p. 23

The order on Q

The ordered set Q is implemented as a queue

Every v ∈ V enters Q as the maximum element (i.e. , the
last)

INF421, Lecture 2 – p. 23

The order on Q

The ordered set Q is implemented as a queue

Every v ∈ V enters Q as the maximum element (i.e. , the
last)

We only read (and remove) the minimum element of Q
(i.e. the first)

INF421, Lecture 2 – p. 23

The order on Q

The ordered set Q is implemented as a queue

Every v ∈ V enters Q as the maximum element (i.e. , the
last)

We only read (and remove) the minimum element of Q
(i.e. the first)

Every other element of Q is never touched

INF421, Lecture 2 – p. 23

The order on Q

The ordered set Q is implemented as a queue

Every v ∈ V enters Q as the maximum element (i.e. , the
last)

We only read (and remove) the minimum element of Q
(i.e. the first)

Every other element of Q is never touched

The relative order of a consecutive subsequence
u1, . . . , uh of Q is unchanged

INF421, Lecture 2 – p. 23

The order on Q

The ordered set Q is implemented as a queue

Every v ∈ V enters Q as the maximum element (i.e. , the
last)

We only read (and remove) the minimum element of Q
(i.e. the first)

Every other element of Q is never touched

The relative order of a consecutive subsequence
u1, . . . , uh of Q is unchanged

Also, by the test v 6∈ L at Step 5, we have:
Thm. 1

No element of V enters Q more than once

INF421, Lecture 2 – p. 23

A node hierarchy

Consider a function α : V → N defined as follows:

at Step 1, let α(s) = 0

at Step 9, let α(v) = α(u) + 1

This ranks the elements of V by distance from s in
terms of relation pairs

E.g. if s ∼ u, then u’s distance from s is 1
if s ∼ u ∼ v, v’s distance from s is 2

INF421, Lecture 2 – p. 24

The BFS, again

1: (Q,<) = {s}; L = {s};

2: α(s) = 0;

3: while Q 6= ∅ do
4: u = min<Q;
5: Q← Qr {u};
6: for v ∈ V (v ∼ u ∧ v 6∈ L) do

7: α(v) = α(u) + 1;

8: if v = t then
9: return “t reachable”;

10: end if
11: Q← Q ∪ {v}, set v = max<Q;
12: L← L ∪ {v};
13: end for
14: end while
15: return “t unreachable”;

INF421, Lecture 2 – p. 25

Basic results

We have the following results (try and prove them):
Thm. 2

If (s, v1, . . . , vk) is any itinerary found by BFS, α(vk) = k

INF421, Lecture 2 – p. 26

Basic results

We have the following results (try and prove them):
Thm. 2

If (s, v1, . . . , vk) is any itinerary found by BFS, α(vk) = k

Thm. 3

If α(u) < α(v), then u enters Q before v does

INF421, Lecture 2 – p. 26

Basic results

We have the following results (try and prove them):
Thm. 2

If (s, v1, . . . , vk) is any itinerary found by BFS, α(vk) = k

Thm. 3

If α(u) < α(v), then u enters Q before v does

Thm. 4

No itinerary found by BFS has repeated elements

INF421, Lecture 2 – p. 26

Basic results

We have the following results (try and prove them):
Thm. 2

If (s, v1, . . . , vk) is any itinerary found by BFS, α(vk) = k

Thm. 3

If α(u) < α(v), then u enters Q before v does

Thm. 4

No itinerary found by BFS has repeated elements

Thm. 5

The function α is well defined

INF421, Lecture 2 – p. 26

Fewest changes

Aim to prove that BFS finds an itinerary with fewest changes

Remark: the number of changes in an itinerary is the
same as the number of nodes in that itinerary, hence:
Thm.

BFS finds a shortest itinerary

Idea of proof:

found by BFS

shortest

0 1 ℓ h− 1 ℓ+1<h

ℓ+ 1 = h

s

uℓ

vh−1

vh

α

INF421, Lecture 2 – p. 27

The proof

Thm.

BFS finds a shortest itinerary (in terms of number of
nodes)

Proof

Let R = (s, v1, . . . , vk = t) be the itinerary found by BFS:
suppose it is not shortest. Let h ≤ k be the smallest index
such that R′ = (s, . . . , vh−1, vh) is not shortest from s→ vh.
By Thm. 2, α(vh) = h. Since this itinerary is not shortest,
there must be a different itinerary P = (s, u1, . . . , uℓ, vh)
which is shortest: then necessarily we have ℓ + 1 < h,
hence ℓ < h. By Thm. 2 again and induction we have
α(uℓ) = ℓ; moreover by Thm. 3 uℓ enters Q before vh, so
BFS finds the itinerary P before R′. Now uℓ ∼ vh+1 yields
α(vh) = ℓ+ 1 < h = α(vh), contradiction.

INF421, Lecture 2 – p. 28

Finding all shortest itineraries

Delete Steps 8-10

All elements in V enter and exit Q

Finds shortest itineraries from s to all elements of V

WARNING: BFS will not find shortest paths in a

weighted graph unless all the arc costs are 1

INF421, Lecture 2 – p. 29

What about fastest?

Every time we insert v at the end of Q, we also record
the arrival time at v using the travelling information
about the relation u ∼ v

INF421, Lecture 2 – p. 30

What about fastest?

Every time we insert v at the end of Q, we also record
the arrival time at v using the travelling information
about the relation u ∼ v

We keep track of the minimum time τ ′ over all elements of
Q

INF421, Lecture 2 – p. 30

What about fastest?

Every time we insert v at the end of Q, we also record
the arrival time at v using the travelling information
about the relation u ∼ v

We keep track of the minimum time τ ′ over all elements of
Q

Whenever we extract the arrival node t from Q, we have
a possible itinerary s→ t; among these itineraries, we
keep track best arrival time τ∗ to t so far

INF421, Lecture 2 – p. 30

What about fastest?

Every time we insert v at the end of Q, we also record
the arrival time at v using the travelling information
about the relation u ∼ v

We keep track of the minimum time τ ′ over all elements of
Q

Whenever we extract the arrival node t from Q, we have
a possible itinerary s→ t; among these itineraries, we
keep track best arrival time τ∗ to t so far

We update τ∗ whenever we find a better itinerary s→ t

INF421, Lecture 2 – p. 30

What about fastest?

Every time we insert v at the end of Q, we also record
the arrival time at v using the travelling information
about the relation u ∼ v

We keep track of the minimum time τ ′ over all elements of
Q

Whenever we extract the arrival node t from Q, we have
a possible itinerary s→ t; among these itineraries, we
keep track best arrival time τ∗ to t so far

We update τ∗ whenever we find a better itinerary s→ t

As soon as τ ′ ≥ τ∗, we know we have a shortest
itinerary (why?)

INF421, Lecture 2 – p. 30

Implementation

INF421, Lecture 2 – p. 31

A possible implementation

1: L is initialized to {s};

2: Q is an empty queue;

3: α(s) = 0;

4: Q.pushBack(s);

5: while ¬(Q.isEmpty()) do

6: u = Q.popFront();

7: for v ∈ V (v ∼ u∧ v 6∈ L) do

8: α(v) = α(u) + 1

9: if v = t then

10: return α(v);

11: end if

12: Q.pushBack(v);

13: L.pushBack(v);

14: end for

15: end while

16: return “t unreachable”;

1: L = {s};

2: (Q,<) = ∅;

3: α(s) = 0;

4: (Q,<) = {s};

5: while Q 6= ∅ do

6: u = min< Q; Q← Qr {u};

7: for v ∈ V (v ∼ u∧ v 6∈ L) do

8: α(v) = α(u) + 1

9: if v = t then

10: return α(v);

11: end if

12: Q← Q ∪ {v} (v = max< Q);

13: L← L ∪ {v};

14: end for

15: end while

16: return “t unreachable”;

INF421, Lecture 2 – p. 32

Its problems

How efficiently can you implement Step 7?

for v ∈ V (v ∼ u ∧ v 6∈ L) do

INF421, Lecture 2 – p. 33

Its problems

How efficiently can you implement Step 7?

for v ∈ V (v ∼ u ∧ v 6∈ L) do

Looping over V : worst case O(|V |)

INF421, Lecture 2 – p. 33

Its problems

How efficiently can you implement Step 7?

for v ∈ V (v ∼ u ∧ v 6∈ L) do

Looping over V : worst case O(|V |)

For each v, check whether v ∼ u

with a jagged array, the u-th row can have size at worst O(|V |), if

every v is in relation with u

if we keep a map A : V × V → {0, 1} such that A(u, v) = 1

whenever u ∼ v and 0 otherwise, we reduce this to O(1)

INF421, Lecture 2 – p. 33

Its problems

How efficiently can you implement Step 7?

for v ∈ V (v ∼ u ∧ v 6∈ L) do

Looping over V : worst case O(|V |)

For each v, check whether v ∼ u

with a jagged array, the u-th row can have size at worst O(|V |), if

every v is in relation with u

if we keep a map A : V × V → {0, 1} such that A(u, v) = 1

whenever u ∼ v and 0 otherwise, we reduce this to O(1)

For each v, also check whether v 6∈ L: worst case
O(|V |) (when most nodes of V have been put into L)

INF421, Lecture 2 – p. 33

Its problems

How efficiently can you implement Step 7?

for v ∈ V (v ∼ u ∧ v 6∈ L) do

Looping over V : worst case O(|V |)

For each v, check whether v ∼ u

with a jagged array, the u-th row can have size at worst O(|V |), if

every v is in relation with u

if we keep a map A : V × V → {0, 1} such that A(u, v) = 1

whenever u ∼ v and 0 otherwise, we reduce this to O(1)

For each v, also check whether v 6∈ L: worst case
O(|V |) (when most nodes of V have been put into L)

A worst case complexity of O(|V |(1 + |V |)) = O(|V |2)

INF421, Lecture 2 – p. 33

Its problems

How efficiently can you implement Step 7?

for v ∈ V (v ∼ u ∧ v 6∈ L) do

Looping over V : worst case O(|V |)

For each v, check whether v ∼ u

with a jagged array, the u-th row can have size at worst O(|V |), if

every v is in relation with u

if we keep a map A : V × V → {0, 1} such that A(u, v) = 1

whenever u ∼ v and 0 otherwise, we reduce this to O(1)

For each v, also check whether v 6∈ L: worst case
O(|V |) (when most nodes of V have been put into L)

A worst case complexity of O(|V |(1 + |V |)) = O(|V |2)

Repeated in the external loop: get O(|V |3) overall: ugh!

INF421, Lecture 2 – p. 33

A more efficient alternative

We initialize the node ranking function α so that
α(u) = |V |+ 1 for all u ∈ V r {s} before Step 5

INF421, Lecture 2 – p. 34

A more efficient alternative

We initialize the node ranking function α so that
α(u) = |V |+ 1 for all u ∈ V r {s} before Step 5

Remark that, by induction from α(s) = 0, whenever α(v)
is updated at Step 8 its value is always ≤ |V |

INF421, Lecture 2 – p. 34

A more efficient alternative

We initialize the node ranking function α so that
α(u) = |V |+ 1 for all u ∈ V r {s} before Step 5

Remark that, by induction from α(s) = 0, whenever α(v)
is updated at Step 8 its value is always ≤ |V |

Since v is inserted into L after α(v) is updated at Step 8,
for each v ∈ V we have that v ∈ L if and only if
α(v) ≤ |V |

INF421, Lecture 2 – p. 34

A more efficient alternative

We initialize the node ranking function α so that
α(u) = |V |+ 1 for all u ∈ V r {s} before Step 5

Remark that, by induction from α(s) = 0, whenever α(v)
is updated at Step 8 its value is always ≤ |V |

Since v is inserted into L after α(v) is updated at Step 8,
for each v ∈ V we have that v ∈ L if and only if
α(v) ≤ |V |

Change loop at Step 7 as follows:

for v ∈ V (v ∼ u ∧ α(v) = |V |+ 1) do

INF421, Lecture 2 – p. 34

A more efficient alternative

We initialize the node ranking function α so that
α(u) = |V |+ 1 for all u ∈ V r {s} before Step 5

Remark that, by induction from α(s) = 0, whenever α(v)
is updated at Step 8 its value is always ≤ |V |

Since v is inserted into L after α(v) is updated at Step 8,
for each v ∈ V we have that v ∈ L if and only if
α(v) ≤ |V |

Change loop at Step 7 as follows:

for v ∈ V (v ∼ u ∧ α(v) = |V |+ 1) do

Now worst-case complexity is O(|V |)
(table look-up in O(1))

INF421, Lecture 2 – p. 34

A more efficient alternative

We initialize the node ranking function α so that
α(u) = |V |+ 1 for all u ∈ V r {s} before Step 5

Remark that, by induction from α(s) = 0, whenever α(v)
is updated at Step 8 its value is always ≤ |V |

Since v is inserted into L after α(v) is updated at Step 8,
for each v ∈ V we have that v ∈ L if and only if
α(v) ≤ |V |

Change loop at Step 7 as follows:

for v ∈ V (v ∼ u ∧ α(v) = |V |+ 1) do

Now worst-case complexity is O(|V |)
(table look-up in O(1))

Hence, we have O(|V |2) overall

INF421, Lecture 2 – p. 34

A better worst-case analysis

The internal loop

for v ∈ V (v ∼ u ∧ α(v) = |V |+ 1) do

only loops over relation pairs (u, v)

INF421, Lecture 2 – p. 35

A better worst-case analysis

The internal loop

for v ∈ V (v ∼ u ∧ α(v) = |V |+ 1) do

only loops over relation pairs (u, v)

Because u is never considered more than once by Thm. 1, it follows

that no pair (u, v) is ever considered more than once over all

iterations w.r.t. both loops

INF421, Lecture 2 – p. 35

A better worst-case analysis

The internal loop

for v ∈ V (v ∼ u ∧ α(v) = |V |+ 1) do

only loops over relation pairs (u, v)

Because u is never considered more than once by Thm. 1, it follows

that no pair (u, v) is ever considered more than once over all

iterations w.r.t. both loops

At worst, the instruction Q.pushBack(v) can only be repeated as

many times as there are pairs in the relation ∼

INF421, Lecture 2 – p. 35

A better worst-case analysis

The internal loop

for v ∈ V (v ∼ u ∧ α(v) = |V |+ 1) do

only loops over relation pairs (u, v)

Because u is never considered more than once by Thm. 1, it follows

that no pair (u, v) is ever considered more than once over all

iterations w.r.t. both loops

At worst, the instruction Q.pushBack(v) can only be repeated as

many times as there are pairs in the relation ∼

Moreover, we execute the body of the outer loop at least |V | times

INF421, Lecture 2 – p. 35

A better worst-case analysis

The internal loop

for v ∈ V (v ∼ u ∧ α(v) = |V |+ 1) do

only loops over relation pairs (u, v)

Because u is never considered more than once by Thm. 1, it follows

that no pair (u, v) is ever considered more than once over all

iterations w.r.t. both loops

At worst, the instruction Q.pushBack(v) can only be repeated as

many times as there are pairs in the relation ∼

Moreover, we execute the body of the outer loop at least |V | times

Asymptotically, we cannot compare n,m: it depends on the graph

INF421, Lecture 2 – p. 35

A better worst-case analysis

The internal loop

for v ∈ V (v ∼ u ∧ α(v) = |V |+ 1) do

only loops over relation pairs (u, v)

Because u is never considered more than once by Thm. 1, it follows

that no pair (u, v) is ever considered more than once over all

iterations w.r.t. both loops

At worst, the instruction Q.pushBack(v) can only be repeated as

many times as there are pairs in the relation ∼

Moreover, we execute the body of the outer loop at least |V | times

Asymptotically, we cannot compare n,m: it depends on the graph

⇒ The worst-case complexity of BFS is then O(|V |+ | ∼ |)

INF421, Lecture 2 – p. 35

BFS: a French publication record

INF421, Lecture 2 – p. 36

History of BFS

BFS was “discovered” by several people, and no-one
quite knows who was the first

The first official publication BFS is usually pointed out to be
a paper written by E.F. Moore, called The shortest path

through a maze, which appeared in the proceedings of a
1959 conference

In fact, the book Théorie des graphes et ses applications by
Claude Berge, published in 1958, contains a description
of BFS applied to finding shortest paths

INF421, Lecture 2 – p. 37

Berge’s problem statement

INF421, Lecture 2 – p. 38

Berge’s algorithm

INF421, Lecture 2 – p. 39

End of Lecture 2

INF421, Lecture 2 – p. 40

	Course
	Remarks on TD1
	Answers to your comments
	Lecture summary
	Motivating example
	Bus network with timetables
	The event graph
	Finding a good itinerary
	Finding a good itinerary
	Finding a good itinerary
	Finding a good itinerary
	Finding a good itinerary
	Finding a good itinerary
	Finding a good itinerary
	Finding a good itinerary
	Finding a good itinerary
	Finding a good itinerary
	Finding a good itinerary
	Finding a good itinerary
	Finding a good itinerary

	Retrieving the path
	This ain't the fastest
	What did we find?
	What did we find?
	What did we find?
	What did we find?
	What did we find?

	Queues
	Queue operations
	Queue operations
	Queue operations

	Circular arrays
	Read beginning of queue
	Delete beginning of queue
	Insert at the end of queue
	Insert at the end (case $t=n$)
	Size and emptiness
	Size and emptiness

	BFS
	The BFS algorithm
	The order on Q
	The order on Q
	The order on Q
	The order on Q
	The order on Q
	The order on Q

	A node hierarchy
	The BFS, again
	Basic results
	Basic results
	Basic results
	Basic results

	Fewest changes
	The proof
	Finding all shortest itineraries
	What about fastest?
	What about fastest?
	What about fastest?
	What about fastest?
	What about fastest?

	Implementation
	A possible implementation
	Its problems
	Its problems
	Its problems
	Its problems
	Its problems
	Its problems

	A more efficient alternative
	A more efficient alternative
	A more efficient alternative
	A more efficient alternative
	A more efficient alternative
	A more efficient alternative

	A better worst-case analysis
	A better worst-case analysis
	A better worst-case analysis
	A better worst-case analysis
	A better worst-case analysis
	A better worst-case analysis

	BFS: a French publication record
	History of BFS
	Berge's problem statement
	Berge's algorithm
	End of Lecture 2

