
LIX, École Polytechnique

Introduction to C++: Exercises

Leo Liberti

Last update: January 8, 2007

Exercises Introduction to C++ L. Liberti

2

Contents

1 Generalities 7

1.1 Definition of program . 7

1.1.1 Solution . 7

1.2 Definition of programming language . 7

1.2.1 Solution . 7

1.3 Indentation . 8

1.3.1 Solution . 9

2 Basic syntax 11

2.1 A minimal C++ program . 11

2.1.1 Solution . 11

2.2 Variables and pointers . 11

2.2.1 Solution . 12

2.3 The second word . 12

2.3.1 Solution . 13

2.4 Random numbers . 14

2.4.1 Solution . 14

3 Classes 17

3.1 Complex numbers . 17

3.1.1 Solution . 18

3.2 Virtual inheritance . 20

3.2.1 Solution . 22

3.3 Virtual and nonvirtual inheritance . 22

3.3.1 Solution . 23

3

Exercises Introduction to C++ L. Liberti

3.4 Nonvirtual base class destructor . 23

3.4.1 Solution . 24

4 Debugging 25

4.1 Segmentation fault . 25

4.1.1 Solution . 25

4.2 Pointer bug . 28

4.2.1 Solution . 29

4.3 Scope of local variables . 31

4.3.1 Solution . 31

4.4 Erasing elements from a vector . 32

4.4.1 Solution . 32

5 A full-blown application 35

5.1 The software architecture . 35

5.1.1 Description . 35

5.1.2 Formalization of requirements . 35

5.1.3 Modularization of tasks . 36

5.1.4 Main algorithm . 36

5.1.5 Fundamental data structures . 36

5.1.6 Classes . 37

5.2 The TimeStamp class . 37

5.3 The FileParser class . 38

5.4 The HTMLPage class . 42

5.5 The URL class . 43

5.6 The Vertex interface and VertexURL implementation . 44

5.7 The Arc and Digraph classes . 45

5.8 Putting it all together: main() . 46

6 Exam questions 49

6.1 Debugging question 1 . 49

6.2 Debugging question 2 . 50

6.3 Debugging question 3 . 50

CONTENTS 4

Exercises Introduction to C++ L. Liberti

6.4 Debugging question 4 . 52

6.5 Debugging question 5 . 52

6.6 Debugging question 6 . 56

6.7 Specification coding question 1 . 56

6.8 Specification coding question 2 . 58

6.9 Task question 1 . 61

6.10 Task question 2 . 61

6.11 Task question 3 . 61

CONTENTS 5

Exercises Introduction to C++ L. Liberti

CONTENTS 6

Chapter 1

Generalities

1.1 Definition of program

(a) Your clothes are dirty and you want to put them in the washing machine. You put the temperature
at 50 C◦ and set the cycle at “coloured cottons”; you satisfy yourself that you don’t have a full load,
so you press the “half-load” button; finally, you start the washing cycle. Is this a program? (b) Now
suppose your girlfriend tells you to “do the washing, please”. Is this a program? Justify your answers.

1.1.1 Solution

(a) The washing machine is a mechanical computer insofar as it does not interpret its instructions but
simply executes them. The instructions for 50 C◦, “coloured cottons”, “half-load” and “start” are pre-
cisely defined by control knobs and button positions on the washing machines. Therefore the washing
machine can correctly interpret the instructions given in the text. This means it is a program. (b)
The object of the sentence “do the washing” has not been specified: the understanding rests upon the
convention of the English language whereby “the washing” usually refers to washing clothes rather than
anything else. In other words, interpretation of the sentence requires a human mind. Therefore, this is
not a program.

1.2 Definition of programming language

Are the rules of chess a programming language? Justify your answer.

1.2.1 Solution

The game of chess has a well-defined set of rules according to which it can be played. Furthermore, these
rules can be correctly interpreted by a computer. However, these rules only say how to form a valid move,
but not which move to choose. In other words, the rules of chess do not supply a computer with the
sequence of operations to follow in order to interpret them. Rather, they restrict the choice to a subset of
all possible sequences of operations (moves) to perform. In this sense, the rules of chess do not form valid
instructions. Therefore, they are not a programming language. Computers programs that play chess only
use the rules of chess as a constraint on the possible moves, but they use much more complex algorithms
to determine which move to make.

7

Exercises Introduction to C++ L. Liberti

1.3 Indentation

Give a precise definition of the concept “well-indented C++ program”. Check whether your definition
correctly classifies the following snippets of code. In the case of programs that are not well-indented, find
the reason why they are not.

// 1. this is a well-indented C++ program

#include<iostream>

int main(int argc, char** argv) {

int ret = 0;

std::cout << "Hello world" << std::endl;

return ret;

}

// 2. this is a well-indented C++ program

#include<iostream>

const int theGlobalValue = 0;

int main(int argc, char** argv) {

theGlobalValue = 1;

std::cout << theGlobalValue << std::endl;

return 0;

}

// 3. this is NOT a well-indented C++ program (why?)

#include<iostream>

int main(int argc, char** argv) {

if (argc < 2) {

std::cerr << "error" << std::endl;

} else {

std::cout << argv[1] << std::endl;

}

}

// 3. this is NOT a well-indented C++ program (why?)

#include<iostream>

const int theGlobalValue = 0;

bool isArgcGood(int argc) {

if (argc < 2) {

std::cout << "error" << std::endl;

return false; }

return true;

}

int main(int argc, char** argv) {

if (isArgcGood(argc)) {

std::cout << argv[1] << std::endl;

}

return 0;

}

// 4. this is NOT a well-indented C++ program (why?)

#include<iostream>

int main(int argc, char** argv) {

Indentation 8

Exercises Introduction to C++ L. Liberti

int i = 0;

while(argv[i]) i++;

std::cout << i << std::endl;

}

1.3.1 Solution

Definition

A C++ program is a set of instructions of the C++ programming language that can be interpreted by a
computer into a sequence of basic operations that the computer can perform.

Axiom

A C++ program consists of a set of global declarations/definitions and several nested groups of instruc-
tions. Each group of instructions is delimited by curly brackets ({ }).

Definition

The rank of a group of instructions in a C++ program is the nesting level of the group in the program.
Global declarations/definitions are defined to be at rank 0.

Definition

Consider a C++ program with instructions I1, . . . , In. For a given K > 0, a group of t instructions
(Ih, . . . , Ih+t) at rank r in a C++ program is well-K-indented if:

1. no two instructions are on the same line of text;

2. the opening curly bracket is on a line of text above Ih and the closing curly bracket is on a line of
text below Ih+t;

3. Ih−1 (the last instruction at rank r− 1 before the beginning of the group) starts K columns of text
before Ih;

4. the closing curly brace of the group is aligned with instruction Ih−1 (in other words, it is positioned
K columns of text before Ih+t).

Definition

A C++ program is well-indented if there is an integer K > 0 such that (a) the global declarations/definitions
start at column 0, and (b) each of its instruction groups is well-K-indented.

Fact

Usual values for K are 2, 4, 8. In this course, the value K = 2 is favoured as it allows for a greater
number of nesting levels to be displayed in 80 characters (the usual screen width on UNIX systems).

Indentation 9

Exercises Introduction to C++ L. Liberti

Indentation 10

Chapter 2

Basic syntax

2.1 A minimal C++ program

Edit, save and build the following program.

/***

* Name: minimal.cxx

* Author: Leo Liberti

* Source: GNU C++

* Purpose: minimal C++ program

* Build: c++ -o minimal minimal.cxx

* History: 060818 work started

***/

#include<iostream>

int main(int argc, char** argv) {

using namespace std;

int ret = 0;

// your code goes here

return ret;

}

Now modify it to print the array of characters argv[0].

2.1.1 Solution

Insert the statement cout << argv[0] << endl; before the return ret; statement.

2.2 Variables and pointers

Consider the following program.

11

Exercises Introduction to C++ L. Liberti

#include<iostream>

const char endOfCharArray = ’\0’;

int main(int argc, char** argv) {

using namespace std;

int ret = 0;

if (argc < 2) {

cerr << "error: no arguments on cmd line" << endl;

ret = 1;

} else {

for(int i = 0; i < argc; i++) {

while(*(argv[i]) != endOfCharArray) {

cout << *(argv[i]);

argv[i]++;

}

cout << endl;

}

}

return ret;

}

(a) List the variables in the program and their types. (b) List the pointers in the program and
their types. (c) How many pointers are there in the program when it is run with the command line
./variables pointers 123 456 789? (d) Edit, save, build and run the program with the command
line above. What is the output?

2.2.1 Solution

(a) char endOfCharArray, int argc, char** argv, int ret, int i. (b) char** argv, char* argv[i]

for all i ∈ {0, . . . , argc− 1}. (c) Five pointers: argv and argv[i] with 0 ≤ i ≤ 3. (d) The output is:

./variables_pointers

123

456

789

2.3 The second word

(a) Write a program that writes the second word (and its length) in an array of characters. Words are
separated by spaces, punctuation and tabs. Test your code on the sentence “Actually, couldn’t you come
with me?” The correct answer should be couldn’t(8). If you’re stuck, you can follow the template
below.

// test if c is in the array containing all the valid separators

bool isSeparator(char c, char* separators);

// return the length of the char array a

int charArrayLength(char *a);

int main(int argc, char** argv) {

The second word 12

Exercises Introduction to C++ L. Liberti

// find the beginning of the second word

// find the end of the second word

}

2.3.1 Solution

/***
* Name: secondword.cxx
* Author: Leo Liberti
* Source: GNU C++
* Purpose: minimal C++ program
* Build: c++ -o secondword secondword.cxx
* History: 060818 work started
***/

#include<iostream>

bool isSeparator(char c, char* separators) {
char endOfString = ’\0’;
char* sepPtr = separators;
bool ret = false;
while(*sepPtr != endOfString) {

if (c == *sepPtr) {
ret = true;
break;

}
sepPtr++;

}
return ret;

}

int charArrayLength(char* a) {
int ret = 0;
char endOfString = ’\0’;
while(*a != endOfString) {

ret++;
a++;

}
return ret;

}

int main(int argc, char** argv) {
using namespace std;
int ret = 0;

char endOfString = ’\0’;
char theSentence[] = "Actually, couldn’t you come with me?";
char separators[] = " \t,.;:?!";
char* strPtr = theSentence;
char* strEnd;

// find the beginning of the second word
bool isSecondWord = false;
while(*strPtr != endOfString) {

while(isSeparator(*strPtr, separators)) {
// while deals with case with consecutive separators
strPtr++;
isSecondWord = true;

}
if (isSecondWord) {

// end of consecutive separators, means second word starts at strPtr
break;

} else {
// character was not a separator, continue
strPtr++;

}
}

// find the end of the second word
strEnd = strPtr;
while(*strEnd != endOfString) {

if (isSeparator(*strEnd, separators)) {
// first separator found after second word, mark the end
*strEnd = endOfString;
break;

}

The second word 13

Exercises Introduction to C++ L. Liberti

strEnd++;
}

// print the second word and its length
cout << strPtr << "(" << charArrayLength(strPtr) << ")" << endl;

return ret;
}

2.4 Random numbers

The following code can be used to generate pseudo-random floating point numbers in [0, 1].

#include<iostream>
#include<sys/time.h>

int main(int argc, char** argv) {
using namespace std;

// initialize randomizer
struct timeval theTV;
struct timezone theTZ;
gettimeofday(&theTV, &theTZ);
srandom(theTV.tv_usec);

// pick a random number between 0 and 1
double normalizedRndCoeff = (double) random() / (double) RAND_MAX;
cout << normalizedRndCoeff << endl;
return 0;

}

Write a small program that generates a random sample of given size N (input from command line)
and that computes the mean and the variance. Use your program to show empirically that

α = lim
N→∞

Var(X) ∼= 0.083,

where X is a random variable. Prove that α = 1

12
.

Optional: update your program to generate a random sample whose elements are within given
numerical bounds.

2.4.1 Solution

#include<iostream>
#include<cstdlib>
#include<cmath>
#include<sys/time.h>

int main(int argc, char** argv) {
using namespace std;

// read sample size from command line
if (argc < 2) {

cerr << "meanvariance: sample size needed on command line" << endl;
return 1;

}
int sampleSize = atoi(argv[1]);
if (sampleSize <= 0) {

cerr << "meanvariance: sample size must be strictly positive" << endl;
return 2;

}

// initialize randomizer
struct timeval theTV;
struct timezone theTZ;
gettimeofday(&theTV, &theTZ);

Random numbers 14

Exercises Introduction to C++ L. Liberti

srandom(theTV.tv_usec);

// generate the sample (numbers between 0 and 1)
double* sample = new double[sampleSize];
for(int i = 0; i < sampleSize; i++) {

sample[i] = (double) random() / (double) RAND_MAX;
}

// compute the mean
double mean = 0;
for(int i = 0; i < sampleSize; i++) {

mean += sample[i];
}
mean /= (double) sampleSize;

// compute the variance
double variance = 0;
double dtmp = 0;
for(int i = 0; i < sampleSize; i++) {

dtmp = sample[i] - mean;
dtmp *= dtmp;
variance += dtmp;

}
variance /= (double) sampleSize;

// compute the standard deviation
double stddev = sqrt(variance);

// output
cout << "mean = " << mean << "; variance = " << variance

<< "; std deviation = " << stddev << endl;

delete [] sample;
return 0;

}

Let x = (x1, . . . , xN) a sample of size N of values of the random variable X.

Var(X) =

∫ 1

0

x2 −
1

4
=

1

12

Random numbers 15

Exercises Introduction to C++ L. Liberti

Random numbers 16

Chapter 3

Classes

3.1 Complex numbers

The following code is the class header describing a complex number class.

/*
** Name: complex.h
** Author: Leo Liberti
** Purpose: header file for a complex numbers class
** Source: GNU C++
** History: 061019 work started
*/

#ifndef _COMPLEXH
#define _COMPLEXH

#include<string>
#include<iostream>

class Complex {

public:

Complex();
Complex(double re, double im);
~Complex();

double getReal(void);
double getImaginary(void);
void setReal(double re);
void setImaginary(double im);
void fromString(const std::string& complexString);

Complex operator+(Complex& theComplex);
Complex operator-(Complex& theComplex);
Complex operator*(Complex& theComplex);
Complex operator/(Complex& theComplex);

private:
double real;
double imag;

};

std::ostream& operator<<(std::ostream& out, Complex& theComplex);

#endif

Write the corresponding implementation file complex.cxx. Test it on the following main() function

definition, using the command ./test 2.1+0.2i / 0.2-0.3i . The output should be 2.76923 + 5.15385i .

/*

17

Exercises Introduction to C++ L. Liberti

** Name: test.cxx
** Author: Leo Liberti
** Purpose: testing the complex numbers class
** Source: GNU C++
** History: 061019 work started
*/

#include <iostream>
#include <string>
#include "complex.h"

int main(int argc, char** argv) {
using namespace std;
if (argc < 4) {

cerr << "need an operation on command line" << endl;
cerr << " e.g. ./test 4.3+3i - 2+3.1i" << endl;
cerr << " (no spaces within each complex number, use spaces to\n";
cerr << " separate the operands and the operator - use arithmetic\n";
cerr << " operators only)" << endl;
return 1;

}
string complexString1 = argv[1];
string complexString2 = argv[3];
Complex complex1;
complex1.fromString(complexString1);

Complex complex2;
complex2.fromString(complexString2);

Complex complex3;
if (argv[2][0] == ’+’) {

complex3 = complex1 + complex2;
} else if (argv[2][0] == ’-’) {

complex3 = complex1 - complex2;
} else if (argv[2][0] == ’*’ || argv[2][0] == ’.’) {

argv[2][0] = ’*’;
complex3 = complex1 * complex2;

} else if (argv[2][0] == ’/’) {
complex3 = complex1 / complex2;

}
cout << complex1 << " " << argv[2][0] << " (" << complex2 << ") = "

<< complex3 << endl;
return 0;

}

Use the following Makefile to compile (use tabs, not spaces after each label — for that you need to
use the Emacs editor):

Name: complex.Makefile
Author: Leo Liberti
Purpose: makefile for complex class project
Source: GNU C++
History: 061019 work started

CXXFLAGS = -g

all: test

test: complex.o test.cxx
c++ $(CXXFLAGS) -o test test.cxx complex.o

complex.o: complex.cxx complex.h
c++ $(CXXFLAGS) -c -o complex.o complex.cxx

clean:
rm -f *~ complex.o test

3.1.1 Solution

/*
** Name: complex.cxx
** Author: Leo Liberti
** Purpose: implementation of a complex numbers class
** Source: GNU C++
** History: 061019 work started

Complex numbers 18

Exercises Introduction to C++ L. Liberti

*/

#include<iostream>
#include<string>
#include<sstream>
#include<cstdlib>
#include<cmath>
#include "complex.h"

const char charPlusOp = ’+’;
const char charMinusOp = ’-’;
const char charIValue = ’i’;

Complex::Complex() : real(0.0), imag(0.0) { }

Complex::Complex(double re, double im) : real(re), imag(im) { }

Complex::~Complex() { }

double Complex::getReal(void) {
return real;

}

double Complex::getImaginary(void) {
return imag;

}

void Complex::setReal(double re) {
real = re;

}

void Complex::setImaginary(double im) {
imag = im;

}

void Complex::fromString(const std::string& complexString) {
using namespace std;
string realString;
string imagString;
stringstream stringBufReal;
stringstream stringBufImag;
int opPos = complexString.find(charPlusOp);
int iPos;
if (opPos != complexString.npos) {

// deal with cases re + im i
realString = complexString.substr(0, opPos);
stringBufReal.str(realString);
stringBufReal >> real;
imagString = complexString.substr(opPos + 1);
stringBufImag.str(imagString);
stringBufImag >> imag;
if (imag == 0) {

// case re + i
imag = 1;

}
} else {

opPos = complexString.find(charMinusOp);
if (opPos != complexString.npos && opPos > 0) {

// deal with cases re - im i
realString = complexString.substr(0, opPos);
stringBufReal.str(realString);
stringBufReal >> real;
imagString = complexString.substr(opPos + 1);
stringBufImag.str(imagString);
stringBufImag >> imag;
if (imag == 0) {

// case re - i
imag = 1;

}
imag = -imag;

} else {
opPos = complexString.find(charIValue);
if (opPos != complexString.npos) {

// deal with case im i
imagString = complexString.substr(0, opPos);
stringBufImag.str(imagString);
stringBufImag >> imag;

} else {
// deal with case re
stringBufReal.str(complexString);
stringBufReal >> real;

Complex numbers 19

Exercises Introduction to C++ L. Liberti

}
}

}
}

Complex Complex::operator+(Complex& theComplex) {
return Complex(real+ theComplex.getReal(), imag + theComplex.getImaginary());

}

Complex Complex::operator-(Complex& theComplex) {
return Complex(real- theComplex.getReal(), imag - theComplex.getImaginary());

}

Complex Complex::operator*(Complex& theComplex) {
double re = real * theComplex.getReal() - imag * theComplex.getImaginary();
double im = imag * theComplex.getReal() + real * theComplex.getImaginary();
return Complex(re, im);

}

Complex Complex::operator/(Complex& theComplex) {
double c = theComplex.getReal();
double d = theComplex.getImaginary();
double denom = c*c + d*d;
double re;
double im;
if (denom == 0) {

re = 1e100;
im = 1e100;

}
re = (real*c + imag*d) / denom;
im = (imag*c - real*d) / denom;
return Complex(re, im);

}

std::ostream& operator<<(std::ostream& out, Complex& theComplex) {
using namespace std;
double re = theComplex.getReal();
double im = theComplex.getImaginary();
if (im > 0 && re != 0) {

if (im != 1) {
out << re << " + " << im << "i";

} else {
out << re << " + i";

}
} else if (im < 0 && re != 0) {

if (im != -1) {
out << re << " - " << fabs(im) << "i";

} else {
out << re << " - i";

}
} else if (re == 0) {

out << im << "i";
} else if (im == 0) {

out << re;
}
return out;

}

3.2 Virtual inheritance

The code below defines a virtual base class VirtualBase and a derived class Derived which implements
it. The VirtualBase interface is simply to set and get an integer value. The Derived adds a method
for printing the value. We then have two functions in the global namespace, printTheValue1() and
printTheValue2(), which print out the values in different ways: the first simply uses the get method
of the interface to retrieve the value; the second tries to transform the VirtualBase interface pointer
passed as argument to a pointer to the Derived class, and then calls the Derived class’ print method.

// this program does not compile!

#include<iostream>

Virtual inheritance 20

Exercises Introduction to C++ L. Liberti

class VirtualBase {

public:

virtual ~VirtualBase() { }

virtual void setValue(int i) = 0;

virtual int getValue(void) = 0;

};

class Derived : public virtual VirtualBase {

public:

~Derived() { }

void setValue(int i) {

theValue = i;

}

int getValue(void) {

return theValue;

}

void printValue(void) {

std::cout << "Derived::printValue(): value is " << theValue << std::endl;

}

private:

int theValue;

};

void printTheValue1(VirtualBase* v) {

std::cout << "printTheValue1(): value is " << v->getValue() << std::endl;

}

void printTheValue2(VirtualBase* v) {

Derived* d = v;

d->printValue();

}

int main(int argc, char** argv) {

int ret = 0;

Derived d;

VirtualBase* v = &d;

v->setValue(1);

printTheValue1(v);

printTheValue2(v);

return ret;

}

The desired output is:

printTheValue1(): value is 1

Derived::printValue(): value is 1

However, the program fails to compile with the error:

virtual2.cxx: In function ’void printTheValue2(VirtualBase*)’:

virtual2.cxx:31: error: invalid conversion from ’VirtualBase*’ to ’Derived*’

Virtual inheritance 21

Exercises Introduction to C++ L. Liberti

virtual2.cxx:31: error: cannot convert from base ’VirtualBase’

to derived type ’Derived’ via virtual base ’VirtualBase’

What has gone wrong? How can you fix this program? [Hint: look at C++ casting operators]

3.2.1 Solution

The problem on line 31 Derived* d = v; is given by the fact that we are attempting to cast a pure
virtual base class into a derived class at compile-time: this is not possible. Instead, we have to employ
the dynamic cast operator and replace line 31 with:

Derived* d = dynamic_cast<Derived*>(v);

This fixes the problem.

3.3 Virtual and nonvirtual inheritance

What is the output of the following code?

#include<iostream>

class A {

public:

void f() {

std::cout << "A::f" << std::endl;

}

virtual void g() {

std::cout << "A::g" << std::endl;

}

};

class B : public A {

public:

void f() {

std::cout << "B::f" << std::endl;

}

virtual void g() {

std::cout << "B::g" << std::endl;

}

};

int main(int argc, char** argv) {

A a;

B b;

A* aPtr = &a;

A* bPtr = &b;

aPtr->f();

aPtr->g();

bPtr->f();

bPtr->g();

Virtual and nonvirtual inheritance 22

Exercises Introduction to C++ L. Liberti

return 0;

}

Is there anything surprising? Can you explain it?

3.3.1 Solution

The output is

A::f

A::g

A::f

B::g

Since this is produced by this code:

aPtr->f();

aPtr->g();

bPtr->f();

bPtr->g();

It is surprising that the pointer to the B object does not print B::f but A::f. The reason is that the
derived class B hides the method A::f(), which was not declared virtual. This is known as compile-time
polymorphism: at compile-time, the compiler only knows that bPtr is of type A*, and therefore binds
to it the f() method found in A. The g() method, however, was declared virtual in the base class,
which means that the compiler will implement run-time polymorphism (almost always the desired kind),
and will delegate binding decisions (i.e. , deciding what method to call) to run-time. At run-time, even
though bPtr is of type A*, it is possible to find out that in fact it points to an object of type B, so the
correct binding takes place.

3.4 Nonvirtual base class destructor

The code below shows the ill effects of hiding a non-virtual constructor of a base class, and then using
the derived class as a base one.

// this program is buggy!

#include<iostream>

class Base {

public:

Base() {

std::cerr << "constructing Base " << this << std::endl;

i = new int;

}

~Base() {

std::cerr << "destroying Base " << this << std::endl;

delete i;

}

private:

Nonvirtual base class destructor 23

Exercises Introduction to C++ L. Liberti

int* i;

};

class Derived : public Base {

public:

Derived() {

std::cerr << "constructing Derived " << this << std::endl;

d = new double;

}

~Derived() {

std::cerr << "destroying Derived " << this << std::endl;

delete d;

}

private:

double* d;

};

int main(int argc, char** argv) {

using namespace std;

int ret = 1;

Base* thePtr = new Derived;

delete thePtr;

return ret;

}

The output of this program is

constructing Base 0x804a008

constructing Derived 0x804a008

destroying Base 0x804a008

This is a bug, because the Derived object was never deallocated. At best, this is a memory leak. In
some other cases it may become the source of more serious problems. Can you explain what happened
and how to fix the program?

3.4.1 Solution

The main code allocates a Derived object on the heap but uses a Base pointer to store its address,
exploiting polymorphism. Since the destructor is not declared virtual, the binding occurs at compile-
time: since thePtr is of type Base*, the destructor called is the one for the Base class even though
thePtr actually points to an object of type Derived.

As is said in the “C++ Gotchas” book by S. Dewhurst (gotcha #70), this bug causes unpredictable
behaviour.

Chances are you’ll just get a call of the base class destructor for the derived class object: a
bug. But the compiler may decide to do anything else it feels like (dump core? send nasty
email to your boss? sign you up for a lifetime subscription to “This week in Object-Oriented
COBOL”?).

Nonvirtual base class destructor 24

Chapter 4

Debugging

4.1 Segmentation fault

The following code contains three serious memory bugs, usually ending in a segmentation fault. Find the
bugs, solve them and explain them.

// this program is buggy

#include<iostream>

int main(int argc, char** argv) {

using namespace std;

double* d = new double;

for(unsigned int i = 0; i < 3; i++) {

d[i] = 1.5 + i;

}

for(unsigned int i = 2; i >= 0; i--) {

cout << d[i] << endl;

}

}

4.1.1 Solution

If we just compile and run the program, we obtain a lot of output, structured more or less as follows:

3.5

2.5

1.5

3.60739e-313

0

[...]

0

3.66616e-307

5.09279e-313

nan

nan

25

Exercises Introduction to C++ L. Liberti

[...]

Segmentation fault

This is usually known as garbage output. The first three lines are the expected output, but we fail
to understand why did the program not stop on the second loop when it was told. Furthermore, why the
Segmentation fault?

We build the program with the debugging flag set c++ -g -o segmentationfault segmentationfault.cxx

and then debug it using valgrind: valgrind -q ./segmentationfault . We obtain the usual garbage in-

terspersed with meaningful valgrind messages. We can run it again saving the standard error stream to

the standard output and redirecting it through a pager: valgrind -q ./segmentationfault 2¿&1 — less .

valgrind’s messages are:

==31179== Invalid write of size 8

==31179== at 0x8048681: main (segmentationfault.cxx:6)

==31179== Address 0x426A030 is 0 bytes after a block of size 8 alloc’d

==31179== at 0x401A878: operator new(unsigned) (vg_replace_malloc.c:163)

==31179== by 0x804864D: main (segmentationfault.cxx:4)

==31179==

==31179== Invalid read of size 4

==31179== at 0x804869E: main (segmentationfault.cxx:9)

==31179== Address 0x426A03C is 12 bytes after a block of size 8 alloc’d

==31179== at 0x401A878: operator new(unsigned) (vg_replace_malloc.c:163)

==31179== by 0x804864D: main (segmentationfault.cxx:4)

==31179==

==31179== Invalid read of size 4

==31179== at 0x80486A1: main (segmentationfault.cxx:9)

==31179== Address 0x426A038 is 8 bytes after a block of size 8 alloc’d

==31179== at 0x401A878: operator new(unsigned) (vg_replace_malloc.c:163)

==31179== by 0x804864D: main (segmentationfault.cxx:4)

==31179==

==31179== Process terminating with default action of signal 11 (SIGSEGV)

==31179== Bad permissions for mapped region at address 0x4262FFC

==31179== at 0x804869E: main (segmentationfault.cxx:9)

The first error, Invalid write, is very serious. It means we are writing on heap memory we had
not allocated. This usually results immediately in unpredictable behaviour and the fatal segmentation
fault error. We can find out at which step of the loop the error arises by inserting a print statement
cout << "*** " << i << endl; before line 6, rebuilding, and running valgrind again. We see im-

mediately that the Invalid write occurs when i has value 1. It is important to remove the temporary
print statement in order to keep the line numbers valid. The fact that d[0] exists in memory but d[1]
is invalid should immediately tell us that we failed to allocate enough memory. In particular, we issued
the C++ statement double* d = new double; , which reserves space on the heap for just one double
floating point number. What we really wanted to do, in fact, was to have space for an array of size 3:

double* d = new double[3]; .

We now rebuild and re-run the program. Again we get garbage output. valgrind reveals that the
first error has been fixed:

==31348== Invalid read of size 4

==31348== at 0x804869E: main (segmentationfault.cxx:9)

==31348== Address 0x426A024 is 4 bytes before a block of size 24 alloc’d

==31348== at 0x401ACE0: operator new[](unsigned) (vg_replace_malloc.c:195)

Segmentation fault 26

Exercises Introduction to C++ L. Liberti

==31348== by 0x804864D: main (segmentationfault.cxx:4)

==31348==

==31348== Invalid read of size 4

==31348== at 0x80486A1: main (segmentationfault.cxx:9)

==31348== Address 0x426A020 is 8 bytes before a block of size 24 alloc’d

==31348== at 0x401ACE0: operator new[](unsigned) (vg_replace_malloc.c:195)

==31348== by 0x804864D: main (segmentationfault.cxx:4)

==31348==

==31348== Process terminating with default action of signal 11 (SIGSEGV)

==31348== Bad permissions for mapped region at address 0x4262FFC

==31348== at 0x804869E: main (segmentationfault.cxx:9)

The Invalid read error is not as serious as the Invalid write, but almost as bad. It means that
we are reading from unallocated memory.

To see what is happening we launch ddd and we set a breakpoint at line 9
break segmentationfault.cxx:9 . Then we start debugging run. Since the problem is that the loop

does not seem to terminate as it should, we want to keep track of the counter i. With display i

we can have i’s value printed after each step next . After a few steps, we find that i has value 0.
Instead of terminating, the loop continues with i set at 4294967295. Naturally, the condition i >= 0 is
still verified so that’s the reason why the loop continues. The strange value in i is due to the fact that
the counter was declared unsigned int, which means that it can never take negative values — in other
words, 0 is the minimum value that i can take. When an unsigned int is set at 0 (as i in our case)
and then a decrement operator is applied to it (i-- within the for statement), it is set to “one less than
the minimum value”, which by definition is taken to be the maximum value (i.e. a large, positive value).
Thus the bug is explained. It can be fixed by taking away the unsigned qualifier.

We rebuild, re-run the program and find that it works without any trouble whatsoever:

3.5

2.5

1.5

The third bug is much harder to find, since the behaviour of the program is now correct. We can
identify it by enclosing the whole program into an endless loop:

int main(int argc, char** argv) {

using namespace std;

while(true) {

double* d = new double[3];

for(int i = 0; i < 3; i++) {

d[i] = 1.5 + i;

}

for(int i = 2; i >= 0; i--) {

cout << d[i] << endl;

}

}

}

We now build and run the program, and in another shell we launch the shell command top -d 1 .

In the last column of this window we find some program names which are running on the computer. We
find the line relative to segmentationfault:

Segmentation fault 27

Exercises Introduction to C++ L. Liberti

31467 liberti 25 0 9044 7404 764 R 18.9 1.2 0:04.85 segmentationfau

If we let our program run for a few seconds (minutes) we notice that on the column marked %MEM the
percentage of memory dedicated to segmentationfault always increases. If we let this program run for
a long time, it gobbles up the whole computer memory. On certain operating systems, this amounts to
freezing the computer dead. On others, the process is automatically killed. In any case, we do not want
any program of ours to follow this behaviour, called memory leak. It is easy to find that the cause of this

bug is that we forgot to deallocate memory after the allocation. We insert the line delete [] d; right
before the end of the program to fix this bug.

4.2 Pointer bug

The following snippet of code behaves unpredictably: it will often print a value for testInt which is
different from 1, although in the variable testInt is never explicitly changed. Debug the program using
ddd and valgrind. What is the bug? How can you fix it? Change the order of the statements marked
(a), (b), (c) and test the resulting programs: what is the behaviour? Can you explain it?

// this program is buggy!

#include<iostream>

#include<cstring>

const int bufSize = 20;

int main(int argc, char** argv) {

using namespace std;

if (argc < 3) {

cerr << "need a char and a word as arguments on cmd line" << endl;

return 1;

}

// a test integer to which we assign the value 1

int testInt = 1; // (a)

// get the first char of the first argument

char theChar = argv[1][0]; // (b)

// get the second argument as word

char buffer[bufSize]; // (c)

strncpy(buffer, argv[2], bufSize);

char* wordPtr = buffer;

// skip characters in the word and delete them, until we find theChar

while(*wordPtr != theChar) {

*wordPtr = ’ ’;

wordPtr++;

cout << (int) (wordPtr - buffer) << endl;

}

// now see what value has the test integer

cout << testInt << endl;

return 0;

}

Pointer bug 28

Exercises Introduction to C++ L. Liberti

4.2.1 Solution

First, we compile pointerbug.cxx using the debug -g option: c++ -g -o pointerbug pointerbug.cxx .

To debug with ddd, we run: ddd pointerbug . We set command line arguments e test set args e test

and set a breakpoint inside the while loop break pointerbug.cxx:26 . We start the debugging session

run which stops at the required breakpoint, on the line *wordPtr = ’ ’; . Putting the mouse pointer
on the symbol wordPtr reveals on the window status line that the array pointed at by wordPtr is "test".
From here on, we debug one statement at a time by repeatedly issuing the command next . See Fig. 4.1.

Figure 4.1: The ddd frontend to the gdb debugger.

At line 27, the array has become " est" because the ’t’ character has been replaced by a space (this
is the effect of line 26). A next command later, we are on line 25 (the while test). As theChar is equal

to ’e’ and *wordPtr is also ’e’, the test fails and the loop is exited. Three more next commands
exit the debugging session without detecting any problem. We now change the command line arguments:
set args y test and re-debug the program. We notice that, as the array pointed at by wordPtr,

namely "test", does not contain the ’y’ character, the while condition does not fail before the end
of the array. It is not difficult to imagine that as the loop is repeated, characters in memory after the
wordPtr array are set to contain spaces (as per line 26), so that eventually the whole memory adjacent
to wordPtr is erased. As the variables are stored from the stack, the memory “after” the wordPtr array

Pointer bug 29

Exercises Introduction to C++ L. Liberti

contains the values of the variables declared before the wordPtr array, namely the testInt variable. This
is the reason why the program behaves incorrectly and unpredictably. This type of bug is a memory bug
known as stack corruption, and it was engendered by the array bound overflow of the wordPtr pointer
being increased past its legal limit.

The valgrind command-line debugging tool is usually very helpful in tracing memory bugs; in this

case, however, its output is somewhat obscure. Running valgrind -q ./pointerbug y test yields

==28373== Conditional jump or move depends on uninitialised value(s)

==28373== at 0x8048752: main (pointerbug.cxx:25)

538976288

Line 25 is the while condition. What valgrind is telling us is that at a certain point of the pro-
gram execution, the test (*wordPtr != theChar) occurs over an uninitialised portion of memory. Now,
theChar is certainly initialised (line 17), so this leaves the *wordPtr as the sole possible source of the
problem. We can shed further light on this matter by printing a loop counter (so we know when the prob-

lem occurs). We do this by inserting the C++ line cout << (int) (wordPtr - buffer) << endl;

after line 27. The output is now,

1

[...]

21

22

23

24

==28407== Conditional jump or move depends on uninitialised value(s)

==28407== at 0x8048783: main (pointerbug.cxx:25)

25

26

27

538976288

At this point we immediately realize that the loop is counting past the end of string, as our given
string test is only 4 characters long, and the program stops well past it. It is also interesting to notice
that the first 25 bytes after buffer are all initialised parts of the stack: this is consistent with buffer

being 20 bytes long (i.e. the vale of bufSize), theChar occupying only 1 byte of memory, and testInt

being a 32 bit (i.e. 4 bytes) integer of type int.

One further point of interest is, why should the program terminate at all? Supposing there is no ’y’

character in the memory starting from buffer, the while condition would never be satisfied. This is
indeed the case, but the fact is that the overall distribution of byte values in memory is close to uniform,
so that it is likely that each ASCII value from 0 to 255 will eventually be found in such a large chunk of
memory.

In order to fix the bug, it suffices change the while condition to

(*wordPtr != theChar && *wordPtr != ’\0’ && (int) (wordPtr - buffer) < bufSize)

so that the end-of-char-array delimiter (the NULL byte), as well as the maximum array size checking
condition may also be able to stop the loop.

To answer the last part of the question, the value 1 contained in testInt will not be affected by the
bug described above if testInt is declared after buffer, because the statement *wordPtr = ’ ’; will

then overwrite memory after buffer (which, because the variables are on the stack, refers to variables
declared before buffer).

Pointer bug 30

Exercises Introduction to C++ L. Liberti

4.3 Scope of local variables

Inspect the following code. Convince yourself that the expected output should be 0 1 2 3 4 . Compile
and test the code. The output is unpredictable (may be similar to

134524936 134524968 134524952 134524984 134525024 depending on the machine and circumstances).
How do you explain this bug? How can you fix it?

#include<iostream>

#include<vector>

class ValueContainer {

public:

ValueContainer() : theInt(0) { }

~ValueContainer() { }

void set(int* t) {

theInt = t;

}

int get(void) {

return *theInt;

}

private:

int* theInt;

};

ValueContainer* createContainer(int i) {

ValueContainer* ret = new ValueContainer;

ret->set(&i);

return ret;

}

const int vecSize = 5;

int main(int argc, char** argv) {

using namespace std;

vector<ValueContainer*> value;

for(int i = 0; i < vecSize; i++) {

value.push_back(createContainer(i));

}

for(int i = 0; i < vecSize; i++) {

cout << value[i]->get() << " ";

}

cout << endl;

for(int i = 0; i < vecSize; i++) {

delete value[i];

}

return 0;

}

4.3.1 Solution

The ValueContainer::myInt pointer is always initialized to the address of a local variable, namely the
i passed to the createContainer(int) method. Local variables are allocated on the stack and are

Scope of local variables 31

Exercises Introduction to C++ L. Liberti

deallocated as soon as their scope is closed. In this case, the i variable local to createContainer is
deallocated at the end of the createContainer method, hence the pointer which has been stored in the
ret pointer to ValueContainer object points to an unused area of the stack. Chances are this stack area
will be overwritten when functions are called and returned from, so the output is unpredictable.

There are several ways to fix this bug. The most direct is to replace the statement ret->set(&i);

with ret->set(new int(i)); , and to add the statement delete theInt; in the class destructor.

A more meaningful bugfix would involve recognizing that the semantics of the class is wrong. Set/get
pairs should behave with the same data, and the fact that the integer data within the class (theInt) has
a name which does not remind of a pointer are strong hints that the real bug was to design a class that
stores an integer pointer when all that was needed was simply an integer. Thus the “correct correction”
is to make all changes so that theInt is an integer variable instead of a pointer to integer.

4.4 Erasing elements from a vector

The following code initializes an STL vector of integers to (2, 1) then iterates to erase all elements with
value 1. The code compiles but on running it we get a segmentation fault abort. Find and fix the bug.

// this program is buggy!

#include<vector>

int main(int argc, char** argv) {

using namespace std;

int ret = 0;

vector<int> theVector;

theVector.push_back(2);

theVector.push_back(1);

vector<int>::iterator vi;

for(vi = theVector.begin(); vi != theVector.end(); vi++) {

if (*vi == 1) {

theVector.erase(vi);

}

}

return ret;

}

4.4.1 Solution

The problem lies in the fact that erasing invalidates all subsequent iterators. In order to erase some
iterators subject to certain conditions, one must first remove them to the end of the vector and then
erase the end.

#include<vector>

#include<iostream>

#include<algorithm>

int main(int argc, char** argv) {

using namespace std;

int ret = 0;

vector<int> theVector;

Erasing elements from a vector 32

Exercises Introduction to C++ L. Liberti

theVector.push_back(2);

theVector.push_back(1);

vector<int>::iterator theEnd = remove(theVector.begin(), theVector.end(), 1);

theVector.erase(theEnd, theVector.end());

for(int i = 0; i < theVector.size(); i++) {

cout << theVector[i] << endl;

}

return ret;

}

Erasing elements from a vector 33

Exercises Introduction to C++ L. Liberti

Erasing elements from a vector 34

Chapter 5

A full-blown application

In this chapter we will describe in a step-by-step fashion how to build a full-blown application in C++.
The application is called WET (WWW Exploring Topologizer) and its purpose is to explore a neigh-
bourhood of a given URL in the World Wide Web and to output it in the shape of a graph. We delegate
graph visualization to the GraphViz library www.graphviz.org, and in particular to the dot and neato

UNIX utilities. These accept the input graph in a particular format

digraph graphName {

list of nodes with special properties

0 [label = "thenode", color = red];

list of arcs

0 -> 1;

1 -> 2;

}

So the task performed by WET is to download a given URL and explore its links up to the n-th
recursion level, then to put the obtained graph in the above format.

This chapter starts with a section on the software architecture; each class is then described and its
implementation mostly delegated as exercise. The software architecture section does not contain any
exercises, but it is a prerequisite for understanding what follows. Moreover, it is a (crude) example
showing how to formalize the architecture of a software.

5.1 The software architecture

5.1.1 Description

Given an URL, this tool explores a local neighbourhood of the URL. Each web page is represented by a
vertex in a graph, and given two vertices u, v there is an arc between them if there is a hyperlink citing
the web page v in the web page u. The graph is then printed on the screen.

5.1.2 Formalization of requirements

• Input:

– the URL we must start the retrieval from

35

Exercises Introduction to C++ L. Liberti

– the maximum hyperlink depth

• Output:

– graph and time when the exploration was undertaken shown on screen

5.1.3 Modularization of tasks

• web page retrieval: downloads the HTML page for a given URL

• web page parser: finds all the hyperlinks in a given HTML page

• watch: returns the current time

• graph: stores vertices, arcs and a timestamp; outputs the graph to screen

5.1.4 Main algorithm

1. Input options and necessary data (from command line)

2. Start recursive URL retrieval algorithm

retrieveData(URL, maxDepth, Graph) {

get current timestamp;

store timestamp in graph

retrieveData(URL, maxDepth, Graph, 0);

}

store graph on disk

retrieveData(URL, maxDepth, Graph, currentDepth) {

if (currentDepth < maxDepth) {

retrieve URL;

parse HTML, get list of sub-URLs;

for each sub-URL in list {

store arc (URL, sub-URL) in graph

retrieveData(sub-URL, maxDepth, graph, currentDepth + 1);

}

}

}

5.1.5 Fundamental data structures

• URL

• timestamp

• vertex

• arc

• graph

The software architecture 36

Exercises Introduction to C++ L. Liberti

5.1.6 Classes

class TimeStamp; // stores a time stamp

class fileParser; // parses text files for tag=value (or tag="value") cases

class HTMLPage : public fileParser; // stores an HTML page

class URL; [contains HTMLPage object] // retrieves an HTML page

class Vertex; // public virtual class for a vertex

class VertexURL : public virtual Vertex; [contains URL] // implements a vertex

class Arc; [contains two Vertex objects] // arc

class Digraph; [contains a list of arcs and a timestamp] // graph

The diagram below shows the class interactions.

5.2 The TimeStamp class

Design and implement a class called TimeStamp managing the number of seconds elapsed since 1/1/1970.
The class should have three methods: long get(void) to get the number of seconds since 1/1/1970, void
set(long t) to set it, void update(void) to read it off the operating system. Furthermore, it must be
possible to pass a TimeStamp object (call it timeStamp) on to a stream, as follows: cout << timeStamp;

to obtain the date pointed at by timeStamp. Failures should be signalled by throwing an exception called
TimeStampException.

You can use the following code to find the number of seconds elapsed since 1970 from the operating
system:

#include<sys/time.h>

[...]

struct timeval tv;

struct timezone tz;

int retVal = gettimeofday(&tv, &tz);

long numberOfSecondsSince1970 = tv.tv_sec;

The TimeStamp class 37

Exercises Introduction to C++ L. Liberti

The following code transforms the number of seconds since 1970 into a meaningful date into a string:

#include<string>

#include<ctime>

#include<cstring>

[...]

time_t numberOfSecondsSince1970;

char* buffer = ctime(&numberOfSecondsSince1970);

buffer[strlen(buffer) - 1] = ’\0’;

std::string theDateString(buffer);

Write the class declaration in a file called timestamp.h and the method implementation in timestamp.cxx.
Test your code with the following program tsdriver.cxx:

#include<iostream>

#include "timestamp.h"

int main(int argc, char** argv) {

using namespace std;

TimeStamp theTimeStamp;

theTimeStamp.set(999999999);

cout << "seconds since 1/1/1970: " << theTimeStamp.get()

<< " corresponding to " << theTimeStamp << endl;

theTimeStamp.update();

cout << theTimeStamp << " corresponds to " << theTimeStamp.get()

<< " number of seconds since 1970" << endl;

return 0;

}

and verify that the output is:

seconds since 1/1/1970: 999999999 corresponding to Sun Sep 9 03:46:39 2001

Mon Sep 11 11:33:42 2006 corresponds to 1157967222 number of seconds since 1970

The solution to this exercise is included as an example of coding style. The rest of the exercises in
this chapter should be solved by the student.

5.3 The FileParser class

Design and implement a class called FileParser that scans a file for a given string tag followed by a
character ’=’ and then reads and stores the string after the ’=’ either up to the first space character
or, if an opening quote character ’"’ is present after ’=’, up to the closing quote character. The class
functionality is to be able to detect all contexts such as tag = string or tag = "string" in a text file,
store the strings and allow subsequent access to them.

The class should be declared in fileparser.h and implemented in fileparser.cxx. You can use
the following header code for class declaration.

/***

The FileParser class 38

Exercises Introduction to C++ L. Liberti

** Name: fileparser.h

** Author: Leo Liberti

** Source: GNU C++

** Purpose: www exploring topologizer - file parser (header)

** History: 060820 work started

**/

#ifndef _WETFILEPARSERH

#define _WETFILEPARSERH

#include<string>

#include<vector>

class FileParserException {

public:

FileParserException();

~FileParserException();

};

class FileParser {

public:

FileParser();

FileParser(std::string theFileName, std::string theParseTag);

~FileParser();

void setFileName(std::string theFileName);

std::string getFileName(void) const;

void setParseTag(std::string theParseTag);

std::string getParseTag(void) const;

// parse the file and build the list of parsed strings

void parse(void) throw(FileParserException);

// get the number of parsed strings after parsing

int getNumberOfParsedStrings(void) const;

// get the i-th parsed string

std::string getParsedString(int i) const throw(FileParserException);

protected:

std::string fileName;

std::string parseTag;

// compare two strings (case insensitive), return 0 if equal

int compareCaseInsensitive(const std::string& s1,

const std::string& s2) const;

// return true if s2 is the tail (case insensitive) of string s1

bool isTailCaseInsensitive(const std::string& s1,

const std::string& s2) const;

private:

std::vector<std::string> parsedString;

The FileParser class 39

Exercises Introduction to C++ L. Liberti

};

#endif

Pay attention to the following details:

• It is good coding practice to provide all classes with a set of get/set methods to access/modify
internal (private) data.

• The compareCaseInsensitive and isTailCaseInsensitive methods are declared protected be-
cause they may not be accessed externally (i.e. they are for the class’ private usage) but it may
be useful to make them accessible to derived classes. Here is the definition of these two (technical)
methods:

int FileParser::compareCaseInsensitive(const std::string& s1,

const std::string& s2) const {

using namespace std;

string::const_iterator p1 = s1.begin();

string::const_iterator p2 = s2.begin();

while(p1 != s1.end() && p2 != s2.end()) {

if (toupper(*p1) < toupper(*p2)) {

return -1;

} else if (toupper(*p1) > toupper(*p2)) {

return 1;

}

p1++;

p2++;

}

if (s1.size() < s2.size()) {

return -1;

} else if (s1.size() > s2.size()) {

return 1;

}

return 0;

}

bool FileParser::isTailCaseInsensitive(const std::string& s1,

const std::string& s2) const {

using namespace std;

int s2len = s2.size();

if (s1.size() >= s2.size() &&

compareCaseInsensitive(s1.substr(s1.size() - s2len, s2len), s2) == 0) {

return true;

}

return false;

}

• In order to write the parse method, you have to scan the file one character at a time. The parser
can be in any of the following three states: outState, inTagState, inValueState. Normally, the
status is outState. When the parse tag is detected, a transition is made to inTagState. After that,
if an ’equal’ character (’=’) is found, another transition is made to inValueState. The parser has
three different behaviours, one in each state. When in outState, it simply looks for the parse tag
parseTag. When in inTagState, it looks for the character ’=’, when in inValueState, it stores
the value up to the first separating space or between quotes.

The FileParser class 40

Exercises Introduction to C++ L. Liberti

• The following code can be used to open a file and scan it one character at a time:

#include<iostream>

#include<fstream>

#include<istream>

#include<sstream>

#include<iterator>

[...]

// opens the file for input

string fileName("myfilename.ext");

ifstream is(fileName.c_str());

if (!is) {

// can’t open file, throw exception

}

// save all characters to a string buffer

char nextChar;

stringstream buffer;

while(!is.eof()) {

is.get(nextChar);

buffer << nextChar;

}

// output the buffer

cout << buffer.str() << endl;

// erase the buffer

buffer.str("");

• You can test your code with the following program fpdriver.cxx:

#include<iostream>

#include "fileparser.h"

int main(int argc, char** argv) {

using namespace std;

if (argc < 3) {

cerr << "missing 2 args on cmd line" << endl;

return 1;

}

FileParser fp(argv[1], argv[2]);

fp.parse();

for(int i = 0; i < fp.getNumberOfParsedStrings(); i++) {

cout << fp.getParsedString(i) << endl;

}

return 0;

}

Make a small HTML file as follows, and call it myfile.html:

<html>

<head>

<title>MyTitle</title>

</head>

<body>

My absolute link

and my relative link.

</body>

</html>

The FileParser class 41

Exercises Introduction to C++ L. Liberti

Now run the fpdriver code as follows: ./fpdriver myfile.html href , and verify that it pro-

duces the following output:

http://mywebsite.com/mywebpage.html

otherfile.html

5.4 The HTMLPage class

Design and implement a class called HTMLPage which inherits from FileParser. It should have the
following functionality: opens an HTML file (of which the URL is known), reads and stores its links
(transforming relative links into absolute links), allows external access to the stored links. This class is
derived from FileParser because it uses FileParser’s functionality in a specific manner, performing
some specific task (relative links are transformed into absolute links) of which FileParser knows nothing
about.

• A link in an HTML page is the value in the tag href="value" (or simply href=value). HTML is
a case insensitive language, so you may also find HREF instead of href.

• A WWW link is absolute if it starts with http:// and a DNS name and is relative otherwise.
Given a relative link (i.e. not starting with a slash ’/’ character, e.g. liberti/index.html) and
an absolute link (e.g. http://www.lix.polytechnique.fr/users), the relative link is transformed
into an absolute link by concatenating the two URLs (absolute and relative) with any missing
slashes in between (e.g. http://www.lix.polytechnique.fr/users/liberti/index.html. On
the other hand, if the relative link starts with a slash ’/’ (e.g. / liberti/index.html) then
the transformation of the relative link to absolute occurs by concatenating the first part of the
absolute link (up to and including the DNS name) and the relative one (e.g. http://www.lix.
polytechnique.fr/∼liberti/index.html).

• Remember that not all links found next to HREF tags are valid HTTP links, some may concern
different protocols. You should make sure that the link introduced by HREF is either relative (in
which case you should make it absolute as explained above) or specifically an http link.

• Test your class implementation using the following driver hpdriver.cxx:

#include<iostream>

#include "htmlpage.h"

int main(int argc, char** argv) {

using namespace std;

if (argc < 3) {

cerr << "missing 2 args on cmd line" << endl;

return 1;

}

HTMLPage hp(argv[2], argv[1]);

for(int i = 0; i < hp.getNumberOfLinks(); i++) {

cout << hp.getLink(i) << endl;

}

return 0;

}

and check that the output of the command ./hpdriver http://127.0.0.1 myfile.html is

http://mywebsite.com/mywebpage.html

http://127.0.0.1/otherfile.html

The HTMLPage class 42

Exercises Introduction to C++ L. Liberti

5.5 The URL class

Design and implement a class called URL containing a pointer to an HTMLPage object. Its functionality is
to download an HTML file from the internet given its URL, and to allow access to the links contained
therein.

• We shall make use of the wget external utility to download the HTML file. This can be used from

the shell: wget http://my.web.site/mypage.html will download the specified URL to a local

file called mypage.html. We can specify the output file with the option -O output file name. In
order to call an external program from within C++, use the following code.

#include<cstdlib>

[...]

char charQuote = ’\"’;

string theURL = "http://127.0.0.1/index.html";

string outputFile = ".wet.html";

string cmd = "wget --quiet -O " + outputFile + " " + charQuote + theURL + charQuote;

int status = system(cmd.c_str());

• You will need to delete the temporary file .wet.html after having parsed it — use the following
code.

#include<unistd.h>

[...]

unlink(outputFile.c_str());

• The URL class will expose a method std::string getNextLink(void) to read the links in the
downloaded HTML page in the order in which they appear. Each time the method is called,
the next link is returned. When no more links are present, the empty string should be returned.
Subsequent calls to getNextLink() should return the sequence of links again as in a cycle.

• The URL class will contain a pointer to an HTMLPage object which parses the HTML code and finds
the relevant links. Note that this means that a user memory allocation/deallocation will need to
be performed.

• Test your URL implementation using the driver program urldriver.cxx:

#include<iostream>

#include "url.h"

int main(int argc, char** argv) {

using namespace std;

if (argc < 2) {

cerr << "missing arg on cmd line" << endl;

return 1;

}

URL url(argv[1]);

url.download();

string theLink = url.getNextLink();

while(theLink.size() > 0) {

cout << theLink << endl;

theLink = url.getNextLink();

}

return 0;

}

The URL class 43

Exercises Introduction to C++ L. Liberti

Run the program

./urldriver http://www.enseignement.polytechnique.fr/profs/informatique/Leo.

Liberti/test.html

and verify that the output is

http://www.enseignement.polytechnique.fr/profs/informatique/Leo.Liberti/test3.html

http://www.enseignement.polytechnique.fr/profs/informatique/Leo.Liberti/test2.html

5.6 The Vertex interface and VertexURL implementation

Design and implement a class VertexURL inheriting from the pure virtual class Vertex:

/***

** Name: vertex.h

** Author: Leo Liberti

** Source: GNU C++

** Purpose: www exploring topologizer -

** vertex abstract class (header)

** History: 060820 work started

***/

#ifndef _WETVERTEXH

#define _WETVERTEXH

#include<iostream>

class Vertex {

public:

virtual ~Vertex() {

#ifdef DEBUG

std::cerr << "** destroying Vertex " << this << std::endl;

#endif

}

virtual int getID(void) const = 0;

virtual int getNumberOfAdjacentVertices(void) const = 0;

virtual int getAdjacentVertexID(int i) const = 0;

virtual void addAdjacentVertexID(int ID) = 0;

};

#endif

VertexURL is an encapsulation of a URL object which conforms to the Vertex interface. This will be
used later in the Digraph class to store the vertices of the graph. This separation between the Vertex

interface and its particular implementation (for example the VertexURL class) allows the Digraph class to
be re-used with other types of vertices, and therefore makes it very useful. An object conforming to the
Vertex interface must know its own integer ID and IDs of the vertices adjacent to it. Note that Vertex has
a virtual destructor for the following reason: should any agent attempt a direct deallocation of a Vertex

object, the destructor actually called will be the destructor of the interface implementation (VertexURL in
this case, but might be different depending on run-time conditions) rather than the interface destructor.

Test your implementation on the following code:

The Vertex interface and VertexURL implementation 44

Exercises Introduction to C++ L. Liberti

#include<iostream>

#include "vertexurl.h"

int main(int argc, char** argv) {

using namespace std;

if (argc < 2) {

cerr << "missing arg on cmd line" << endl;

return 1;

}

URL* urlPtr = new URL(argv[1]);

urlPtr->download();

VertexURL* vtxURLPtr = new VertexURL(0, urlPtr);

Vertex* vtxPtr = vtxURLPtr;

vtxPtr->addAdjacentVertexID(1);

vtxPtr->addAdjacentVertexID(2);

int starsize = vtxPtr->getNumberOfAdjacentVertices();

cout << "vertex " << vtxPtr->getID() << ": star";

for(int i = 0; i < starsize; i++) {

cout << " " << vtxPtr->getAdjacentVertexID(i);

}

cout << endl;

delete vtxPtr;

return 0;

}

Run the program

./vurldriver http://kelen.polytechnique.fr and verify that the output is vertex 0: star 1 2 .

5.7 The Arc and Digraph classes

1. Design and implement an Arc class to go with the Vertex class above. In practice, an Arc object
just needs to know its starting and ending vertex IDs.

2. Design and implement a Digraph class to go with the Vertex and Arc classes defined above. This
needs to store a TimeStamp object, a vector of pointers to Vertex objects, a vector of pointers to
Arc objects. We need methods both for constructing (addVertex, addArc) as well as accessing the
graph information (getNumberOfVertices, getNumberOfArcs, getVertex, getArc). We also want
to be able to send a Digraph object to the cout stream to have a GraphViz compatible text output
which we shall display using the GraphViz utilities.

Test your implementation on the following program dgdriver.cxx:

#include<iostream>

#include "digraph.h"

int main(int argc, char** argv) {

using namespace std;

string urlName1 = "name1";

string urlName2 = "name2";

string urlName3 = "name3";

URL* urlPtr1 = new URL(urlName1);

URL* urlPtr2 = new URL(urlName2);

The Arc and Digraph classes 45

Exercises Introduction to C++ L. Liberti

URL* urlPtr3 = new URL(urlName3);

VertexURL* vtxURLPtr1 = new VertexURL(1, urlPtr1);

VertexURL* vtxURLPtr2 = new VertexURL(2, urlPtr2);

VertexURL* vtxURLPtr3 = new VertexURL(3, urlPtr3);

Vertex* vtxPtr1 = vtxURLPtr1;

Vertex* vtxPtr2 = vtxURLPtr2;

Vertex* vtxPtr3 = vtxURLPtr3;

vtxPtr1->addAdjacentVertexID(2);

vtxPtr1->addAdjacentVertexID(3);

vtxPtr2->addAdjacentVertexID(1);

vtxPtr3->addAdjacentVertexID(3);

Arc* arcPtr1 = new Arc(1,2);

Arc* arcPtr2 = new Arc(1,3);

Arc* arcPtr3 = new Arc(2,1);

Arc* arcPtr4 = new Arc(3,3);

TimeStamp t;

t.update();

Digraph G;

G.setTimeStamp(t);

G.addVertex(*vtxPtr1);

G.addVertex(*vtxPtr2);

G.addVertex(*vtxPtr3);

G.addArc(*arcPtr1);

G.addArc(*arcPtr2);

G.addArc(*arcPtr3);

G.addArc(*arcPtr4);

cout << G;

return 0;

}

and verify that the output is:

graphviz output by WET (L. Liberti 2006)

digraph www_1158015497 {

0 [label = "Tue Sep 12 00:58:17 2006", color = red];

1 -> 2;

1 -> 3;

2 -> 1;

3 -> 3;

}

5.8 Putting it all together: main()

Code the main function and all auxiliary functions into the files wet.h (declarations) and wet.cxx (def-
initions). The program should: read the given URL and the desired downloading recursion depth limit
from the command line, then recursively download the given URL and all meaningful sub-links up to the
given depth limit, whilst storing them as vertices and arcs of a digraph, which will then be printed out
in GraphViz format.

• The recursive part of the algorithm can be coded into a pair of functions (one is the “driver”
function, the other is the truly recursive one) declared as follows:

Putting it all together: main() 46

Exercises Introduction to C++ L. Liberti

// retrieve the data, driver

void retrieveData(std::string URL, int maxDepth, Digraph& G,

bool localOnly, bool verbose);

// retrieve the data, recursive

void retrieveData(std::string URL, int maxDepth, Digraph& G,

bool localOnly, bool verbose,

int currentDepth, VertexURL* vParent);

(also see Section 5.1.4).

• Endow your WET application with a command line option -v (stands for “verbose”) that prints
out the URLs as they are downloaded

• Endow your WET application with a command line option -l (stands for “local”) that ignores all
URLs referring to webservers other than localhost (127.0.0.1). Optional: also try to devise an
option -L that ignores all URLs referring to webservers different from the one given on command
line.

• The GraphViz system can read a text description of a given graph and output a graphical rep-
resentation of the graph in various formats. The WET application needs to output the text de-
scription of the Digraph object. One self-explanatory example of the required format has been
given at the beginning of this chapter. You can type man dot at the shell to get more infor-
mation. Implement WET so that it outputs the graph description in the correct format on cout.
When your WET application is complete, run it so that it saves the output to a file with the

.dot extension: ./wet http://kelen.polytechnique.fr/ 3 > mygraph.dot . The command

dot -Tgif -o mygraph.gif mygraph.dot builds a GIF file which you can display using the

command xv mygraph.gif .

Test your WET application by running
[./wet http://www.enseignement.polytechnique.fr/profs/informatique/Leo.Liberti/test.html

4] and verifying that the output is

graphviz output by WET (L. Liberti 2006)

digraph www_1158043952 {

0 [label = "Tue Sep 12 08:52:32 2006", color = red];

0 -> 1;

1 -> 0;

1 -> 2;

2 -> 0;

2 -> 1;

0 -> 2;

}

By saving wet’s output as wetout.dot and running dot -Tgif -o wetout.gif wetout.dot we get

Fig. 5.1, left. Reducing the depth level to 2 yields Fig. 5.1, right.

Putting it all together: main() 47

Exercises Introduction to C++ L. Liberti

Tue Sep 12 08:52:32 2006

1

2

Tue Sep 12 08:56:35 2006

1

2

Figure 5.1: The neighbourhoods graphs (depth 4, left; depth 2, right).

Putting it all together: main() 48

Chapter 6

Exam questions

This section contains a set of typical exam questions.

6.1 Debugging question 1

The following code causes some compilation errors. Find them and correct them.

// this code contains errors

#include <iostream>

#include <cassert>

int main(int argc, char** argv) {

int ret = 0;

if (argc < 2) {

cerr << "error: need an integer on command line";

return 1;

}

int theInt = atoi(argv[1]);

if (isPrime(theInt)) {

cout << theInt << "is a prime number!" >> endl;

} else {

cout << theInt << "is composite" << endl;

return ret;

}

bool isPrime (int num) {

assert(num >= 2);

if (num == 2) {

return true;

} else if (num % 2 == 0) {

return false;

} else {

bool prime = true;

int divisor = 3;

int upperLimit = sqrt(num) + 1;

while (divisor <= upperLimit) {

49

Exercises Introduction to C++ L. Liberti

if (num % divisor == 0) {

prime = false;

}

divisor +=2;

}

return prime;

}

}

What is the corrected program output when executed with ./debug1 1231 ?

6.2 Debugging question 2

The following code causes some compilation errors. Find them and correct them.

// this code contains errors

#include <iotsream>

class A {

A() {

std::cout << "constructing object of class A" << std::endl;

}

~A() {

std::cout << "destroying object of class A" << std::endl;

}

setDatum(int i) {

theDatum = i;

}

getDatum(void) {

return theDatum;

}

private:

int theDatum;

}

int main(int argc, char** argv) {

A a;

a.SetDatum(5);

std::cout << a.GetDatum() << std::endl;

return;

}

What is the corrected program output when executed with ./debug2 ?

6.3 Debugging question 3

The following code looks for a word in a text file and replaces it with another word:

// this code contains errors

Debugging question 3 50

Exercises Introduction to C++ L. Liberti

// [search and replace a word in a text file]

#include<iostream>

#include<fstream>

#include<string>

int main(int argc, char** argv) {

using namespace std;

if (argc < 4) {

cout << "need a filename, a word and its replacement on cmd line" << endl;

return 1;

}

ifstream ifs(argv[1]);

if (!ifs) {

cout << "cannot open file " << argv[1] << endl;

return 2;

}

string s;

while(!ifs.eof()) {

ifs >> s;

if (ifs.eof()) {

break;

}

if (s == argv[2]) {

cout << argv[3];

} else {

cout << s;

}

cout << " ";

}

cout << endl;

ifs.close();

return 0;

}

Test it on the folling file, called story.txt, with the command ./debug3 story.txt wolf teddy-bear :

This is just a stupid little story with no meaning whatsoever. The wolf

came out of his den and chased little red hood, found her and pounced on

her. Little red hood cried, "the wolf!", just stepped aside and the

wolf cracked his neck on the pavement, his brain in pulp.

She was to hear of him no more.

The output is:

This is just a stupid little story with no meaning whatsoever. The teddy-bear

came out of his den and chased little red hood, found her and pounced on her.

Little red hood cried, "the wolf!", just stepped aside and the

teddy-bear cracked his neck on the pavement, his brain in pulp. She was to

hear of him no more.

Note that one occurrence of the word “wolf” was not actually changed to “teddy-bear”. Fix this
problem.

Debugging question 3 51

Exercises Introduction to C++ L. Liberti

6.4 Debugging question 4

Compile and run the following code:

// if you change t with s in the snippet, the code has the same effect

#include<iostream>

#include<string>

std::string method(std::string& s) {

s = s.substr(1, s.npos);

return s;

}

int main(int argc, char** argv) {

using namespace std;

string s("ciao");

cout << s << endl;

while(true) {

string& t = s;

//////////// snippet ////////////////

t = method(t);

if (t.length() == 0) {

break;

}

cout << t << endl;

//////////// end snippet ////////////

}

return 0;

}

the output is:

ciao

iao

ao

o

Now examine the part of the code marked “snippet”: it has the curious property that if you replace any
occurrence of the t variable symbol with the s variable symbol, you still obtain the same output. Explain
why.

6.5 Debugging question 5

The following code contains a simple list implementation and a main() which creates a list, prints it,
finds a node and removes it, then prints the list again.

// this code contains errors

// [form and print a list of integers]

#include <iostream>

Debugging question 5 52

Exercises Introduction to C++ L. Liberti

class Node {

public:

// constructors / destructor

Node() : next(NULL), previous(NULL) { }

Node(int a) : next(NULL), previous(NULL), data(a) { }

~Node() {

if (next) {

delete next;

}

}

// set/get interface

void setData(int a) {

data = a;

}

int getData(void) {

return data;

}

void setNext(Node* theNext) {

next = theNext;

}

Node* getNext(void) {

return next;

}

void setPrevious(Node* thePrevious) {

previous = thePrevious;

}

Node* getPrevious(void) {

return previous;

}

// list capabilities

// return true if node is the first of the list, false otherwise

bool isFirst(void) {

return !previous;

}

// return true if node is the last of the list, false otherwise

bool isLast(void) {

return !next;

}

// return the size of the sublist starting from this node

int size(void) {

Node* t = this;

int ret = 1;

while(!t->isLast()) {

t = next;

ret++;

}

return ret;

}

Debugging question 5 53

Exercises Introduction to C++ L. Liberti

// append a new given node at the end of the list

void append(Node* theNext) {

Node* t = this;

while(!t->isLast()) {

t = next;

}

t->setNext(theNext);

theNext->setPrevious(t);

}

// create a new node with value ’a’ and append it at the end of the list

void appendNew(int a) {

Node* t = this;

while(!t->isLast()) {

t = next;

}

Node* theNewNode = new Node(a);

t->setNext(theNewNode);

theNewNode->setPrevious(t);

}

// remove this node from the list

void erase(void) {

previous->setNext(next);

next->setPrevious(previous);

}

// replace this node with a given node

void replaceWith(Node* replacement) {

previous->setNext(replacement);

next->setPrevious(replacement);

}

// find first node with a specified value in sublist starting from this node

// return NULL if not found

Node* find(int needle) {

if (data == needle) {

return this;

}

Node* t = this;

while(!t->isLast()) {

t = next;

if (t->getData() == needle) {

return t;

}

}

return NULL;

}

// print the data in the sublist starting from this node

void print(void) {

Node* t = this;

while(!t->isLast()) {

std::cout << t.getData() << ", ";

Debugging question 5 54

Exercises Introduction to C++ L. Liberti

t = next;

}

std::cout << t->getData() << std::endl;

}

protected:

// pointer to next node in list

Node* next;

// pointer to previous node in list

Node* previous;

private:

// the integer data stored in the node

int data;

};

int main(int argc, char** argv) {

using namespace std;

int c = 1;

// create a new list

Node start(c);

// add 10 nodes to the list

while(c < 10) {

c++;

start.appendNew(c);

}

// print the list

start.print();

// find the node with value 5

Node* t = start.find(5);

// erase this node

t->erase();

// print the list again

start.print();

return 0;

}

The code contains:

1. one compilation error;

2. some run-time errors;

3. a memory leak.

Correct the compilation error, then compile the code — it should simply hang. Use the ddd debugger to
find the run-time errors, find all instances thereof, and correct them (remember to compile with the -g

option for debugging). Satisfy yourself that the code output is:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

1, 2, 3, 4, 6, 7, 8, 9, 10

Debugging question 5 55

Exercises Introduction to C++ L. Liberti

Now use the valgrind memory debugger to check for memory leaks. Run the command

valgrind --leak-check=yes ./debug5

and using its output find and fix the error.

6.6 Debugging question 6

Compile the following code with cc -o schnitzi schnitzi.c and run it with ./schnitzi 36 to test
it, and try other numbers. Explain what it does and why.

#include<stdio.h>

main(l,i,I)char**i;{l/=!(l>(I=atoi(*++i))||fork()&&main(l+1,i-1)||I%l);

return printf("%d\n",l);}

6.7 Specification coding question 1

Write the implementation of the following SimpleString class.

/* name: simplestring.h

** author: L. Liberti

*/

#ifndef _SIMPLESTRINGH

#define _SIMPLESTRINGH

#include<iostream>

class SimpleString {

public:

// default constructor: initialise an empty string

SimpleString();

// initialise a string from an array of characters

SimpleString(char* initialiseFromArray);

// destroy a string

~SimpleString();

// return the size (in characters)

int size(void) const;

// return the i-th character (overloading of [] operator)

char& operator[](int i);

// copy from another string

void copyFrom(SimpleString& s);

Specification coding question 1 56

Exercises Introduction to C++ L. Liberti

// append a string to this

void append(SimpleString& suffix);

// does this string contain needle?

bool contains(SimpleString& needle) const;

private:

int theSize;

char* buffer;

int theAllocatedSize;

static const int theMinimalAllocationSize = 1024;

char theZeroChar;

};

std::ostream& operator<<(std::ostream& out, SimpleString& s);

#endif

Test it with with the following main program:

/* name: ssmain.cxx

author: Leo Liberti

*/

#include<iostream>

#include "simplestring.h"

int main(int argc, char** argv) {

using namespace std;

SimpleString s("I’m ");

SimpleString t("very glad");

SimpleString u("so tired I could pop");

SimpleString v("very");

cout << s << endl;

cout << t << endl;

cout << u << endl << endl;

SimpleString w;

w.copyFrom(s);

s.append(t);

w.append(u);

cout << s << endl;

cout << w << endl << endl;

if (s.contains(v)) {

cout << "s contains very" << endl;

} else {

cout << "s does not contain very" << endl;

}

if (w.contains(v)) {

cout << "w contains very" << endl;

} else {

cout << "w does not contain very" << endl;

}

return 0;

Specification coding question 1 57

Exercises Introduction to C++ L. Liberti

}

and check that the output is as follows.

I’m

very glad

so tired I could pop

I’m very glad

I’m so tired I could pop

s contains very

w does not contain very

Write also a makefile for building the object file simplestring.o and the executable ssmain.

6.8 Specification coding question 2

Write the implementation of the following IntTree class (a tree data structure for storing integers).

/* Name: inttree.h

Author: Leo Liberti

*/

#ifndef _INTTREEH

#define _INTTREEH

#include<vector>

class IntTree {

public:

// constructs an empty tree

IntTree();

// destroys a tree

~IntTree();

// add a new subnode with value n

void addSubNode(int n);

// get the number of subtrees

int getNumberOfSubTrees(void);

// get a pointer to the i-th subtree

IntTree* getSubTree(int i);

// removes a subtree without deleting it (and returning it)

IntTree* removeSubTree(int i);

// adds a tree as a subtree of the current tree

void addSubTree(IntTree* t);

Specification coding question 2 58

Exercises Introduction to C++ L. Liberti

// get pointer to the parent tree

IntTree* getParent(void);

// set parent pointer

void setParent(IntTree* p);

// get value of current tree

int getValue(void);

// set value in current tree

void setValue(int n);

// find the first subtree containing given value by depth-first search

// and put its pointer in ’found’

// PRECONDITION: found must be NULL on entry

// POSTCONDITION: if found is NULL on exit, value was not found

void findValue(int n, IntTree* &found);

// print a tree to standard output

void print(void);

protected:

// value stored in the node (tree)

int value;

// pointer to parent tree

IntTree* parent;

// vector of subtree pointers

std::vector<IntTree*> subTree;

private:

// iterator sometimes used in methods

std::vector<IntTree*>::iterator stit;

};

#endif

Test it with with the following main program:

/* name: itmain.cxx

author: Leo Liberti

*/

#include <iostream>

#include "inttree.h"

int print(IntTree& t) {

using namespace std;

cout << "T = ";

t.print();

Specification coding question 2 59

Exercises Introduction to C++ L. Liberti

cout << endl;

}

int main(int argc, char** argv) {

using namespace std;

IntTree myTree;

myTree.setValue(0);

myTree.addSubNode(1);

myTree.addSubNode(2);

myTree.addSubNode(3);

print(myTree);

int st = myTree.getNumberOfSubTrees();

for(int i = 0; i < st; i++) {

IntTree* t = myTree.getSubTree(i);

t->addSubNode(2*i + st);

t->addSubNode(2*i + 1 + st);

}

print(myTree);

IntTree* anotherTree = new IntTree;

anotherTree->setValue(-1);

anotherTree->addSubNode(-2);

anotherTree->addSubNode(-3);

IntTree* t = NULL;

myTree.findValue(2, t);

if (t) {

st = t->getNumberOfSubTrees();

IntTree* u = t->removeSubTree(st - 1);

print(myTree);

delete u;

t->addSubTree(anotherTree);

}

print(myTree);

myTree.findValue(-3, t);

int level = 1;

while(t != NULL) {

t = t->getParent();

level++;

}

cout << "node (-3) is at level " << level << " (root has level 1)" << endl;

return 0;

}

and check that the output is as follows.

T = 0 (1 2 3)

T = 0 (1 (3 4) 2 (5 6) 3 (7 8))

T = 0 (1 (3 4) 2 (5) 3 (7 8))

T = 0 (1 (3 4) 2 (5 -1 (-2 -3)) 3 (7 8))

node (-3) is at level 3 (root has level 1)

Specification coding question 2 60

Exercises Introduction to C++ L. Liberti

6.9 Task question 1

Write a program that prints its own (executable) file size in bytes and in number of printable characters
(a character char c is printable if (isalnum(c) > 0 || ispunct(c) > 0 || isspace(c) > 0)).

6.10 Task question 2

Write a program that prints the name of the image files referenced in the the web page http://www.

enseignement.polytechnique.fr/index.html. Image files are referenced in HTML both by the at-
tribute HREF of the tag A (e.g.) and by the attribute SRC

of the tag IMG (e.g.). The output should be as follows.

images/entete1.gif

images/remise.gif

images/amphi.gif

/icones/home.gif

6.11 Task question 3

Write a program that reads an m× n matrix A = (aij) from a text file with m lines is a list of n double

entries separated by a space, then output the homogeneous system Ax = 0 in explicit algebraic form with
m lines of text having the following format:

ai1 * x[1] + . . . ain * x[n].

The name of the file containing the matrix and the integer n should be read from the command line.

For example, for the text file

1 -2.3 3 0.0

-9.123 2 -50 -1

you should obtain the following output:

x[1] - 2.3*x[2] + 3*x[3] = 0

-9.123*x[1] + 2*x[2] - 50*x[3] - x[4] = 0

Hint: if you have a file stream ifs and you want to read a double value off it, use the following
construct.

double t;

ifs >> t;

Task question 3 61

