GNU Linear Programming Kit
Modeling Language GNU MathProg

Version 4.1

(Draft Edition, August 2003)

The GLPK package is a part of the GNU project released under the aegis of GNU.

Copyright (©) 2000, 2001, 2002, 2003 Andrew Makhorin, Department for Applied Infor-
matics, Moscow Aviation Institute, Moscow, Russia. All rights reserved.

Free Software Foundation, Inc., 59 Temple Place — Suite 330, Boston, MA 02111, USA.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions.

Contents

1 Introduction

GNU MathProg is a modeling language intended for describing linear mathematical pro-
gramming models.!

Model descriptions written in the GNU MathProg language consist of a set of state-
ments and data blocks constructed by the user from the language elements described in
this document.

In a process called translation, a program called the model translator analyzes the
model description and translates it into internal data structures, which may be then used
either for generating mathematical programming problem instance or directly by a pro-
gram called the solver to obtain numeric solution of the problem.

1.1 Linear programming problem
In MathProg the following formulation of linear programming (LP) problem is assumed:
minimize (maximize)
Z = C1Tma1 + C2Tmaa + ... + CnTman + Co (1)
subject to linear constraints

T1 = a11Tm+1 T 012Tmy2 + ..o + AnTmtn
T2 = a21Tm+1 + G22Tm42 + - .- + A2nTmtn 2)

T = Gm1Tm+1 + Gm2Tm+2 + -+« + GmnTm+n
and bounds of variables

h <z <u
lo <29 <ug

(3)

lm+n S Tm+n S Um+n

where: x1,x2,...,2,, are auxiliary variables; Tm+1, Tm+2,- .., Tmtn are structural vari-
ables; Z is the objective function; c1,co,...,c, are coefficients of the objective function;
co is the constant term of the objective function; a1y, ais, ..., amn are constraint coeffi-
cients; l1,1ls, ..., lymtn are lower bounds of variables; uy, uo, ..., Umtn are upper bounds of
variables.

Bounds of variables can be finite as well as infinite. Besides, lower and upper bounds
can be equal to each other. Thus, the following types of variables are possible:

Bounds of variable Type of variable

—00 < xp < 400 Free (unbounded) variable
I <z < 400 Variable with lower bound

—00 < xf < ug Variable with upper bound
I < xp < ug Double-bounded variable
l, = T = uy Fixed variable

Note that the types of variables shown above are applicable to structural as well as to
auxiliary variables.

In addition to pure LP problems MathProg allows mixed integer linear programming
(MIP) problems, where some (or all) structural variables are restricted to be integer.

!The GNU MathProg language is a subset of the AMPL language.

1.2 Model objects

In MathProg the model is described in terms of sets, parameters, variables, constraints,
and objectives, which are called model objects.

The user introduces particular model objects using the language statements. Each
model object is provided with a symbolic name that uniquely identifies the object and is
intended for referencing purposes.

Model objects, including sets, can be multidimensional arrays built over indexing sets.
Formally, n-dimensional array A is the mapping

A:A—E, (4)

where A C 51 X S3 X ... X S, is a subset of the Cartesian product of indexing sets, Z is a
set of the array members. In MathProg the set A is called subscript domain. Its members
are n-tuples (iy,142,...,4,), where i1 € S1, 12 € Sa, ..., in € Sp.

If n = 0, the Cartesian product in (4) has exactly one element (namely, 0-tuple), so it
is convenient to think scalar objects as 0-dimensional arrays that have one member.

The type of array members is determined by the type of the corresponding model
object as follows:

Model object Array member

Set FElemental plain set
Parameter Number or symbol

Variable Elemental structural variable
Constraint Elemental constraint
Objective Elemental objective

In order to refer to a particular object member the object should be provided with
subscripts. For example, if a is 2-dimensional parameter built over I x J, a reference to
its particular member can be written as ali, j|, where ¢ € I and j € J. It is understood
that scalar objects being 0-dimensional need no subscripts.

1.3 Structure of model description

It is sometimes desirable to write a model which, at various points, may require different
data for each problem to be solved using that model. For this reason in MathProg the
model description consists of two parts: model section and data section.

Model section is a main part of the model description that contains declarations of
model objects and is common for all problems based on the corresponding model.

Data section is an optional part of the model description that contains data specific
for a particular problem.

Depending on what is more convenient model and data sections can be placed either
in one file or in two separate files. The latter feature allows to have arbitrary number of
different data sections to be used with the same model section.

2 Coding model description

Model description is coded in plain text format using ASCII character set. Valid characters
acceptable in the model description are the following:

e alphabetic characters: AB... Zab... z

e numeric characters: 01 ... 9

e special characters: ' " # & > () *x+ , - ./ :;<=>[1"{113

e white-space characters: SP HT CR NL VT FF

Within string literals and comments any ASCII characters (except control characters)
are valid.

White-space characters are non-significant. They can be used freely between lexical
units to improve readability of the model description. They are also used to separate
lexical units from each other if there is no other way to do that.

Syntactically model description is a sequence of lexical units in the following categories:

e symbolic names;

e numeric literals;

e string literals;

e keywords;

e delimiters;

e comments.

The lexical units of the language are discussed below.

2.1 Symbolic names

Symbolic name consists of alphabetic and numeric characters, the first of which must be
alphabetic. All symbolic names are distinct (case sensitive).

Examples:

alphal23
This_is_a_name
_P123_abc_321

Symbolic names are used to identify model objects (sets, parameters, variables, con-
straints, objectives) and dummy indices.

All symbolic names (except names of dummy indices) must be unique, i.e. the model
description must have no objects with the same name. Symbolic names of dummy indices
must be unique within the scope, where they are valid.

2.2 Numeric literals

Numeric literal has the form z2Esyy, where zz is a real number with optional decimal point,
s is the sign + or -, yy is an integer decimal exponent. The letter E is case insensitive and
can be coded as e.

Examples:

123
3.14159
56.E+5

.78
123.456e-7

Numeric literals are used to represent numeric quantities. They have obvious fixed
meaning.

2.3 String literals

String literal is a sequence of arbitrary characters enclosed either in single quotes or in
double quotes. Both these forms are equivalent.

If the single quote is a part of a string literal enclosed in single quotes, it must be
coded twice. Analogously, if the double quote is a part of string literal enclosed in double
quotes, it must be coded twice.

Examples:

’This is a string’

"This is another string"
1 +2=3

’That’’s all’

"She said: ""No"""

String literals are used to represent symbolic quantities.

2.4 Keywords

Keyword is a sequence of alphabetic characters and possibly some special characters. All
keywords fall into two categories: reserved keywords, which cannot be used as symbolic
names, and non-reserved keywords, which being recognized by context can be used as
symbolic names.

Reserved keywords are:

and diff if less or union
by div in mod symdiff within
cross else inter not then

Non-reserved keywords are described in following sections.
All the keywords have fixed meaning, which will be explained on discussion of corre-
sponding syntactic constructions, where the keywords are used.

2.5 Delimiters

Delimiter is either a single special character or a sequence of two special characters as
follows:

+ - == ! :)
- & >= && ; [
* < > || =]
/ <= <> . .. {
*ok = I= , (}

If delimiter consists of two characters, there must be no spaces between the characters.
All the delimiters have fixed meaning, which will be explained on discussion corre-
sponding syntactic constructions, where the delimiters are used.

2.6 Comments

For documenting purposes the model description can be provided with comments, which
have two different forms. The first form is a single-line comment, which begins with the
character # and extends until end of line. The second form is a comment sequence, which
is a sequence of any characters enclosed between /* and */.

Examples:

set s{1..10}; # This is a comment
/* This is another comment */

Comments are ignored by the model translator and can appear anywhere in the model
description, where white-space characters are allowed.

3 Expressions

Ezxpression is a rule for computing a value. In model description expressions are used as
constituents of certain statements.

In general case expressions consist of operands and operators.

Depending on the type of the resultant value all expressions fall into the following
categories:

e numeric expressions;

e symbolic expressions;

e indexing expressions;

e set expressions;

e logical expressions;

e linear expressions.

3.1 Numeric expressions

Numeric expression is a rule for computing a single numeric value represented in the form
of floating-point number.

The primary numeric expression may be a numeric literal, dummy index, unsubscripted
parameter, subscripted parameter, built-in function reference, iterated numeric expression,
conditional numeric expression, or another numeric expression enclosed in parentheses.

Examples:

1.23 numeric literal

j dummy index

time unsubscripted parameter
a[’May 2003’,j+1] subscripted parameter
abs(b[i,jl) function reference

sum{i in S diff T} alphali] * bl[i,j] iterated expression

if i in I and p >= 1 then 2 * p else ql[i+1] conditional expression
(bli,jl + .5 * ¢) parenthesized expression

More general numeric expressions containing two or more primary numeric expressions
may be constructed by using certain arithmetic operators.

Examples:
j+1
2 x ali-1,j+1] - bli,]]

sum{j in J} ali,j] * x[j] + sum{k in K} b[i,k] * x[k]
(if 1 in I and p >= 1 then 2 * p else qli+1]) / (ali,j] + 1.5)

Numeric literals. If the primary numeric expression is a numeric literal, the resultant
value is obvious.

Dummy indices. If the primary numeric expression is a dummy index, the resultant
value is current value assigned to the dummy index.

Unsubscripted parameters. If the primary numeric expression is an unsubscripted
parameter (which must be O-dimensional), the resultant value is the value of the parameter.

10

Subscripted parameters. The primary numeric expression, which refers to a sub-

scripted parameter, has the following syntactic form:
nameli1,io, ... ,in]

where name is the symbolic name of the parameter, 1, i, ..., i, are subscripts.

Each subscript must be a numeric or symbolic expression. The number of subscripts
in the subscript list must be the same as the dimension of the parameter with which the
subscript list is associated.

Actual values of subscript expressions are used to identify a particular member of the

parameter that determines the resultant value of the primary expression.

Function references. In MathProg there are the following built-in functions that may
be used in numeric expressions:

abs(x) absolute value

ceil(x) smallest integer not less than z (“ceiling of 2”)
floor(x) largest integer not greater than = (“floor of z”)
exp(x) base-e exponential e*

log(x) natural logarithm log x

logl0(x) common (decimal) logarithm log;,
max(z1,2,...,oy) the largest of values z1,z2,...,z,
min(zy,22,...,oy,) the smallest of values x1,xo, ..., 2,

sqrt(z) square root \/x

All the built-in functions, except min and max, require one argument, which must be
numeric expression. The functions min and max allow arbitrary number of arguments,
which all must be numeric expressions.

The resultant value of the numeric expression, which is a function reference, is the
result of applying the function to its argument(s).

Iterated expressions. Iterated numeric expression is a primary numeric expression,
which has the following syntactic form:

iterated-operator indexing-expression integrand

where iterated-operator is the symbolic name of the iterated operator to be performed (see
below), indexing expression is an indexing expression that introduces dummy indices and
controls iterating, integrand is a numeric expression that participates in the operation.

In MathProg there are four iterated operators, which may be used in numeric expres-
sions:

sum summation Z(ilv---,in)eA (i1, ..y in)
H(ilv-"yin)eA x(zla e ,Zn)

ming, ioyea (i1, in)

prod production
min minimum

max — maximum maxg, ;. yeA T(i1,. .., in)

11

where i1, ..., 1, are dummy indices introduced in the indexing expression, A is the domain,
a set of n-tuples specified by the indexing expression that defines particular values assigned
to the dummy indices on performing the iterated operation, x(iy,...,iy,) is the integrand,
a numeric expression whose resultant value depends on the dummy indices.

The resultant value of an iterated numeric expression is the result of applying of the
iterated operator to its integrand over all n-tuples contained in the domain.

Conditional expressions. Conditional numeric expression is a primary numeric ex-
pression, which has the following two syntactic forms:

if b then z else y
if b then x

where b is an logical expression, x and y are numeric expressions.

The resultant value of the conditional expression depends on the value of the logical
expression that follows the keyword if. If it is true, the value of the conditional expression
is the value of the expression that follows the keyword then. Otherwise, if the logical
expression has the value false, the value of the conditional expression is the value of the
expression that follows the keyword else. If the reduced form of the conditional expression
is used and the logical expression has the value false, the resultant value of the conditional
expression is zero.

Parenthesized expressions. Any numeric expression may be enclosed in parentheses
that syntactically makes it primary numeric expression.

Parentheses may be used in numeric expressions, as in algebra, to specify the desired
order in which operations are to be performed. Where parentheses are used, the expression
within the parentheses is evaluated before the resultant value is used.

The resultant value of the parenthesized expression is the same as the value of the
expression enclosed within parentheses.

Arithmetic operators. In MathProg there are the following arithmetic operators,
which may be used in numeric expressions:

+x unary plus

-z unary minus

T+y addition

-y subtraction

z less y positive difference (if z < y then 0 else z — y)
T *y multiplication

x/y division

rdiv y quotient of exact division

x mod y remainder of exact division

x **x y, x "y exponentiation (raise to power)

where = and y are numeric expressions.

If the expression includes more than one arithmetic operator, all operators are per-
formed from left to right according to the hierarchy of operations (see below) with the
only exception that the exponentiaion operators are performed from right to left.

The resultant value of the expression, which contains arithmetic operators, is the result
of applying the operators to their operands.

12

Hierarchy of operations. The following list shows the hierarchy of operations in nu-
meric expressions:

Operation Hierarchy
Evaluation of functions (abs, ceil, etc.) Ist
Exponentiation (**, ™) 2nd
Unary plus and minus (+, -) 3rd
Multiplication and division (*, /, div, mod) 4th
Iterated operations (sum, prod, min, max) 5th
Addition and subtraction (+, -, diff) 6th
Conditional evaluation (if ...then ...else) 7th

This hierarchy is used to determine which of two consecutive operations is performed
first. If the first operator is higher than or equal to the second, the first operation is
performed. If it is not, the second operator is compared to the third, etc. When the end
of the expression is reached, all of the remaining operations are performed in the reverse
order.

3.2 Symbolic expressions

Symbolic expression is a rule for computing a single symbolic value represented in the form
of character string.

The primary symbolic expression may be a string literal, dummy index, unsubscripted
parameter, subscripted parameter, conditional symbolic expression, or another symbolic
expression enclosed in parentheses.

It is also allowed to use a numeric expression as the primary symbolic expression, in
which case the resultant value of the numeric expression is automatically converted to the
symbolic type.

Examples:

’May 2003’ string literal

j dummy index

p unsubscripted parameter
s[’abc’, j+1] subscripted parameter
if i in I then s[i,j] & "..." else t[i+1] conditional expression
((10 * b[i,j]) & ’.bis’) parenthesized expression

More general symbolic expressions containing two or more primary symbolic expres-
sions may be constructed by using the concatenation operator.

Examples:
abel’ & i & 7, &3 &1
"from " & city[i]l " to " & cityl[j]
The principles of evaluation of symbolic expressions are entirely analogous to that that
given for numeric expressions (see above).
Symbolic operators. Currently in MathProg there is the only symbolic operator:
T &y

where x and y are symbolic expressions. This operator means concatenation of its two
symbolic operands, which are character strings.

13

Hierarchy of operations The following list shows the hierarchy of operations in sym-
bolic expressions:

Operation Hierarchy
Evaluation of numeric operations 1st-7th
Concatenation (&) 8th
Conditional evaluation (if ...then ...else) 9th

This hierarchy has the same meaning as explained in Subsection “Numeric expressions”.

3.3 Indexing expressions and dummy indices

Indexing expression is an auxiliary construction, which specifies a plain set of n-tuples and
introduces dummy indices. It has two syntactic forms:

{entry,, entrys, ..., entry,t (5)
{entryy, entrys, ..., entry, : predicate}
where entry,, entriyo, ..., entry,, are indexing entries, predicate is a logical expression that

specifies optional predicate.
Each indexing entry in the indexing expression have the following three forms:

tin S
(tl,tg,...,tk) in S (6)
S

where t,%1,t9,...,t; are indices, S is a set expression that specifies the basic set.

The number of indices in the indexing entry must be the same as the dimension of the
basic set S, i.e. if S consists of 1-tuples, the first form must be used, and if S consists of
n-tuples, where n > 1, the second form must be used.

If the first form of the indexing entry is used, the index ¢ can be a dummy index only.
If the second form is used, the indices t1,to,...,fr can be either dummy indices or some
numeric or symbolic expressions, where at least one index must be a dummy index. The
third, reduced form of the indexing entry has the same effect as if there were ¢ (if S is
1-dimensional) or t1,ta, ..., (if S is n-dimensional) all specified as dummy indices.

Dummy index is an auxiliary model object, which acts like an individual variable.
Values assigned to dummy indices are components of n-tuples from basic sets, i.e. some
numeric and symbolic quantities.

For referencing purposes dummy indices can be provided with symbolic names. How-
ever, unlike other model objects (sets, parameters, etc.) dummy indices don’t need to
be explicitly declared. Each undeclared symbolic name being used in indexing position of
some indexing entry is recognized as symbolic name of corresponding dummy index.

Symbolic names of dummy indices are valid only within the scope of the indexing
expression, where the dummy indices were introduced. Beyond the scope the dummy
indices are completely inaccessible, so the same symbolic names may be used for other
purposes, in particular, to represent dummy indices in other indexing expressions.

The scope of indexing expression, where implicit declarations of dummy indices are
valid, depends on the context, in which the indexing expression is used:

14

1. If the indexing expression is used in iterated operator, its scope extends until the
end of the integrand.

2. If the indexing expression is used as a primary set expression, its scope extends until
the end of this indexing expression.

3. If the indexing expression is used to define the subscript domain in declarations of
some model objects, its scope extends until the end of the corresponding statement.

The indexing mechanism implemented by means of indexing expressions is best ex-
plained by some examples discussed below.

Let there be three sets:

A=1{4,7,9}
B = {(1,Jan), (1, Feb), (2, Mar), (2, Apr), (3, May), (3, Jun)} (7)
C ={a,b,c}

where A and B consist of 1-tuples (singles), C consists of 2-tuples (doubles). And consider
the following indexing expression:

{i in A, (j,k) in B, 1 in C} (8)

where i, 7, k, and [are dummy indices.

Although MathProg is not a procedural language, for any indexing expression an
equivalent algorithmic description can be given. In particular, the algorithmic description
of the indexing expression (8) is the following:

for all i € A do
for all (j,k) € B do
for alll € C do

action;

where the dummy indices 7, j, k, [are consecutively assigned corresponding components
of n-tuples from the basic sets A, B, C', and action is some action that depends on the
context, where the indexing expression is used. For example, if the action were printing
current values of dummy indices, the output would look like follows:

1=4 =1 k=Jan l=a
1=4 =1 k=Jan [=b
1=4 =1 k=Jan l=c
1=4 j=1 k=Feb l=a
i=4 j=1 k=Feb [I=0

1=9 7=3 k=Jun [=0b
1=9 =3 k=Jun [l=
Let the indexing expression (8) be used in the following iterated operation:
sum{i in A, (j,k) in B, 1 in C} pl[i,j,k,1] #** 2 (9)

where pli, j, k,l] may be a 4-dimensional numeric parameter or some numeric expression
whose resultant value depends on i, j, k, and [. In this case the action is summation, so
the resultant value of the primary numeric expression (9) is:

> (pijui)?.

i€A,(j,k)EB,leC

15

Now let the indexing expression (8) be used as a primary set expression. In this case
the action is gathering all 4-tuples (quadruples) of the form (4,7, k,1) in one set, so the
resultant value of such operation is simply the Cartesian product of the basic sets:

AxBxC={(,jk1)]i€AC(k)eBleC}
Note that in this case the same indexing expression might be written in the reduced form:
{A, B, C}

because the dummy indices i, j, k, [are not referenced and therefore their symbolic names
are not needed.

Finally, let the indexing expression (8) be used as the subscript domain in declaration
of some 4-dimensional model object, for instance, some numeric parameter:

par p{i in A, (j,k) in B, 1 in C} ... ;

In this case the action is generating the parameter members, where each member has the
form pli, j, k, 1].

As was said above, some indices in (6) may be numeric or symbolic expressions, not
dummy indices. In this case resultant values of such expressions play role of some logical
conditions to select only that n-tuples from the Cartesian product of basic sets, which
satisfy these conditions.

Consider, for example, the following indexing expression:

{i in A, (i-1,k) in B, 1 in C} (10)

where i, k,l are dummy indices, and ¢ — 1 is a numeric expression. The algorithmic
decsription of the indexing expression (10) is the following:

for all : € A do
for all (j,k) € Band j=i—1do
for alll € C do
action;

Thus, if the indexing expression (10) is used as a primary set expression, the resultant set
is the following:

{(4, May,a), (4, May,b), (4, May, c), (4, Jun,a), (4, Jun,b), (4, Jun,c)}

Should note that in this case the resultant set consists of 3-tuples, not of 4-tuples, because
in the indexing expression (10) there is no dummy index that corresponds to the first
component of 2-tuples from the set B.

The general rule is: the number of components of n-tuples defined by an indexing
expression is the same as the number of dummy indices in that indexing expression, where
the correspondence between dummy indices and components on n-tuples in the resultant
set is positional, i.e. the first dummy index corresponds to the first component, the second
dummy index corresponds to the second component, etc.

In many cases it is needed to select a subset from some set of from the Cartesian
product of some sets. This may be attained by using an optional logical predicate, which
is specified in indexing expression after the last or the only indexing entry.

16

Consider, for example, the following indexing expression:
{i in A, (j,k) in B, 1 in C: i <= 5 and k <> ’Mar’} (11)

where the logical expression following the colon is a predicate. The algorithmic description
of this indexing expression is the following:

for all i € A do
for all (j,k) € B do
for all [€ C do
if i <5 and k # ‘Mar’ then
actiomn;

Thus, if the indexing expression (11) is used as a primary set expression, the resultant set
is the following;:

{(4,1, Jan,a), (4,1, Feb,a), (4,2, Apr,a), ..., (4,3, Jun,c)}.

If no predicate is specified in indexing expression, one is assumed whose value is true.

3.4 Set expressions

Set expression is a rule for computing an elemental set, i.e. a collection of n-tuples, where
components of n-tuples are numeric and symbolic quantities.

The primary set expression may be a literal set, unsubscripted set, subscripted set,
“arithmetic” set, indexing expression, iterated set expression, conditional set expression,
or another set expression enclosed in parentheses.

Examples:

{(123,’aaa’), (i+1,’bbb’), (j-1,’ccc’)} literal set

I unsubscripted set
S[i-1,j+1] subscripted set

1..t-1 by 2 “arithmetic” set

{t in 1..T, (t+1,j) in S: (t,j) in F} indexing expression
setof{i in I, j in J}(i+1,j-1) iterated set expression

if i < j then S[i,j] else F diff S[i,j] conditional set expression
(1..10 union 21..30) parenthesized set expression

More general set expressions containing two or more primary set expressions may be
constructed by using certain set operators.

Examples:

(A union B) inter (I cross J)
1..10 cross (if i < j then {’a’, ’b’, ’c’} else {’d’, ’e’, ’f’})

Literal sets. Literal set is a primary set expression, which has the following two syntactic
forms:

{61,62, e ,em}

{(611, ,e1n) ,(621, . ,egn) PR (6m1, . ,6mn)}

where eq, ..., em, €11, ..., €my are numeric or symbolic expressions.

17

If the first form is used, the resultant set consists of 1-tuples (singles) enumerated
within the curly braces. It is allowed to specify an empty set, which has no 1-tuples.

If the second form is used, the resultant set consists of n-tuples enumerated within the
curly braces, where a particular n-tuple consists of corresponding components enumerated
within the parentheses. All n-tuples must have the same number of components.

Unsubscripted set. If the primary set expression is an unsubscripted set (which must
be 0-dimensional), the resultant set is an elemental set associated with the corresponding
set object.

Subscripted set. The primary set expression, which refers to a subscripted set, has the
following syntactic form:
nameli1,i2, ... ,in)

where name is the symbolic name of the set object, i1, 49, ..., i, are subscripts.

Fach subscript must be a numeric or symbolic expression. The number of subscripts
in the subscript list must be the same as the dimension of the set object with which the
subscript list is associated.

Actual values of subscript expressions are used to identify a particular member of the
set object that determines the resultant set.

“Arithmetic” set. The primary set expression, which is an “arithmetic” set, has the
following two syntactic forms:
to .. ts by ot
to .. ty
where tg, t1, and §t are numeric expressions (the value of 6¢ must not be zero). The second
form is equivalent to the first form, where dt = 1.
If 6t > 0, the resultant set is determined as follows:

{t:3k € Z(t =tg +kdt, to <t <ts)}
If 0t < 0, the resultant set is determined as follows:

{t:3k e Z(t =tg+kdt, t; <t <tp)}

Indexing expressions. If the primary set expression is an indexing expression, the
resultant set is determined as described in Subsection “Indexing expressions and dummy
indices” (see above).

Iterated expressions. Iterated set expression is a primary set expression, which has
the following syntactic form:

setof indexing-expression integrand
where indexing-expression is an indexing expression that introduces dummy indices and

controls iterating, integrand is either a single numeric or symbolic expression or a list of
numeric and symbolic expressions separated by commae and enclosed in parentheses.

18

If the integrand is a single numeric or symbolic expression, the resultant set consists
of 1-tuples and is determined as follows:

{z: (i1,...,in) € A},

where x is a value of the integrand, i1, ...,4, are dummy indices introduced in the in-
dexing expression, A is the domain, a set of n-tuples specified by the indexing expression
that defines particular values assigned to the dummy indices on performing the iterated
operation.

If the integrand is a list containing m numeric and symbolic expressions, the resultant
set consists of m-tuples and is determined as follows:

{(z1, ..y xm) : (i1,...,0n) € A},

where x1, ..., x,;, are values of the expressions in the integrand list, i1, ...,4, and A have
the same meaning as above.

Conditional expressions. Conditional set expression is a primary set expression that
has the following syntactic form:

if b then X else Y

where b is an logical expression, X and Y are set expressions, which must define sets of
the same dimension.

The resultant value of the conditional expression depends on the value of the logical
expression that follows the keyword if. If it is true, the resultant set is the value of the
expression that follows the keyword then. Otherwise, if the logical expression has the
value false, the resultant set is the value of the expression that follows the keyword else.

Parenthesized expressions. Any set expression may be enclosed in parentheses that
syntactically makes it primary set expression.

Parentheses may be used in set expressions, as in algebra, to specify the desired order
in which operations are to be performed. Where parentheses are used, the expression
within the parentheses is evaluated before the resultant value is used.

The resultant value of the parenthesized expression is the same as the value of the
expression enclosed within parentheses.

Set operators. In MathProg there are the following set operators, which may be used
in set expressions:

X union Y union X UY

X diff Y difference X\Y

X symdiff Y symmetric difference X @Y

X inter Y intersection X NY

X cross Y cross (Cartesian) product X x Y

where X and Y are set expressions, which must define sets of the identical dimension
(except for the Cartesian product).

If the expression includes more than one set operator, all operators are performed from
left to right according to the hierarchy of operations (see below).

19

The resultant value of the expression, which contains set operators, is the result of
applying the operators to their operands.

The dimension of the resultant set, i.e. the dimension of n-tuples, of which the resultant
set consists of, is the same as the dimension of the operands except the Cartesian product,
where the dimension of the resultant set is the sum of dimension of the operands.

Hierarchy of operations. The following list shows the hierarchy of operations in set
expressions:

Operation Hierarchy
Evaluation of numeric operations 1st-Tth
Evaluation of symbolic operations 8th-9th
Evaluation of iterated or “arithmetic” set (setof, ..) 10th
Cartesian product (cross) 11th
Intersection (inter) 12th
Union and difference (union, diff, symdiff) 13th
Conditional evaluation (if ...then ...else) 14th

This hierarchy is used to determine which of two consecutive operations is performed first.
If the first operator is higher than or equal to the second, the first operation is performed.
If it is not, the second operator is compared to the third, etc. When the end of the
expression is reached, all of the remaining operations are performed in the reverse order.

3.5 Logical expressions

Logical expression is a rule for computing a single logical value, which can be either true
or false.

The primary logical expression may be a numeric expression, relational expression,
iterated logical expression, or another logical expression enclosed in parentheses.

Examples:

i+l numeric expression

ali,jl < 1.5 relational expression
s[i+1,j-1] <> ’Mar’ & year relational expression
(i+1,’Jan’) not in I cross J relational expression

S union T within A[i] inter B[j] relational expression

forall{i in I, j in J} ali,j] < .5 * b[i] iterated logical expression
(ali,j] < 1.5 or b[i] >= ali,jl) parenthesized logical expression

More general logical expressions containing two or more primary logical expressions
may be constructed by using certain logical operators.

Examples:

not (ali,j] < 1.5 or b[i] >= al[i,j]) and (i,j) in S
(i,j) in S or (i,j) not in T

Numeric expressions. The resultant value of the primary logical expression, which is
a numeric expression, is true if the resultant value of the numeric expression is not zero,
otherwise the resultant value of the logical expression is false.

20

Relational expressions. In MathProg there are the following relational operators,
which may be used in logical expressions:

Tz <y teston x <y
T <=y testonz <y
r=y, =1y testonx =y
T >=y testonz >y
<>y, xl=y test on x # y
rinY testonz €Y
(1,...,2p) in Y test on (z1,...,2p) €Y
xnot inY, x 'in Y teston x €Y
(1,...,xp) not inY, (z1,...,2,) 'inY test on (z1,...,2,) €Y
X within Y teston X CY
X not within Y, X !within Y teston X Y
where x,x1,...,x,,y are numeric or symbolic expressions, X and Y are set expression.
Notes:
1. If x and y are symbolic expressions, only the relational operators =, ==, <>, and !=

can be used.

2. In the operations in, not in, and !'in the number of components in the first
operands must be the same as the dimension of the second operand.

3. In the operations within, not within, and !within both operands must have
identical dimension.

All the relational operators have their conventional mathematical meaning. The resul-
tant value takes on the value true if the corresponding relation is satisfied for its operands,
otherwise false.

Iterated expressions. Iterated logical expression is a primary logical expression, which
has the following syntactic form:

iterated-operator indexing-expression integrand

where iterated-operator is the symbolic name of the iterated operator to be performed (see
below), indexing expression is an indexing expression that introduces dummy indices and
controls iterating, integrand is a logical expression that participates in the operation.

In MathProg there are two iterated operators, which may be used in logical expressions:

forall V-quantification V(i1,...,0)ealz(i1,...,0n)]

exists J-quantification (i1, ..., 0)ealx(i1, ..., in)]

where i1, ..., i, are dummy indices introduced in the indexing expression, A is the domain,
a set of n-tuples specified by the indexing expression that defines particular values assigned
to the dummy indices on performing the iterated operation, x(i1,...,iy,) is the integrand,
a logical expression whose resultant value depends on the dummy indices.

For V-quantification the resultant value of the iterated logical expression is true if the
value of the integrand is true for all n-tuples contained in the domain, otherwise false.

For 3-quantification the resultant value of the iterated logical expression is false if the
value of the integrand is false for all n-tuples contained in the domain, otherwise true.

21

Parenthesized expressions. Any logical expression may be enclosed in parentheses
that syntactically makes it primary logical expression.

Parentheses may be used in logical expressions, as in algebra, to specify the desired
order in which operations are to be performed. Where parentheses are used, the expression
within the parentheses is evaluated before the resultant value is used.

The resultant value of the parenthesized expression is the same as the value of the
expression enclosed within parentheses.

Logical operators. In MathProg there are the following logical operators, which may
be used in logical expressions:

notz, ! x negation
x and y, ¢ && y conjunction (logical “and”)
zory,z ||y disjunction (logical “or”)

where x and y are logical expressions.

If the expression includes more than one logical operator, all operators are performed
from left to right according to the hierarchy of operations (see below).

The resultant value of the expression, which contains logical operators, is the result of
applying the operators to their operands.

Hierarchy of operations. The following list shows the hierarchy of operations in logical
expressions:

Operation Hierarchy
Evaluation of numeric operations 1st-7th
Evaluation of symbolic operations 8th-9th
Evaluation of set operations 10th-14th
Relational operations (<, <=, etc.) 15th
Negation (not, !) 16th
Conjunction (and, &&) 17th
V- and 3-quantification (forall, exists) 18th
Disjunction (or, |) 19th

This hierarchy has the same meaning as explained in Subsection “Numeric expressions”.

3.6 Linear expressions

Linear expression is a rule for computing so called linear form or simply formula, which
is a linear (or affine) function of elemental variables.

The primary linear expression may be an unsubscripted variable, subscripted vari-
able, iterated linear expression, conditional linear expression, or another linear expression
enclosed in parentheses.

It is also allowed to use a numeric expression as the primary linear expression, in
which case the resultant value of the numeric expression is automatically converted to the
formula that consists of the only constant term.

22

Examples:
z unsubscripted variable
x[1i,j] subscripted variable

sum{j in J} (ali,jl * x[i,j] + 3 * y[i-1]) iterated linear expression
if i in I then x[i,j] else 1.5 * z + 3.25 conditional linear expression
(ali,jl * x[i,j] + y[i-11 + . 1) parenthesized linear expression

More general linear expressions containing two or more primary linear expressions may
be constructed by using certain arithmetic operators.

Examples:

2 % x[i-1,j+1] + 3.5 * y[k] + .5 * z
(- x[i,j] + 3.5 * y[k]) / sum{t in T} abs(d[i,j,t])

Unsubscripted variables. If the primary linear expression is an unsubscripted variable
(which must be 0-dimensional), the resultant formula is that unsubscripted variable.

Subscripted variables. The primary linear expression, which refers to a subscripted
variable, has the following syntactic form:

namelt1,i2, ... ,%n]

where name is the symbolic name of the variable, i1, 49, ..., 4, are subscripts.

Each subscript must be a numeric or symbolic expression. The number of subscripts
in the subscript list must be the same as the dimension of the variable with which the
subscript list is associated.

Actual values of subscript expressions are used to identify a particular member of
the model variable that determines the resultant formula, which is an elemental variable
associated with the corresponding member.

Iterated expressions. Iterated linear expression is a primary linear expression, which
has the following syntactic form:

sum indexing-expression integrand

where indexing-expression is an indexing expression that introduces dummy indices and
controls iterating, integrand is a linear expression that participates in the operation.

The iterated linear expression is evaluated exactly in the same way as the iterated
numeric expression (see Subsection “Numeric expressions” above) with the exception that
integrand participated in the summation is a formula, not a numeric value.

Conditional expressions. Conditional linear expression is a primary linear expression,
which has the following two syntactic forms:

if b then f else g
if b then f

where b is an logical expression, f and g are linear expressions.

The conditional linear expression is evaluated exactly in the same way as the condi-
tional numeric expression (see Subsection “Numeric expressions” above) with the exception
that operands participated in the operation are formulae, not numeric values.

23

Parenthesized expressions. Any linear expression may be enclosed in parentheses
that syntactically makes it primary linear expression.

Parentheses may be used in linear expressions, as in algebra, to specify the desired
order in which operations are to be performed. Where parentheses are used, the expression
within the parentheses is evaluated before the resultant formula is used.

The resultant value of the parenthesized expression is the same as the value of the
expression enclosed within parentheses.

Arithmetic operators. In MathProg there are the following arithmetic operators,
which may be used in linear expressions:

+ f unary plus

- f unary minus
f+g addition
f-g subtraction

x * f, f*x multiplication
f/x division

where f and g are linear expressions, x is numeric expression.

If the expression includes more than one arithmetic operator, all operators are per-
formed from left to right according to the hierarchy of operations (see below).

The resultant value of the expression, which contains arithmetic operators, is the result
of applying the operators to their operands.

Hierarchy of operations. The hierarchy of arithmetic operations used in linear ex-
pressions is the same as for numeric expressions (for details see Subsection “Numeric
expressions”).

24

4 Statements

Statements are basic units of the model description. In MathProg all statements are
divided into two categories: declaration statements and functional statements.

Declaration statements (set statement, parameter statement, variable statement, con-
straint statement, and objective statement) are used to declare model objects of certain
kinds and define certain properties of that objects.

Functional statements (check statement and display statement) are basically intended
for auxiliary purposes. The check statement allows checking correctness of data. The
display statement allows displaying content of model objects that is usually needed on
debugging the model description.

MathProg is a descriptive, not procedural language. Therefore statements in the model
description may follow in arbitrary order which doesn’t affect the result of translation.
However, any model object must be declared before it is referenced in other statements.

4.1 Set statement

General Form
set name alias domain , attrib , ..., attrib ;

Where: name is the symbolic name of a set.
alias is an optional string literal that specifies the alias of the set.
domain is an optional indexing expression that specifies the subscript
domain of the set.
attrib, . .., attrib are optional attributes of the set. (Commae preceding
attributes may be omitted.)

The attributes are:

dimen n specifies dimension of n-tuples, which the set consists of.

within ezxpression
specifies a superset which restricts the set or all its members (elemental
sets) to be within this superset.

:= expression specifies an elemental set assigned to the set or its members.

default expression
specifies an elemental set assigned to the set or its members whenever
no appropriate data are available in the data section.

Examples:

set nodes;

set arcs within nodes cross nodes;

set step{s in 1..maxiter} dimen 2 := if s = 1 then arcs else step[s-1]
union setof{k in nodes, (i,k) in stepls-11, (k,j) in stepl[s-11}(i,j);

set A{i in I, j in J}, within B[i+1] cross C[j-1], within D diff E,
default {(’abc’,123), (321,’cba’)};

The set statement declares a set. If the subscript domain is not specified, the set is a
simple set, otherwise it is an array of elemental sets.

25

The dimen attribute specifies dimension of n-tuples, which the set (if it is a simple
set) or its members (if the set is an array of elemental sets) consist of, where n must
be unsigned integer from 1 to 20. At most one dimen attribute can be specified. If
the dimen attribute is not specified, dimension of n-tuples is implicitly determined by
other attributes (for example, if there is a set expression that follows := or the keyword
default, the dimension of n-tuples of the corresponding elemental set is used). If no
dimension information is available, dimen 1 is assumed.

The within attribute specifies a set expression whose resultant value is a superset used
to restrict the set (if it is a simple set) or its members (if the set is an array of elemental
sets) to be within this superset. Arbitrary number of within attributes may be specified
in the same set statement.

The assign (:=) attribute specifies a set expression used to evaluate elemental set(s)
assigned to the set (if it is a simple set) or its members (if the set is an array of elemental
sets). If the assign attribute is specified, the set is computable and therefore needs no data
to be provided in the data section. If the assign attribute is not specified, the set must be
provided with data in the data section. At most one assign or default attribute can be
specified for the same set.

The default attribute specifies a set expression used to evaluate elemental set(s)
assigned to the set (if it is a simple set) or its members (if the set is an array of elemental
sets) whenever no appropriate data are available in the data section. If neither assign nor
default attribute is specified, missing data will cause an error.

4.2 Parameter statement

General Form
param name alias domain , attrib , ..., attrib ;

Where: name is the symbolic name of a parameter.
alias is an optional string literal that specifies the alias of the parameter.
domain is an optional indexing expression that specifies the subscript
domain of the parameter.
attrib, ..., attrib are optional attributes of the parameter. (Commae
preceding attributes may be omitted.)

The attributes are:

integer specifies that the parameter is integer.

binary specifies that the parameter is binary.

symbolic specifies that the parameter is symbolic.

relation expression (where relation is one of: < <= = == >= > <> 1=)

specifies a condition that restricts the parameter or its members to
satisfy this condition.

in expression specifies a superset that restricts the parameter or its members to be
in this superset.

:= expression specifies a value assigned to the parameter or its members.

default expression
specifies a value assigned to the parameter or its members whenever
no appropriate data are available in the data section.

26

Examples:

param units{raw, prd} >= 0;

param profit{prd, 1..T+1};

param N := 20 integer >= 0 <= 100;

param comb ’n choose k’ {n in 0..N, k in 0..n} :=
if k = 0 or k = n then 1 else comb[n-1,k-1] + comb[n-1,k];

param p{i in I, j in J}, integer, >= 0, <= i+j, in A[i] symdiff B[j],
in C[i,j], default 0.5 * (i + j);

param month symbolic default ’May’ in {’Mar’, ’Apr’, ’May’};

The parameter statement declares a parameter. If the subscript domain is not speci-
fied, the parameter is a simple (scalar) parameter, otherwise it is a n-dimensional array.

The type attributes integer, binary, and symbolic qualify the type values which can
be assigned to the parameter as shown below:

Type attribute Assigned values

not specified Any numeric values

integer Only integer numeric values
binary Either 0 or 1

symbolic Any numeric and symbolic values

The symbolic attribute cannot be specified along with other type attributes. Being spec-
ified it must precede all other attributes.

The condition attribute specifies an optional condition that restricts values assigned to
the parameter to satisfy this condition. This attribute has the following syntactic forms:

<w Check for z < v
<= Check for z <wv
=v,==v Check for x =v
>= 9 Check for x > v
> v Check for = > v

<> v, !'=v Check for x # v

where x is a value assigned to the parameter, v is the resultant value of a numeric or
symbolic expression specified in the condition attribute. If the parameter is symbolic,
conditions in the form of inequality cannot be specified. Arbitrary number of condition
attributes can be specified for the same parameter. If a value being assigned to the
parameter during model evaluation violates at least one specified condition, an error is
raised.

The in attribute is similar to the condition attribute and specifies a set expression
whose resultant value is a superset used to restrict numeric or symbolic values assigned
to the parameter to be in this superset. Arbitrary number of the in attributes can be
specified for the same parameter. If a value being assigned to the parameter during model
evaluation is not in at least one specified superset, an error is raised.

The assign (:=) attribute specifies a numeric or symbolic expression used to compute
a value assigned to the parameter (if it is a simple parameter) or its member (if the
parameter is an array). If the assign attribute is specified, the parameter is computable
and therefore needs no data to be provided in the data section. If the assign attribute is

27

not specified, the parameter must be provided with data in the data section. At most one
assign or default attribute can be specified for the same parameter.

The default attribute specifies a numeric or symbolic expression used to compute a
value assigned to the parameter or its member whenever no appropriate data are available
in the data section. If neither assign nor default attribute is specified, missing data will
cause an error.

4.3 Variable statement

General Form
var name alias domain , attrib , ..., attrib ;

Where: name is the symbolic name of a variable.
alias is an optional string literal that specifies the alias of the variable.
domain is an optional indexing expression that specifies the subscript
domain of the variable.
attrib, ..., attrib are optional attributes of the variable. (Commae
preceding attributes may be omitted.)

The attributes are:
integer restricts the variable to be integer.
binary restricts the variable to be binary.
>= expression specifies a lower bound of the variable.
<= expression specifies an upper bound of the variable.
= expression, == erpression

specifies a fixed value of the variable.

Examples:

var x >= 0;

var y{I,J};

var make{p in prd}, integer, >= commit[p], <= market[p];
var store{raw, 1..T+1} >= 0;

var z{i in I, j in J} >= i+j;

The variable statement declares a variable. If the subscript domain is not specified,
the variable is a simple (scalar) variable, otherwise it is a n-dimensional array of elemental
variables.

Elemental variable(s) associated with the model variable (if it is a simple variable) or
its members (if it is an array) correspond to structural variables in the LP/MIP problem
formulation (see Subsection “Linear programming problem”). Should note that only the
elemental variables actually referenced in some constraints and objectives are included in
the LP/MIP problem instance to be generated.

The type attributes integer and binary restrict the variable to be integer or binary,
respectively. If no type attribute is specified, the variable is continuous. If all variables in
the model are continuous, the corresponding problem is of LP class. If there is at least
one integer or binary variable, the problem is of MIP class.

The lower bound (>=) attribute specifies a numeric expression for computing the lower
bound of the variable. At most one lower bound can be specified. By default variables

28

(except binary ones) have no lower bounds, so if a variable is required to be non-negative,
its zero lower bound should be explicitly specified.

The upper bound (<=) attribute specifies a numeric expression for computing the upper
bound of the variable. At most one upper bound attribute can be specified.

The fixed value (=) attribute specifies a numeric expression for computing the value,
at which the variable is fixed. This attribute cannot be specified along with lower /upper
bound attributes.

4.4 Constraint statement

General Form

subject to name alias domain : expression , = erpression ;

-

A
|

-

subject to name alias domain : expression , <= erpression ;

subject to name alias domain : expression , >= erpression ;

-

A
I

A
I

subject to name alias domain : expression expression , exTpression ;

-

>= expression , >= erpression ;

subject to name alias domain : expression

-

Where: name is the symbolic name of a constraint.
alias is an optional string literal that specifies the alias of the constraint.
domain is an optional indexing expression that specifies the subscript
domain of the constraint.
expressions are linear expressions for computing components of the
constraint. (Commae following expressions may be omitted.)

Note: The keyword subject to may be reduced to s.t. or omitted at all.

Examples:

s.t. r: x+y+z, >0, <=1;
limit{t in 1..T}: sum{j in prd} make[j,t] <= max_prd;
subject to balance{i in raw, t in 1..T}:
store[i,t+1] - storel[i,t] - sum{j in prd} units[i,j] * makel[j,t];
subject to rlim ’regular-time limit’ {t in time}:
sum{p in prd} ptlpl] * rprdlp,t] <= 1.3 * dpp[t] * crews[t];

The constraint statement declares a constraint. If the subscript domain is not specified,
the constraint is a simple (scalar) constraint, otherwise it is a m-dimensional array of
elemental constraints.

Elemental constraint(s) associated with the model constraint (if it is a simple con-
straint) or its members (if it is an array) correspond to general linear constraints in the
LP/MIP problem formulation (see Subsection “Linear programming problem”).

If the constraint has the form of equality or single inequality, i.e. includes two ex-
pressions, one of which follows the colon and other follows the relation sign =, <=, or >=,
both expressions in the statement can be linear expressions. If the constraint has the form

29

of double inequality, i.e. includes three expressions, the middle expression can be linear
expression while the leftmost and rightmost ones can be only numeric expressions.

Generating the model is, generally speaking, generating its constraints, which are
always evaluated for the entire subscript domain. Evaluating constraints leads, in turn,
to evaluating other model objects such as sets, parameters, and variables.

Constructing the actual linear constraint included in the problem instantce, which
(constraint) corresponds to a particular elemental constraint, is performed as follows.

If the constraint has the form of equality or single inequality, evaluation of both linear
expressions gives two resultant linear forms:

[= a1Tmi1 + a2Tmi2 + - .-+ AnTmin + ao,
g =b1Tmy1 + b2Xpmyo + ...+ bpTimyn + bo,

where Xy, 11, Tm+2,-- -, Tm4n are elemental variables, ay,a9,...,an,b1,b2,..., b, are nu-
meric coefficients, ag and by are constant terms. Then all linear terms of f and g are
carried to the left-hand side, and the constant terms are carried to the right-hand side
that gives the final elemental constraint in the standard form:

T . (a1 — bl)xm+1 + (CLQ — b2)$m+2 + ...+ (an — bn)azm+n b() — aop,

VA

where z; is the implicit auxiliary variable of the constraint (see Subsection “Linear pro-
gramming problem”).

If the constraint has the form of double inequality, evaluation of the middle linear
expression gives the resultant linear form:

f=a12m 1+ a2Tmi2 + ..+ anTmgn + ao,

and evaluation of the leftmost and rightmost numeric expressions gives two numeric values
[and u (or v and 1), respectively. Then the constant term of the linear form is carried
to both left-hand and right-hand sides that gives the final elemental constraint in the
standard form:

[—ap <xi:a1Tmi1 + a2fmi2 + ...+ anTimyn < U — ag,

where x; is the implicit auxiliary variable of the constraint.

4.5 Objective statement

General Form
minimize name alias domain : expression ;
maximize name alias domain : expression ;

Where: name is the symbolic name of an objective.
alias is an optional string literal that specifies the alias of the objective.
domain is an optional indexing expression that specifies the subscript
domain of the objective.
expression is an linear expression that specifies the linear form of the
objective.

30

Examples:

minimize obj: x + 1.5 *x (y + z);
maximize total_profit: sum{p in prd} profit([p] * makel[p];

The objective statement declares an objective. If the subscript domain is not specified,
the objective is a simple (scalar) objective. Otherwise it is a n-dimensional array of
elemental objectives.

Elemental objective(s) associated with the model objective (if it is a simple objective)
or its members (if it is an array) correspond to general linear constraints in the LP/MIP
problem formulation (see Subsection “Linear programming problem”). However, unlike
constraints the corresponding linear forms are free (unbounded).

Constructing the actual linear constraint included in the problem instance, which
(constraint) corresponds to a particular elemental objective, is performed as follows. The
linear expression specified in the objective statement is evaluated that gives the resultant
linear form:

[=a1Zmi1 + a2Tmi2 + oo+ AnTmgn + ao,

where Ty 41, Tm+2,--.,Tmin are elemental variables, ai,ao,...,a, are numeric coeffi-
cients, ag is the constant term. Then the linear form is used to construct the final elemental
constraint in the standard form:

—00 < Tj 1 1T m41 + a2Tmy2 + ..+ AT + ag < 400,

where z; is the implicit free (unbounded) auxiliary variable of the constraint.

As a rule the model description contains only one objective statement that defines
the objective function (1) used in the problem instance. However, it is allowed to declare
arbitrary number of objectives, in which case the actual objective function is the first
objective encountered in the model description. Other objectives are also included in the
problem instance, but they don’t affect the objective function.

4.6 Check statement

General Form
check domain : expression ;

Where: domain is an optional indexing expression that specifies the subscript
domain of the check statement.
expression is an logical expression that specifies the logical condition
to be checked. (The colon preceding ezpression may be omitted.)

Examples:

check: x + y <=1 and x >= 0 and y >= O;
check sum{i in ORIG} supply[i] = sum{j in DEST} demand[j];
check{i in I, j in 1..10}: S[i,j] in U[i] union V[j];

The check statement allows checking the resultant value of an logical expression spec-
ified in the statement. If the value is false, the model translator reports an error.

31

If the subscript domain is not specified, the check is performed only once. Specifying
the subscript domain allows performing multiple checks for every n-tuple in the domain
set. In the latter case the logical expression may include dummy indices introduced in the
indexing expression that specifies the subscript domain.

4.7 Display statement

General Form

display domain : item , ..., item ;

Where: domain is an optional indexing expression that specifies the subscript
domain of the display statement.
item , ..., item are items to be displayed. (The colon preceding the

first item may be omitted.)

Examples:

display: ’x =’, x, ’y =, y, ’z =7, z;
display sqrt(x *x 2 + y ** 2 + z *x 2);
display{i in I, j in J}: i, j, ali,jl, bli,jl;

The display statement evaluates all items specified in the statement and writes their
values on the standard output in plain text format.

If the subscript domain is not specified, items are evaluated and then displayed only
once. Specifying the subscript domain causes evaluating and displaying items for every
n-tuple in the domain set. In the latter case items may include dummy indices introduced
in the indexing expression that specifies the subscript domain.

Item to be displayed can be a model object (set, parameter, variable, constraint,
objective) or an expression.

If the item is a computable object (i.e. a set or parameter provided with the assign
attribute), the object is evaluated over the entire domain and then its content (i.e. the
content of the object array) is displayed. Otherwise, if the item is not a computable
object, only its current content (i.e. the members actually generated during the model
evaluation) is displayed. Note that if the item is a variable, its “value” displayed by
the display statement means “elemental variable”, not a numeric value, which the variable
could have in some solution obtained by the solver. Analogously, if the item is a constraint
or objective, its “value” means “elemental constraint” or “elemental objective”.

If the item is an expression, the expression is evaluated and its resultant value is
displayed.

32

5 Model data

Model data include elemental sets, which are “values” of model sets, and numeric and
symbolic values of model parameters.

In MathProg there are two different ways to saturate model sets and parameters with
data. One way is simply providing necessary data using the assign attribute. However,
in many cases it is more practical to separate the model itself and particular data needed
for the model. For the latter reason in MathProg there is other way, when the model
description is divided into two parts: model section and data section.

Model section is a main part of the model description that contains declarations of all
model objects and is common for all problems based on that model.

Data section is an optional part of the model description that contains model data
specific for a particular problem.

In MathProg model and data sections can be placed either in one text file or in two
separate text files.

If both model and data sections are placed in one file, the file is composed as follows:

statement
statement
statement
data;

data block
data block

data block
end;

If the model and data sections are placed in two separate files, the files are composed
as follows:

statement data;
statement data block
- data block
statement e
end; data block
end;
Model file Data file

Note: If the data section is placed in a separate file, the keyword data is optional and
may be omitted along with the semicolon that follows it.

5.1 Coding data section

The data section is a sequence of data blocks in various formats, which are discussed in
following subsections. The order, in which data blocks follow in the data section, may be
arbitrary, not necessarily the same as in which the corresponding model objects follow in
the model section.

The rules of coding the data section are commonly the same as the rules of coding the
model description (for details see Section “Coding model description”), i.e. data blocks

33

are composed from basic lexical units such as symbolic names, numeric and string literals,
keywords, delimiters, and comments. However, for the sake of convenience and improving
readability there is one deviation from the common rule: if a string literal consists of only
alphanumeric characters (including the underscore character), the signs + and -, and/or
the decimal point, it may be coded without bordering (single or double) quotes.

All numeric and symbolic material provided in the data section is coded in the form
of numbers and symbols, i.e. unlike the model section no expressions are allowed in the
data section. Nevertheless the signs + and - can precede numeric literals to allow coding
signed numeric quantities, in which case there must be no white-space characters between
the sign and following numeric literal (if there is at least one white-space, the sign and
following numeric literal are recognized as two different lexical units).

5.2 Set data block

General Form

set name , record , ..., record ;

set name [symbol , ..., symbol] , record , ..., record ;

Where: name is the symbolic name of a set.
symbol, ..., symbol are subscripts that specify a particular member of
the set (if the set is an array, i.e. set of sets).
record, ..., record are data records.

Note: Commae preceding data records may be omitted.

The data records are:
1= is a non-significant data record which may be used freely to improve

readability.
(slice) specifies a slice.
simple-data specifies set data in the simple format.

: matriz-data specifies set data in the matrix format.

(tr) : matriz-data
specifies set data in the transposed matrix format. (In this case the
colon following the keyword (tr) may be omitted.)

Examples:

set month := Jan Feb Mar Apr May Jun;

set month "Jan", "Feb", "Mar", "Apr", "May", "Jun";

set A[3,Mar] := (1,2) (2,3) (4,2) (3,1) (2,2) (4,4) (3,4);
set A[3,’Mar’] := 1223423122442 4;

set A[3,’Mar’] : 1 34 :=

|
+ + N

|

|

S W N -
+
|
|
+

34

set B := (1,2,3) (1,3,2) (2,3,1) (2,1,3) (1,2,2) (1,1,1) (2,1,1);
set B := (x,x,x) 123,132,231, 213,122,111,211;
set B := (1,%,2) 3 2 (2,*,1) 31 (1,2,3) (2,1,3) (1,1,1);
set B := (1,%,%) : 12 3 :=

1+ -

2 -+ +

3 -+ -

(2,%,%) : 12 3 :=

1+ - +

2 - - =

3+ - -

(In these examples the set month is a simple set of singles, A is a 2-dimensional array of
doubles, and B is a simple set of triples. Data blocks for the same set are equivalent in the
sense that they specify the same data in different formats.)

The set data block is used to specify a complete elemental set, which is assigned to a
set (if it is a simple set) or one of its members (if the set is an array of sets).?

Data blocks can be specified only for the sets, which are non-computable, i.e. which
have no assign attribute in the corresponding set statements.

If the set is a simple set, only its symbolic name should be given in the header of the
data block. Otherwise, if the set is a n-dimensional array, its symbolic name should be
provided with a complete list of subscripts separated by commae and enclosed in square
brackets to specify a particular member of the set array. The number of subscripts must
be the same as the dimension of the set array, where each subscript must be a number or
symbol.

The elemental set defined in the set data block is coded as a sequence of data records
described below.?

Assign data record. The assign (:=) data record is a non-signficant element. It may
be used for improving readability of data blocks.

Slice data record. The slice data record is a control record that specifies a slice of the
elemental set defined in the data block. It has the following syntactic form:

(81,52, ... ,5p)

where s1, s9, ..., S, are components of the slice.

Each component of the slice can be a number or symbol or the asterisk (*). The number
of components in the slice must be the same as the dimension of n-tuples in the elemental
set to be defined. For instance, if the elemental set contains 4-tuples (quadruples), the slice
must have four components. The number of asterisks in the slice is called slice dimension.

The effect of using slices is the following. If a m-dimensional slice (i.e. a slice that
has m asterisks) is specified in the data block, all subsequent data records must specifiy
tuples of the dimension m. Whenever a m-tuple is encountered, each asterisk in the slice

2There is another way to specify data for a simple set along with data for parameters. This feature is
discussed in the next subsection.
3 Data record is simply a technical term. It does not mean that data records have any special formatting.

35

is replaced by corresponding components of the m-tuple that gives the resultant n-tuple,
which is included in the elemental set to be defined. For example, if the slice (a, *, 1,2,)
is in effect, and the 2-tuple (3,b) is encountered in a subsequent data record, the resultant
5-tuple included in the elemental set is (a, 3, 1,2, b).

The slice that has no asterisks itself defines a complete n-tuple, which is included in
the elemental set.

Being once specified the slice effects until either a new slice or the end of data block
has been encountered. Note that if there is no slice specified in the data block, a dummy
one, components of which are all asterisks, is assumed.

Simple data record. The simple data record defines one n-tuple in simple format and
has the following syntactic form:
tl’tQ’ ’tn

where t1,t9,...,t, are components of the n-tuple. Each component can be a number or
symbol. Commae between components are optional and may be omitted.

Matrix data record. The matrix data record defines several 2-tuples (doubles) in ma-
trix format and has the following syntactic form:

C1 Co PN Cp, =
Tooair a2 ... Qin
T2 G21 G2 ... Q2
Tm Qml Am2 ... Qmn
where r1,7r9,...,7r, are numbers and/or symbols that correspond to rows of the ma-
trix, c1,ca, ..., ¢, are numbers and/or symbols that correspond to columns of the matrix,
a11,a12, - - - , Gy are the matrix elements, which can be the signs + and -. (In this data

record the delimiter : that precedes the column list and the delimiter := that follows the
column list cannot be omitted.)

Each element a;; of the matrix data block (where 1 <i <m,1 <j < n) corresponds
to the 2-tuple (rj,¢;). If a;; is the plus (+) sign, the corresponding 2-tuple (or longer
n-tuple, if a slice is used) is included in the elemental set. Otherwise, if a;; is the minus
(=) sign, the corresponding 2-tuple is not included in the elemental set.

Since the matrix data record defines 2-tuples, either the elemental set must consist of
2-tuples or the slice currently used must be 2-dimensional.

Transposed matrix data record. The transposed matrix data record has the following
syntactic form:

(tr) : ¢ co ... Cp =
71 aiy a2 ... Gip
T2 azy G2 ... Q2q
'm aml1 Gm2 ... (mn

(In this case the delimiter : that follows the keyword (tr) is optional and may be omitted.)
This data record is completely analogous to the matrix data record (see above) with
the only exception that each element a;; of the matrix corresponds to the 2-tuple (c¢;, ;).
Being once specified the (tr) indicator effects on all subsequent data records until
either a slice or the end of data block has been encountered.

36

5.3 Parameter data block

General Form
param name , record , ..., record ;
param name default wvalue , record , ..., record ;
param : tabbing-data ;
param default value : tabbing-data ;
Where: name is the symbolic name of a parameter.
value is an optional default value of the parameter.
record, ..., record are data records.
tabbing-data specifies parameter data in the tabbing format.

Note: Commae preceding data records may be omitted.

The data records are:
= is a non-significant data record which may be used freely to improve

readability.
[slice] specifies a slice.
plain-data specifies parameter data in the plain format.

: tabular-data specifies parameter data in the tabular format.

(tr) : tabular-data
specifies parameter data in the transposed tabular format. (In this case
the colon following the keyword (tr) may be omitted.)

Examples:

param T := 4;

param month := 1 Jan 2 Feb 3 Mar 4 Apr 5 May;

param month := [1] ’Jan’, [2] ’Feb’, [3] ’Mar’, [4] ’Apr’, [5] ’May’;
param init_stock := iron 7.32 nickel 35.8;

param init_stock [*] iron 7.32, nickel 35.8;

param cost [iron] .025 [nickel] .03;

param value := iron -.1, nickel .02;
param : init_stock cost value :=
iron 7.32 .025 -.1
nickel 35.8 .03 .02 ;
param : raw : init stock cost value :=
iron 7.32 .025 -.1
nickel 35.8 .03 .02 ;

param demand default O (tr)
FRA DET LAN WIN STL FRE LAF :=
bands 300 . 100 75 . 225 250
coils 500 750 400 250 . 850 500
plate 100 . . 50 200 . 250 ;

37

param trans_cost :=
[*x,*,bands]: FRA DET LAN WIN STL FRE LAF :=

GARY 30 10 8 10 11 71 6
CLEV 22 7 10 7T 21 82 13
PITT 19 11 12 10 25 83 15
[*,*x,coils]: FRA DET LAN WIN STL FRE LAF :=
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20
[*,*,plate]: FRA DET LAN WIN STL FRE LAF :=
GARY 41 15 12 16 17 86 8
CLEV 29 9 13 9 28 99 18
PITT 26 14 17 13 31 104 20 ;

The parameter data block is used to specify complete data for a parameter (or param-
eters, if data are specified in the tabbing format) whose name is given in the block.

Data blocks can be specified only for the parameters, which are non-computable, i.e.
which have no assign attribute in the corresponding parameter statements.

Data defined in the parameter data block are coded as a sequence of data records
described below. Additionally the data block can be provided with the optional default
attribute, which specifies a default numeric or symbolic value of the parameter (parame-
ters). This default value is assigned to the parameter or its members, if no appropriate
value is defined in the parameter data block. The default attribute cannot be used, if it
is already specified in the corresponding parameter statement(s).

Assign data record. The assign (:=) data record is a non-signficant element. It may
be used for improving readability of data blocks.

Slice data record. The slice data record is a control record that specifies a slice of the
parameter array. It has the following syntactic form:

(51,523 e ,Sn)

where s1, s9,..., S, are components of the slice.

Each component of the slice can be a number or symbol or the asterisk (*). The number
of components in the slice must be the same as the dimension of the parameter. For
instance, if the parameter is a 4-dimensional array, the slice must have four components.
The number of asterisks in the slice is called slice dimension.

The effect of using slices is the following. If a m-dimensional slice (i.e. aslice that has m
asterisks) is specified in the data block, all subsequent data records must specify subscripts
of the parameter members as if the parameter were m-dimensional, not n-dimensional.

Whenever m subscripts are encountered, each asterisk in the slice is replaced by cor-
responding subscript that gives n subscripts, which define the actual parameter member.
For example, if the slice [a,*,1,2,%] is in effect, and the subscripts 3 and b are encoun-
tered in a subsequent data record, the complete subscript list used to choose a parameter
member is [a, 3,1, 2, b].

It is allowed to specify a slice that has no asterisks. Such slice itself defines a complete
subscript list, in which case the next data record can define only a single value of the
corresponding parameter member.

38

Being once specified the slice effects until either a new slice or the end of data block
has been encountered. Note that if there is no slice specified in the data block, a dummy
one, components of which are all asterisks, is assumed.

Plain data record. The plain data record defines the subscript list and a single value
in plain format. This record has the following syntactic form:

tl’tQ; atngv

where t1,to,...,t, are subscripts, v is a value. Each subscript as well as the value can be
a number or symbol. Commae that follow subscripts are optional and may be omitted.

In case of 0-dimensional parameter or slice the plain data record have no subscripts
and consists of a single value only.

Tabular data record. The tabular data record defines several values, where each value
is provided with two subscripts. This record has the following syntactic form:

C1 C2 PN Cp, =
T2 a1 a2 ... QA9n
Tm aml Qm2 ... Qmn
where 71,7r9,...,r, are numbers and/or symbols that correspond to rows of the ma-
trix, c1,c2,. .., ¢, are numbers and/or symbols that correspond to columns of the table,
ai1,a12, - . -, &my are the table elements. Each element can be a number or symbol or the

single decimal point. (In this data record the delimiter : that precedes the column list
and the delimiter := that follows the column list cannot be omitted.)

Each element a;; of the tabular data block (1 < ¢ < m,1 < j < n) defines two
subscripts, where the first subscript is r;, and the second one is ¢;. These subscripts are
used in conjunction with the current slice to form the complete subscript list that identifies
a particular member of the parameter array. If a;; is a number or symbol, this value is
assigned to the parameter member. However, if a;; is the single decimal point, the member
is assigned a default value specified either in the parameter data block or in the parameter
statement, or, if no default value is specified, the member remains undefined.

Since the tabular data record provides two subscripts for each value, either the pa-
rameter or the slice currently used must be 2-dimensional.

Transposed tabular data record. The transposed tabular data record has the follow-
ing syntactic form:

(tr) : ¢ c ... ¢Cp =
1 ailr Q12 ... Gip
72 a a2 ... G2p
'm Gml OGm2 --. Gmn

(In this case the delimiter : that follows the keyword (tr) is optional and may be omitted.)

This data record is completely analogous to the tabular data record (see above) with
the only exception that the first subscript defined by the element a;; is ¢; while the second
one is ;.

39

Being once specified the (tr) indicator effects on all subsequent data records until
either a slice or the end of data block has been encountered.

Tabbing data format. The parameter data block in the tabbing format has the fol-
lowing syntactic form:

param default wvalue : s : P, P2 o, s Dp T
11 » 12 » oo s Tin ail , a2 , ey A1y,
r21 » r22 , T T aai , a2 , .y Q2p
™1, T™m2 > -+ 5 Tmn > Oml, am2 , -5 Omr 5

Notes:

1. The keyword default may be omitted along with a value that follows it.
2. The symbolic name s of a set may be omitted along with the colon that follows it.
3. All comae are optional and may be omitted.

The data block in the tabbing format shown above is exactly equivalent to the following
data blocks:

set s := (r11,712, -- - »T1) (21,722, ... ,720) oo (Tl Tm2s oo 5 Tmn)
param p; default value :=
[r11,7125 - - 7] @11 [re1,m22, ... ,7m2,]1 a21 ... [P;mi1,Tm2, o s Tmnl Gmts

param py default value :=

[r11,7125 -« 7] a12 [ro1,m22, ... ,7m2,]1 @22 ... [T;mi1,Tm2, o s Tmnl am2;

param p, default value :=

[r11,712, -« »sT1n] a1p [r21,m22, ... ,1m20] a2y ..o M1, 7m2s o s Tmnd Qs

40

A Using the MathProg translator with GLPK API

The GLPK package includes the API routine 1px_read_model, which is a high-level in-
terface to the GNU MathProg translator.

Synopsis

#include "glpk.h"
LPX *1px_read_model(char *model, char *data, char *output);

Description The routine 1px_read_model reads and translates LP/MIP model (prob-
lem) written in the GNU MathProg modeling language.

The character string model specifies name of input text file, which contains model
section and, optionally, data section. This parameter cannot be NULL.

The character string data specifies name of input text file, which contains data section.
This parameter can be NULL. (If the data file is specified and the model file also contains
data section, that section is ignored and data section from the data file is used.)

The character string output specifies name of output text file, to which the output
produced by display statements is written. If the parameter output is NULL, the display
output is sent to stdout via the routine print.

Returns If no errors occurred, the routine returns a pointer to the created problem
object. Otherwise the routine sends diagnostics to the standard output and returns NULL.

41

B Solving models with the solver glpsol

The GLPK package includes the program glpsol which is a stand-alone LP/MIP solver.
This program can be invoked from the command line or from the shell to solve models
written in the GNU MathProg modeling language.

In order to tell the solver that the input file contains a model description, the option
--model should be specified in the command line. For example:

glpsol --model foobar.mod

Sometimes it is necessary to use the data section placed in another file, in which case
the following command may be used:

glpsol --model foobar.mod --data foobar.dat

Note that if the model file also contains the data section, that section is ignored.

If the model description contains some display statements, by default the display
output goes onto the screen (more precisely, onto the standard output device). In order
to redirect the display output to a file the following command may be used:

glpsol --model foobar.mod --display foobar.out

If you need to look at the problem which has been generated by the model translator,
the option --wtxt should be specified in the command line as follows:

glpsol --model foobar.mod —--wtxt foobar.txt

in which case the problem will be written to the file foobar.txt in plain text format
suitable for visual analysis.

Sometimes it is necessary merely to check the model description not solving the gen-
erated problem. In this case the option —-check should be given in the command line, for
example:

glpsol --check --model foobar.mod --wtxt foobar.txt

In order to write a numeric solution obtained by the solver the following command
may be used

glpsol --model foobar.mod --output foobar.sol

in which case the solution will be written to the file foobar.sol in plain text format.
Complete list of the glpsol options can be found in the reference manual included in
the GLPK distribution.

42

C Example of model description

C.1 Model description written in GNU MathProg

This is a complete example of model description written in the GNU MathProg modeling
language.

A TRANSPORTATION PROBLEM

#

This problem finds a least cost shipping schedule that meets
requirements at markets and supplies at factories.

#

References:

Dantzig, G B., Linear Programming and Extensions

Princeton University Press, Princeton, New Jersey, 1963,
Chapter 3-3.

set I;

/* canning plants */

set J;
/* markets */

param a{i in I};
/* capacity of plant i in cases */

param b{j in J};
/* demand at market j in cases */

param d{i in I, j in J};
/* distance in thousands of miles */

param f;
/* freight in dollars per case per thousand miles */

param c{i in I, j in J} := f * d[i,j] / 1000;
/* transport cost in thousands of dollars per case */

var x{i in I, j in J} >= 0;
/* shipment quantities in cases */

minimize cost: sum{i in I, j in J} c[i,j] * x[i,j];
/* total transportation costs in thousands of dollars */

s.t. supply{i in I}: sum{j in J} x[i,j] <= alil;
/* observe supply limit at plant i */

s.t. demand{j in J}: sum{i in I} x[i,jl >= bl[jl;
/* satisfy demand at market j */

data;

set I Seattle San-Diego;

set J := New-York Chicago Topeka;

param a := Seattle
San-Diego

param b := New-York
Chicago
Topeka
param d :
Seattle
San-Diego

param f := 90;

end;

350
600;

325
300
275;

New-York Chicago
2.5 1.7
2.5 1.8

C.2 Generated LP problem
This is the LP problem that has been generated by the model translator for the example

model description.

Problem: TRANSP
Class: LP
Rows: 6
Columns: 6

Non-zeros: 18

**x*x OBJECTIVE FUNCTION

Minimize: cost

.225
.153
.162
.225
.162
.126

O O O O O O

% ROWS (CONSTRAINTS)

Row 1: cost free

.126
.225
.153
.225
.162
.162

O O O O O O

Row 2: supply[Seattle]
1
1
1

k k%

x[Seattle,New-Yorkl]
x[Seattle,Chicago]
x[Seattle,Topeka]
x[San-Diego,New-York]
x[San-Diego,Chicago]
x [San-Diego, Topekal

*okk

x [San-Diego, Topekal

x [San-Diego,New-York]
x[Seattle,Chicago]
x[Seattle,New-York]
x[Seattle,Topekal

x [San-Diego,Chicago]

<= 350
x[Seattle,Chicago]
x[Seattle,New-York]
x[Seattle,Topekal

Row 3: supply[San-Diego] <= 600

1
1
1

x[San-Diego,Chicago]
x[San-Diego,New-York]
x [San-Diego, Topekal

Topeka :

1.8
1.4

)

43

44

Row

Row

Row

k% %

Col

Col

Col

Col

Col

Col

End

4: demand[New-York] >= 325

1 x[Seattle,New-York]
1 x[San-Diego,New-York]

5: demand[Chicago] >= 300

1 x[Seattle,Chicago]
1 x[San-Diego,Chicago]

6: demand[Topekal] >= 275

1 x[Seattle,Topekal
1 x[San-Diego,Topeka]

COLUMNS (VARIABLES) x**x*

x[Seattle,New-York] >= 0
0.225 (objective)
0.225 cost
1 supply[Seattle]
1 demand [New-York]

: x[Seattle,Chicago] >= 0

0.153 (objective)
0.153 cost
1 supply[Seattle]
1 demand[Chicago]

: x[Seattle,Topeka] >= 0

0.162 (objective)
0.162 cost
1 supply[Seattlel
1 demand[Topekal

: x[San-Diego,New-York] >= 0

0.225 (objective)

0.225 cost
1 supply[San-Diego]
1 demand [New-York]

: x[San-Diego,Chicago] >= 0

0.162 (objective)

0.162 cost
1 supply[San-Diego]
1 demand[Chicago]

: x[San-Diego,Topekal] >= 0

0.126 (objective)

0.126 cost
1 supply[San-Diego]
1 demand[Topekal

of output

C.3 Optimal solution of the generated LP problem

45

This is the optimal solution of the generated LP problem that has been found by the
GLPK simplex solver.

Problem: TRANSP
Rows: 6
Columns: 6

Non-zeros: 18

Status:

OPTIMAL

Objective: cost = 153.675 (MINimum)

Row name St Activity

Lower bound

Upper bound

Marginal

cost B
supply [Seattle]
B
supply [San-Diego]
NU
demand [New-York]
NL
demand [Chicago]
NL
demand [Topeka]
NL

. Column name St Activity

153.675

300

600

325

300

275

325

300

275

Lower bound

350

600

Upper bound

< eps
0.225
0.153
0.126

Marginal

End of

x[Seattle,New-York]
B
x [Seattle,Chicago]
B
x[Seattle,Topeka]
NL
x[San-Diego,New-York]
B
x[San-Diego,Chicago]
NL
x[San-Diego, Topekal
B

output

300

325

275

0.036

0.009

