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Abstract. Cutting planes are of crucial importance when solving nonconvex nonlinear programs3
to global optimality, for example using the spatial branch-and-bound algorithms. In this paper,4
we discuss the generation of cutting planes for signomial programming. Many global optimization5
algorithms lift signomial programs into an extended formulation such that these algorithms can6
construct relaxations of the signomial program by outer approximations of the lifted set encoding7
nonconvex signomial-term sets, i.e., hypographs, or epigraphs of signomial terms. We show that any8
signomial-term set can be transformed into the subset of the difference of two concave power functions,9
from which we derive two kinds of valid linear inequalities. Intersection cuts are constructed using10
signomial term-free sets which do not contain any point of the signomial-term set in their interior.11
We show that these signomial term-free sets are maximal in the nonnegative orthant, and use them12
to derive intersection sets. We then convexify a concave power function in the reformulation of the13
signomial-term set, resulting in a convex set containing the signomial-term set. This convex outer14
approximation is constructed in an extended space, and we separate a class of valid linear inequalities15
by projection from this approximation. We implement the valid inequalities in a global optimization16
solver and test them on MINLPLib instances. Our results show that both types of valid inequalities17
provide comparable reductions in running time, number of search nodes, and duality gap.18
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1. Introduction. General nonconvex nonlinear programming (NLP) problems22

typically admit the following formulation:23

(1.1) min
x∈Rn

c · x s. t. Ax+Bg(x) ≤ d,24

where c ∈ Rn, A ∈ Rm×n, B ∈ Rm×ℓ, g : Rn → Rℓ, d ∈ Rm.25

The mapping g(x) represents a vector (g1(x), . . . , gℓ(x)) of nonconvex functions26

on x, and we denote gi as their terms. Note that the objective function is supposed27

to be linear, w.l.o.g., since we can always reformulate a problem with a nonlinear28

objective function as the problem (1.1) above (epigraphic reformulation).29

General-purpose global optimization solvers, such as BARON [75], Couenne [13],30

and SCIP [14], are capable of solving the problem (1.1) within an ϵ-global optimality.31

They achieve this by employing the spatial branch-and-bound (sBB) algorithm, which32

explores the feasible region of (1.1) implicitly, but systematically. The sBB algorithm33

effectively prunes out unpromising search regions by comparing the cost of the best34

feasible solution found with the cost bounds associated with those regions. These cost35

bounds can be computed by solving convex relaxations of (1.1).36

The backend convex relaxation algorithms implemented in many general-purpose37

solvers, including BARON, Couenne, and SCIP, are linear programming relaxations.38

These solvers take advantage of the separability introduced in the rows of Ax+Bg(x),39

allowing them to relax and linearize nonlinear terms gi individually. In the solvers’40

data structures, the problem (1.1) is transformed into an extended formulation:41

(1.2) min
(x,y)∈Rn+ℓ

c · x s. t. Ax+By ≤ d ∧ y = g(x).42
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All the nonlinear terms are grouped within the nonconvex constraints y = g(x). These43

constraints give rise to a nonconvex lifted set defined as:44

(1.3) Slift := {(x, y) ∈ Rn+ℓ : y = g(x)}.45

The relaxation algorithms used by these solvers are based on factorable program-46

ming [43, 55]: This approach treats the multivariate nonlinear terms gi as composite47

functions. These algorithms typically factorize each gi into sums and products of a48

collection of univariate functions. If convex and concave relaxations of those univari-49

ate functions are available, these algorithms can linearize these relaxations, and yield50

a linear relaxation for Eq. (1.1). Common lists of such univariate functions, that are51

usually available to all sBB solvers, include ta (for a ∈ N), 1
t , log t, exp t. Some solvers52

also offer a choice of trigonometric functions, e.g. Couenne.53

Most sBB solvers can handle signomial term ψα(x) := xα =
∏
j∈[n] x

αj

j , where54

the exponent vector α is in Rn, but in a way that yields poor relaxations (more about55

this below). In this paper, we provide a deeper treatment of the signomial term w.r.t.56

convexification and linearization within an sBB algorithm.57

When all the terms in g are signomial terms, the problem (1.1) falls under the58

category of signomial programming (SP). In this scenario, we refer to (1.1) as the59

natural formulation of SP. The left-hand sides of the constraints in this formulation60

are referred to as signomial functions. The lifted set Slift in the extended formulation61

(1.2) is called a signomial lift.62

Since negative entries may present in the exponent vector α, in general, variables63

of SP are assumed to be positive. The point of restriction on SP over positive variables64

is simply to make the theoretical treatment more readable and streamlined. We65

remark that the techniques in this paper can also treat signomial terms in general66

mixed-integer NLP problems.67

In the case of SP, LP relaxations can be derived from polyhedral outer approxima-68

tions of the signomial lift in its extended formulation. A typical relaxation algorithm69

for SP involves factorizing the signomial term ψα(x) into the product of n univari-70

ate signomial terms xαi
i . After the factorization, the algorithm proceeds to convexify71

and linearize the intermediate multilinear term and univariate functions. However,72

this factorable programming approach can lead to weak LP relaxation and introduce73

additional auxiliary variables that represent intermediate functions. These problems74

have already been discussed in the context of pure multilinear terms [19, 26, 73].75

We propose two cutting plane-based relaxation algorithms for SP. In contrast76

to the conventional factorable programming approach, our method uses a novel re-77

formulation of the signomial lift. We transform each nonlinear equality constraint78

yi = gi(x) in (1.3) to an equivalent constraint ψβ(u)−ψγ(v) = 0, where β > 0, γ > 0,79

max(∥β∥1, ∥γ∥1) = 1, u, v are sub-vectors partitioned from (x, y), and ψβ , ψγ are con-80

cave functions. Thus, the nonlinear equality constraint is equivalent to two inequality81

constraints: ψβ(u) − ψγ(v) ≤ 0 and ψβ(u) − ψγ(v) ≥ 0, with u ∈ Rh+, v ∈ Rk+ being82

reassignments of (x, y). Our algorithms aim at generating convex relaxations of these83

two inequality constraints. Due to the symmetry of these two constraints, we consider84

convex relaxations for the first one. This reduction motivates us to construct linear85

valid inequalities for the nonconvex signomial-term set :86

(1.4) Sst := {(u, v) ∈ Rh+k+ : ψβ(u)− ψγ(v) ≤ 0},87

where the subscript st is an abbreviation for “signomial term”.88

2

This manuscript is for review purposes only.



Our first cutting plane algorithm is based on the intersection cut paradigm [24].89

As shown in Sec. 2, one can approximate a nonconvex set S using its polyhedral90

outer approximation. This requires the construction of S-free sets, i.e., closed convex91

sets containing none of the interiors of S. The main insight about S-free sets for a92

nonconvex set S is that they provide an explicit and useful description of the convex93

parts of the complement of S. In Sec. 3 we extend several general results from the94

literature on maximal S-free sets. In Sec. 4 we give the transformation procedure95

leading to Sst and construct Sst-free sets from the transformation. We show that96

these sets are also signomial-lift-free and maximal in the nonnegative orthant. We97

also discuss the separation of intersection cuts.98

To ensure convergence of the sBB algorithm, a common assumption for SP is that99

all variables are bounded. Our second cutting plane algorithm aims to approximate100

Sst within a hypercube. In Sec. 5, we provide an extended formulation for the convex101

envelope of the concave function ψβ over the hypercube. This formulation yields102

a convex set including Sst (which is a convex outer approximation of Sst), so that103

we can generate outer approximation cuts by projection. We prove that ψβ is a104

supermodular function. For h = 2 we provide a closed expression for its convex105

envelope by exploiting supermodularity, which allows us to get rid of the projection106

step.107

For the computational part of this study, we note that signomials are one of the108

four main types of nonlinearities found in the mixed-integer NLP library (MINLPLib)109

[12, 18]. Our relaxation approach does not require factorization or the introduction of110

intermediate functions, so implementing the proposed cutting planes in the general-111

purpose solver SCIP is straightforward, and the outer approximation cut algorithm is112

integrated in SCIP since version 9.0 [16]. In Sec. 6, we perform computational tests113

with instances from MINLPLib and observe improvements to SCIP default settings114

due to the proposed valid inequalities.115

1.1. Related works. The majority of relaxations for SP are derived from its116

generalized geometric programming (GGP) formulation, which is an exponential trans-117

formation [30] of its natural formulation. The exponential transformation replaces118

positive variables x by exponentials exp(z), where z are real variables. The authors119

of [54] show that signomial functions in GGP are difference-of-convex (DC) functions.120

For the signomial function in each constraint of GGP, they construct linear underes-121

timators of its concave part; the author of [71] constructs linear underestimators of122

the whole function via the mean value theorem. The author of [78] proposes inner123

approximations of GGP via the inequality of arithmetic and geometric means (AM-124

GM inequality). The authors of [20, 29, 63] construct non-negativity certificates for125

signomial functions via the AM-GM inequality, and propose a hierarchy of convex re-126

laxations for GGP. Exponential transformations can be combined with other variable127

transformations, such as power transformations, and the inverse transformations can128

be approximated by piece-wise linear functions, see [46, 51, 52].129

The solvers SCIP [14], BARON [75], ANTIGONE [58], and MISO [59] are able to solve130

the natural formulation of SP or its extended formulation within a global ϵ-optimality131

using the sBB algorithm. More precisely, MISO is a specialized solver for SP, which132

uses exponential transformations of some signomial terms only when necessary. For133

the following reasons, exponential transformations can complicate general-purpose134

solvers. First, in certain NLP problems, signomial terms may appear only as a subset135

of the nonlinear terms of g(x). In such cases, solvers may need to force the inverse136

transformation xj = ln(zj), which requires additional processing for convexification137
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algorithms. Second, when dealing with mixed-integer SP and some variables of x are138

integer, exponential transformations cause certain components of z to become discrete139

but not necessarily integer. As a result, the sBB algorithm must adjust its branching140

rules.141

While much attention has been paid to the construction of relaxations for GGP,142

the literature on relaxations for the extended natural formulation of SP is relatively143

limited. The convex relaxations used in the aforementioned solvers rely mainly on144

factorable programming [44, 55]. Since exponential transformations are nonlinear145

variable transformations, it is impossible to apply the relaxations developed for the146

GGP formulation directly to the natural formulation.147

Numerous research efforts have been devoted to improving relaxation techniques148

for multilinear terms and univariate/bivariate functions commonly used in factorable149

programming [8]. Multilinear terms over the unit hypercube are vertex polyhedral150

and their envelopes over the unit hypercube admits simple extended formulations [68].151

In particular, there are closed forms for the convex envelopes of bilinear functions152

[3, 55] and trilinear functions [56, 57] over hypercubes. In [72], the author presents153

convex envelopes for multilinear functions (sum of multilinear terms) over the unit154

hypercube and specific discrete sets. For a comprehensive analysis of multilinear term155

factorization via bilinear terms, we refer to [50, 73]. Additionally, [19] offers an in-156

depth examination of quadrilinear function factorization through bilinear and trilinear157

terms, while [26] presents a computational study on extended formulations.158

Convexifying univariate/bivariate functions plays an important role in the field159

of global optimization. In [45], convex envelopes for monomials with odd degrees are160

derived. An approach presented in [49] enables the evaluation of the convex enve-161

lope of a bivariate function over a polytope and separating its supporting hyperplane162

by solving low-dimensional convex optimization problems. The convex optimization163

problems are further reduced by solving a Karush-Kuhn-Tucker system [48]. In [47],164

convex envelopes for bilinear, fractional, and other bivariate functions over a poly-165

tope are constructed using a polyhedral subdivision technique. The relation between166

triangulation and envelope construction has been observed in [74], and we refer to167

[8, 9] computational studies on triangulation-based convexification of nonconvex qua-168

dratic and multilinear terms. Additionally, [65] employ polyhedral subdivision and169

lift-project methods to derive explicit forms of convex envelopes for various noncon-170

vex functions, including a specific subclass of bivariate signomial terms. We refer to171

[17, 40, 41] for results on convexification of sets involving mixed-integer convex cones,172

as these works on convexification of such sets share some common techniques with173

convexification of nonconvex functions.174

Convexifying high-order multivariate functions is a major challenge, and the avail-175

able literature on convex underestimators for trivariate functions is relatively few. For176

supermodular functions, there are several classes of valid inequalities for their convex177

envelopes, see [2, 6, 36, 64]. In [37, 38], the authors propose a novel framework for178

relaxing composite functions in nonlinear programs. Another approach is to use the179

intersection cut paradigm [24] to approximate nonconvex functions. This paradigm180

can generate cutting planes to strengthen LP relaxations of NLP problems. Con-181

structing intersection cuts involves finding an S-free set, where S represents a non-182

convex set defined by nonconvex functions. The study of intersection cuts originated183

in the context of NLP [77]. Gomory later introduced the concept of corner polyhedron184

[35], and intersection cuts were explored in the field of integer programming [7]. The185

modern definition of intersection cuts for arbitrary sets S is from [28, 34]. For more186

comprehensive details, we refer to [4, 10, 25, 27, 28, 67]. Recent research has revealed187
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S-free sets for various nonconvex sets encountered in structured NLP problems. Ex-188

amples include outer product sets [15], sublevel sets of DC functions [69], quadratic189

sets [62], and graphs of bilinear terms [33]. Intersection cuts have also been developed190

for convex mixed-integer NLP problems [5, 11, 42, 60] and for bilevel programming191

[32].192

1.2. Notation. We follow standard notation in most cases. Let [n1 : n2] stand193

for {n1, . . . , n2}, and let [n] stand for [1 : n]. For a vector x ∈ Rn, xj denotes194

the j-th entry of x; given J ⊆ [n], xJ = (xj)j∈J denotes the sub-vector formed by195

entries indexed by J . ∥·∥p denotes the Lp-norm (1 ≤ p ≤ +∞). For a set X ⊆ Rn,196

conv(X), cl(X), int(X), bd(X), |X|, Xc denote the convex hull, closure, interior,197

boundary, cardinality, and complement of X, respectively. For a function f , dom(f)198

and range(f) denote the domain and range of f , respectively; graph(f) denotes its199

graph {(x, t) ∈ Rn+1 : f(x) = t}, epi(f) denotes its epigraph {(x, t) ∈ Rn+1 : f(x) ≤200

t}, and hypo(f) denotes its hypograph {(x, t) ∈ Rn+1 : f(x) ≥ t}; if f is differentiable,201

for a x̃ ∈ dom(f), ∇f(x̃) denotes the gradient of f at x̃ and202

(1.5) Ξfx̃(x) := f(x̃) +∇f(x̃) · (x− x̃).203

The word linearization involves the replacement of a nonlinear function by its affine204

underestimators or overestimators. For example, the affine underestimators of convex205

functions f are given as Ξfx̃(x) for some x̃.206

2. Preliminaries. In this section we present an overview of S-free sets and207

intersection cut theory. The process of constructing intersection cuts involves two208

fundamental steps [23]: constructing S-free sets and deriving cutting planes from209

these sets. Since maximal S-free sets yield tightest cutting planes, one can include an210

optional step to check the maximality of S-free sets.211

Definition 2.1. Given a set S ⊊ Rp, a closed set C is (convex) S-free if C is212

convex and int(C) ∩ S = ∅.213

To construct an intersection cut, an essential requirement is the availability of214

a translated simplicial cone R that satisfies two conditions: (i) R is generated by215

linearly independent vectors, (ii) R contains S, and (iii) the vertex z̃ of R does not216

belong to S.217

Figs. 1a to 1c give an example procedure to construct an S-free set C and an218

intersection cut: in Fig. 1a; we find a convex inner approximation C of cl(Sc); and219

we visualize the S-freeness of C in Fig. 1b; then, in Fig. 1c, a simplicial conic outer220

approximation R of S is used to define the intersection cut.221

We assume that R admits a hyper-plane representation {z ∈ Rp : B(z − z̃) ≤ 0},222

where B ∈ Rp×p is an invertible matrix. For every j ∈ [p], let rj denote the j-th223

column of −B−1, then rj turns out to be an extreme ray of R. Thereby, R also224

admits a ray representation {z ∈ Rp : ∃µ ∈ Rp+ z = z̃+
∑p
j=1 µjr

j}. For every j ∈ [p],225

we define the step length from z̃ along ray rj to the boundary bd(C) as226

(2.1) µ∗
j := sup

µj∈[0,+∞]

{µj : z̃ + µjr
j ∈ C}.227

Then, an intersection cut admits the form228

(2.2)

p∑
j=1

Bj(z − z̃)/µ∗
j ≤ −1,229
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(a) C as an inner approxima-
tion of cl(Sc).
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(b) C as an S-free set.
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(c) Simplicial cone R and
the intersection cut.

Fig. 1: An S-free set C, simplicial cone R, and intersection cut.

where Bj is the j-th row of B. When all step lengths are positive, the above linear230

inequality cuts off z̃ from S, see for an example of an intersection cut in Fig. 1c.231

We can obtain the sets C, R and the vertex z̃ by the following procedure. Suppose232

that we have an LP relaxation minz∈P c ·z of an SP problem, where P is a polyhedral233

outer approximation of the feasible set of the SP problem. If the solution to the LP234

problem turns out to be infeasible for the SP problem, it means that the solution does235

not belong to the signomial lift. In such cases, we can set z̃ as the solution obtained236

from LP and let C be the signomial-lift-free (Slift-free) set. Moreover, we can extract237

the cone R from the optimal LP basis defining z̃, see [23].238

One focus of our study is the construction of (maximal) S-free sets. The im-239

portance of finding maximal sets follows from the fact that if we have two S-free240

sets called C and C∗, where C is a subset of C∗, then the intersection cut derived241

from C∗ dominates the cut derived from C (see [24, Remark 3.2]). To give a precise242

characterization, we present a formal definition of maximal S-free sets.243

Definition 2.2. Given a closed convex set G ⊆ Rp such that S ⊊ G, an S-free244

set C is (inclusion-wise) maximal in G, if there is no other S-free set C′ such that245

C ∩ G ⊊ C′ ∩ G.246

The above definition provides a generalization of the conventional concept of247

maximal S-free sets, which is a special case when G = Rp. Studying maximality248

for S-free sets in Rp can be challenging in certain scenarios. However, Defn. 2.2249

allows us to examine the intersections of S-free sets within the ground set G. This250

constraint is essential for our analysis, especially considering that all variables in SP251

are non-negative.252

Next, we show how to construct S-free sets from “reverse” representations of253

sets defined by a particular type of nonconvex functions. A function f is said to254

be difference-of-concave (DCC) if there exist two concave functions f1, f2 such that255

f = f1− f2. Any DCC function is also a difference-of-convex (DC) function, and vice256

versa. We call a nonconvex set a DCC set, if it admits a DCC formulation, meaning257

that it is defined by a non-negative/non-positive constraint on a DCC function. By258

using the reverse-minorization technique, the following lemma provides a collection259

of S-free sets for DCC sets.260

Lemma 2.3. [69, Prop. 6] Let S := {z ∈ Rp : f1(z)−f2(z) ≤ 0}, where f1, f2 are261
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concave functions over Rp. Then, for any z̃ ∈ Rp, C := {z ∈ Rp : f1(z)− Ξf2z̃ (z) ≥ 0}262

is S-free. Moreover, if z̃ ∈ Rp ∖ S, z̃ ∈ int(C).263

The reverse-minorization technique involves reversing the inequality that defines264

S and linearizing its convex component −f2 to −Ξf2z̃ (z). Thus, the function f1(z)−265

Ξf2z̃ (z) minorizes f1(z)−f2(z) at any z. The point z̃ is referred to as the linearization266

point. It is important to note that, when the shared domain G of f1 and f2 is not267

the entire space Rp, the set S needs to be constrained to the ground set G. This268

restriction ensures the applicability of the lemma.269

3. General results on maximality. In this section, we present two results on270

the maximality of S-free sets arising in general nonconvex NLP problems. The results271

are used to construct maximal signomial-lift-free sets in non-negative orthants.272

3.1. Lifted sets. We consider the extended formulation (1.2) of a general NLP273

problem and focus on the associated lifted set Slift in (1.3). We show a lifting result274

on constructing maximal Slift-free sets.275

Let z := (x, y) denote the vector variable in the extended formulation (1.2), with276

its index set being [n+ℓ]. Consequently, we have z[n] = x and z[n+1:n+ℓ] = y. Consider277

a closed subset X of the domain
⋂
i∈[ℓ] dom(gi) for x, and let Y be a closed subset278

of the domain×i∈[ℓ]
range(gi) for y. The ground set G can, thus, be set as X × Y.279

Consequently, the lifted set Slift in (1.3) admits the form {(x, y) ∈ G : y = g(x)}.280

Given that each gi(x) (for i ∈ [ℓ]) may only depend on a subset of variables281

indexed by Ji ⊆ [n], we can express gi(x) as a lower order function g′i(xJi) defined282

over RJi . Let Ii := Ji ∪ {i+ n}, and denote its complement by Ici := [n+ ℓ]∖ Ii. As283

above, we consider a closed subset X i of dom(g′i) and Yi of range(g′i). Consequently,284

the graph, epigraph, and hypograph of g′i reside within sets Gi := X i × Yi, e.g.,285

epi(g′i) = {(xJi , yi) ∈ Gi : g′i(xJi) ≤ yi}.286

We refer to X ,Y, {X i,Yi}i∈[ℓ] as the underlying sets of the lifted set Slift. The sets287

are said to be 1d-convex decomposable by a collection {Dj}j∈[n+ℓ] of closed convex sets288

in R, if X =×j∈[n]
Dj ,Y =×j∈[n+1:n+ℓ]

Dj , and, for all i ∈ [ℓ], X i =×j∈Ji Dj ,Y
i =289

Dn+i. This decomposability condition restricts the domains to Cartesian products of290

real lines, intervals, or half lines, thereby excluding complicated domain structures.291

The decomposability condition allows the analysis of sets with fewer variables.292

The construction of epi(g′i)-free sets and hypo(g′i)-free sets is in general simpler than293

the construction of Slift-free sets. We show that any maximal epi(g′i)-free or hypo(g
′
i)-294

free set can be transformed into a maximal Slift-free set.295

Theorem 3.1. Suppose the underlying sets of Slift are 1d-convex decomposable296

and g is continuous. For some i ∈ [ℓ], let C be a maximal epi(g′i)-free set or a maximal297

hypo(g′i)-free set in Gi. Then, the lifted set C̄ := C ×RIci is a maximal Slift-free set in298

G, where RIci is the |Ici |-dimensional Euclidean space indexed by Ici .299

See the proof in the appendix. For any i ∈ [ℓ], we call the operation C × RIci300

the orthogonal lifting of C with respect to gi. A similar lifting result for integer301

programming is given by [24, Lemma 4.1]: given S := Zn1 × Rn2 , any maximal302

lattice-free set (i.e., Zn1-free set) can be transformed into a maximal S-free set by303

orthogonal lifting. Therefore, Thm. 3.1 serves as the NLP counterpart to this lemma304

(whose proof is also similar). This theorem allows us to focus on low-dimensional305

projections of the lifted set. We will show in Cor. 4.2 that the signomial lift satisfies306

the prerequisites of Thm. 3.1. The following example illustrates the application of307

Thm. 3.1.308
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Example 1. Consider a lifted set Slift defined as

{(x1, x2, x3, x4, y1, y2, y3) : y1 = exp(x1 − x2/x3) ∧ y2 = log(x1) ∧ y3 = sin(x1/x4)}.

One can verify that the 1d-convex decomposable condition holds for D1 = R+,309

Dj = R (for j ∈ [2 : 7]). Then G := R1
+ ×R6. We use log(x1) to construct a Slift-free310

set. A maximal Slift-free set can be {(x1, x2, x3, x4, y1, y2, y3) ∈ G : y2 ≤ log(x1)}.311

Since log(x1) is defined over positive reals, this example gives a reason to restrict312

maximality over G.313

3.2. Sufficient conditions on maximality. We provide sufficient conditions314

for the maximality of S-free sets for two general classes of nonconvex sets S. At315

the beginning, we give an overview of some basic results of convex analysis. Our316

subsequent exposition relies on the use of support functions of convex sets. The317

properties of support functions can be summarized as follows.318

Lemma 3.2. [39, Chap. C] For a full-dimensional closed convex set C ⊊ Rp, let319

σC : Rp → R, λ 7→ supz∈C λ · z be the support function of C. Then: (i) C = {z ∈ Rp :320

∀λ ∈ dom(σC) λ · z ≤ σC(λ)}, (ii) int(C) = {z ∈ Rp : ∀λ ∈ dom(σC) ∖ {0} λ · z <321

σC(λ)}, (iii) σC(ρλ) = ρσC(λ) for any ρ > 0. Moreover, for any closed convex set C′322

including C, σC ≤ σC′ .323

A valid inequality a ·z ≤ b of C is called a supported valid inequality, if there exists324

a supporting point z′ ∈ bd(C) such that a · z′ = b. Geometrically, a closed convex set325

is the intersection of half-spaces associated with supported valid inequalities.326

Observation 1. It follows from Lemma 3.2 that every supported valid inequality327

of C must admit the form λ · z ≤ σC(λ) for some λ ∈ dom(σC), where the supremum328

σC(λ) is attained at its supporting points.329

An inequality of the form λ · z ≤ σC(λ), for λ ∈ dom(σC), is referred to as330

an exposed valid inequality, if there exists an exposing point z′ ∈ bd(C) such that331

λ · z′ = σC(λ) and, for all λ
′ ∈ dom(σC)∖ {ρλ}ρ>0, λ

′ · z′ < σC(λ
′).332

Observation 2. An exposed valid inequality must be a supported valid inequality.333

Conversely, a supported valid inequality is an exposed valid inequality if the manifold334

bd(C) is smooth at its supporting point. For example, C1 := {(x, y) ∈ R2 : y = x2} is335

a smooth manifold, so any supported valid inequality of C1 is exposed; C2 := {(x, y) ∈336

R2 : y = |x|} is smooth at x ∈ [1, 2], so any supported valid inequality of C2 with337

support point (x, y) (x ∈ [1, 2]) is also exposed by the same point; however, a supported338

valid inequality of C2 with supporting point (x, y) (x = 0) cannot be exposed, since there339

are infinitely many supported valid inequalities at the same point.340

The first lemma we present holds for full-dimensional nonconvex sets S. As shown341

in Figs. 1a and 1b, we have observed the geometric equivalence between the closed342

convex inner approximation of cl(Sc) and S-free sets. The lemma provides a sufficient343

condition for the maximality of closed convex inner approximations.344

Lemma 3.3 (Adapted from Thm. 3.1 in [62]). Let F be a full-dimensional closed345

set in Rp, and let C ⊆ F be a full-dimensional closed convex set. If, for any z∗ ∈346

int(F ∖ C) and any λ ∈ dom(σC) such that λ · z∗ > σC(λ), there exists a point z′ ∈347

bd(F)∩bd(C) exposing λ·z ≤ σC(λ), then C is a maximal convex inner approximation348

of F .349

We call z∗ in Lemma 3.3 an outlier point, by which we try to enlarge an S-free350

set, and let the scope L(z∗) := {λ ∈ dom(σC) : λ · z∗ > σC(λ)} identify the strictly351
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separating valid inequalities for z∗. Thm. 3.1 in [62] has a different quantification352

than Lemma 3.3: it does not quantify z∗, and it requires the scope of λ to be a353

subset Γ ⊆ dom(σC), which is declared according to the context. Instead, Lemma 3.3354

quantifies λ explicitly, whose scope L(z∗) depends on z∗. Thus, Lemma 3.3 allows,355

for each point z∗, having different scope L(z∗) of λ. One can prove Lemma 3.3 by356

adapting the proof for [62, Thm. 3.1]. For self-completeness, we give a proof in the357

appendix using support functions.358

We next focus on a specific type of function, namely positive homogeneous func-359

tions. We summarize their properties as follows.360

Lemma 3.4. Let f be a positive homogeneous function of degree d ∈ R, such that,361

for any z ∈ dom(f) ⊆ Rp and any ρ ∈ R++, f(ρz) = ρdf(z). Then: (i) int(dom(f))362

is a cone, and (ii) if d = 1, then for any z̆ ∈ dom(f), Ξfz̆ (z) = ∇f(z̆)·z for z ∈ dom(f)363

and Ξfz̆ (z) = f(z) for z = ρz̆ with ρ ∈ R++.364

The proof is in the appendix. We recall that Ξfz̆ in the above lemma is defined in365

Eq. (1.5). Moreover, dom(f) is embedded in Rp, so we call Rp the ambient space of366

f .367

The second theorem we present offers a more structured result, specifically related368

to nonconvex DCC sets S. [70, Thm. 5.48] provides a sufficient condition for the369

maximality of the S-free set described in Lemma 2.3. However, to clearly distinguish370

it from our result below, we translate the condition into our setting as follows: (i) the371

functions f1 and f2 are superlinear, i.e. they are positive homogeneous of degree 1 and372

superadditive (note that superlinear functions are concave), (ii) they are separable and373

act independently on different variables u and v, (iii) f1 is negative everywhere except374

at 0, (iv) the linearization point ṽ of f2 is nonzero, and (v) the domains dom(f1) and375

dom(f2) are Euclidean spaces.376

Our second theorem provides an alternative condition for maximality that relaxes377

condition (i) by requiring only that one of f1 or f2 be positive homogeneous of degree378

1, while imposing mild regularity conditions. Moreover, the domains can be full-379

dimensional convex cones.380

Theorem 3.5. For every i ∈ {1, 2}, let fi be concave. Let S := {(u, v) ∈381

dom(f1) × dom(f2) : f1(u) − f2(v) ≤ 0}. Suppose that: (i) at least one of f1, f2382

is positive homogeneous of degree 1, (ii) f1, f2 are both positive/negative over the383

interiors of their domains, (iii) f1 is continuously differentiable over int(dom(f1)),384

and (iv) dom(f1),dom(f2) are full-dimensional in the ambient spaces of f1, f2, re-385

spectively. Then, for any ṽ ∈ int(dom(f2)), C := {(u, v) ∈ dom(f1) × dom(f2) :386

f1(u)− Ξf2ṽ (v) ≥ 0} is maximally S-free in dom(f1)× dom(f2).387

Proof. We first adapt Lemma 2.3 by restricting the domain of z to the convex388

ground set G := dom(f1) × dom(f2). It follows from Lemma 2.3 that C is an S-free389

set in G. Since dom(f1) × dom(f2) are full-dimensional, S, C,G are full-dimensional.390

As S, C ⊆ G, the maximality of C in G is equivalent to that C is a maximal convex391

inner approximation of F := cl(Sc) ∩ G = {(u, v) ∈ G : f1(u) − f2(v) ≥ 0}. Note392

that F is full-dimensional. We then apply Lemma 3.3 to prove that C is a maximal393

convex inner approximation of F . Let z∗ ∈ int(F ∖C) be any outlier point. It follows394

from the separating hyperplane theorem that there exists a supported valid inequality395

λ · z ≤ σC(λ) of C such that λ · z∗ > σC(λ). Since F ∖ C ⊆ G, int(F ∖ C) ⊆ G. Since396

C ⊆ G, the inequality cannot be supported by a valid inequality at bd(G), so the397

inequality must be a valid inequality supported at C ∖ bd(G). It follows from the398

concavity of f1 that the inequality must admit the form Ξf1ŭ (u) − Ξf2ṽ (v) ≥ 0 for399
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some ŭ ∈ dom(f1) (identical up to a positive multiplier). By the smoothness of f1,400

w.l.o.g, we can perturb ŭ such that it is in int(dom(f1)). Let v̆ := ṽ. We now have401

that ŭ ∈ int(dom(f1)), v̆ ∈ int(dom(f2)). We will prove that Ξf1ŭ (u) − Ξf2v̆ (v) ≥ 0 is402

exposed by a point (u′, v′) ∈ (bd(F) ∩ bd(C)) ∩ int(G). It suffices to show that the403

following three equations hold:404

(3.1)

Ξf1ŭ (u′)− Ξf2v̆ (v′) = 0 (i.e., supported at (u′, v′)),

f1(u
′)− Ξf2v̆ (v′) = 0 (i.e., (u′, v′) ∈ C),

f1(u
′)− f2(v

′) = 0 (i.e., (u′, v′) ∈ F).

405

Since C ⊆ F and they are both full-dimensional, the last two equations imply that406

(u′, v′) ∈ bd(C) ∩ bd(F). As f1 is continuously differentiable and concave in the407

interior of its domain, the graph of f1(u) − Ξf2v̆ (v) over int(G) is a smooth manifold408

embedded in int(G) × R. The intersection of a smooth manifold with a hyperplane409

yields another lower-dimensional smooth manifold. This implies that the level set C410

of f1(u) − Ξf2v̆ (v) is also smooth at any point (u, v) ∈ int(G) ∩ C. By Obs 2, (u, v)411

is an exposing point. Since (u′, v′) ∈ C ∩ int(G), (u′, v′) is an exposing point, and412

the maximality of C is verified. We now proceed to construct (u′, v′) from (ŭ, v̆) and413

prove (3.1). Let ρ := f2(v̆)/f1(ŭ). Since ŭ ∈ int(dom(f1)), v̆ ∈ int(dom(f2)), by the414

assumption, ρ > 0. We consider the following two cases separately.415

Case i. We first suppose that f1 is positive homogeneous of degree 1. Let
(u′, v′) := (ρŭ, v̆), which, by Lemma 3.4, is in int(G). We have that:

f1(u
′)

(i.1)
= Ξf1ŭ (u′)

(i.2)
= ρf1(ŭ)

(i.3)
= f2(v̆)

(i.4)
= f2(v

′)
(i.5)
= Ξf2v̆ (v′),

where equations (i.1), (i.2) follow from Lemma 3.4, (i.3) follows from the definition416

of ρ, and (i.4), (i.5) follow from v′ = v̆.417

Case ii. We then suppose that f2 is positive homogeneous of degree 1. Let
(u′, v′) := (ŭ, v̆/ρ) ∈ int(G). We have that:

Ξf1ŭ (u′)
(ii.1)
= f1(u

′)
(ii.2)
= f1(ŭ)

(ii.3)
= f2(v̆)/ρ

(ii.4)
= f2(v

′)
(ii.5)
= Ξf2v̆ (v′),

where equations (ii.1), (ii.2) follow from ŭ = u′, (ii.3) follows from the definition of ρ,418

and (ii.4), (ii.5) follow from Lemma 3.4. Therefore, (3.1) are satisfied in both cases.419

We present the motivation for restricting the maximality of the set C within420

the ground set dom(f1) × dom(f2). The main reason for this restriction arises from421

the difficulty of finding a nontrivial concave extension of f1 over its ambient space422

such that for all u /∈ dom(f1), f1(u) > −∞. While such an extension can exist423

geometrically, the construction of a closed expression remains unclear. In the next424

section, we will examine a specific example to illustrate this point.425

Moreover, we will apply the above theorem to develop DCC formulations for426

a nonconvex set. In particular, the functions f1 and f2 must not simultaneously427

have positive homogeneity of degree 1, and their domains are non-negative orthants.428

Consequently, the relaxed condition for homogeneous degrees and domains in Thm. 3.5429

becomes necessary. We give two examples for verification Thm. 3.5.430

Example 2. Let f1(u) := u with dom(f1) ∈ R, and let f2(v) :=
∑
i∈[n]

√
vi with431

dom(f2) = Rn+. Note that f1, f2 are concave, dom(f2) is a non-negative orthant, and432

f1 is positive homogeneous of degree 1. Let G := R × Rn+. One can verify that the433

presupposition of Thm. 3.5 is satisfied. Then, S := {(u, v) ∈ G : u−
∑
i∈[n]

√
vi ≤ 0} is434
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a convex set. It is easy to see that C := {(u, v) ∈ G : u−
∑
i∈[n](

√
ṽi+(vi− ṽi)/

√
ṽi) ≥435

0} is maximally S-free in G with ṽ > 0.436

Example 3. Exchange the functions f1, f2 in the previous examples. Then, S :=437

{(u, v) ∈ G :
∑
i∈[n]

√
vi − u ≤ 0} is a reverse-convex set. It is easy to see that438

C := {(u, v) ∈ G :
∑
i∈[n]

√
vi − u ≥ 0} is the unique maximal S-free set in G.439

4. Signomial-lift-free sets and intersection cuts. In this section, we con-440

struct (maximal) signomial-lift-free sets and generate intersection cuts for SP.441

4.1. Signomial-lift-free and signomial-term-free sets. We introduce and442

study new formulations of signomial-term sets. We transform signomial-term sets443

into DCC sets. We also construct signomial term-free sets and lift them to signomial444

term-lift-free sets. The maximality of these sets is studied, and a comparison is made445

between signomial term-free sets derived from different DCC formulations.446

We consider an n-variate signomial term ψα(x) arising in the extended formulation447

(1.2) of SP. The exponent vector α may contain negative/zero/positive entries. We448

extract two sub-vectors α− and α+ from α such that α− ∈ Rη−− (η-dimensional449

negative orthant) and α+ ∈ Rκ++ (κ-dimensional positive orthant), and let x− ∈ Rη450

and x+ ∈ Rκ be the corresponding sub-vectors of x. Entries xj with αj = 0 are451

excluded from consideration, and so η + κ may be smaller than n. Since ψα(x) only452

depends on x− and x+, it can be represented in the form of x
α−
− x

α+

+ of lower order.453

Let ≶ (resp. ⋚) denote < or > (≤ or ≥). We consider the signomial-term set as454

epigraph or hypograph of x
α−
− x

α+

+ :455

(4.1) Sst = {(x−, x+, t) ∈ Rη+κ+1
+ : t ⋚ x

α−
− x

α+

+ }.456

We first give DCC reformulations of signomial-term sets. The interior of Sst in457

(4.1) is458

int(Sst) = {(x−, x+, t) ∈ Rη+κ+1
++ : t ≶ x

α−
− x

α+

+ }.459

Reorganizing the signomial terms and taking the closure of the set, we recover460

Sst = {(x−, x+, t) ∈ Rη+κ+1
+ : tx

−α−
− ⋚ x

α+

+ }.461

Notably, the exponents associated with signomial terms on both sides are now462

strictly positive. Let u := (t, x−), v := x+, let h := η + 1, and let k := κ. Then,463

ψβ′(u) = tx
−α−
− and ψγ′(v) = x

α+

+ , where β′ := (1,−α−) ∈ Rh++ and γ′ := α+ ∈ Rk++.464

After the change of variables, the set admits the following form:465

(4.2) Sst = {(u, v) ∈ Rh+k+ : ψβ′(u) ⋚ ψγ′(v)}.466

The formulation (4.2) exhibits symmetry between u and v. We can therefore467

consider w.l.o.g. the inequality “≤” throughout the subsequent analysis. Since the468

signomial terms ψβ′(u), ψγ′(v) are non-negative over Rh+,Rk+, we can take any positive469

power µ ∈ R++ on both sides of (4.2). Finally, the signomial term set in (4.1) admits470

the following form:471

(4.3) Sst = {(u, v) ∈ Rh+k+ : ψβ(u)− ψγ(v) ≤ 0},472

where β := µβ′, and γ := µγ′.473
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A signomial term ψα(x) is said to be a power function if α ≥ 0, and ∥α∥1 ≤ 1.474

According to [61, 21], power functions are concave over the non-negative orthant; if475

additionally ∥α∥1 = 1, ψα(x) is positive homogeneous of degree 1. Moreover, ψα(x)476

has an extended exponential cone representation [1], which gives another proof of its477

convexity. Through an appropriate scaling of the parameter µ, we obtain a family478

of DCC reformulations (4.3) of signomial-term sets. We let G := Rh+k+ , and use the479

reverse-minorization technique to construct signomial-term-free sets. We recall that480

the definition of the operator Ξ is given in Eq. (1.5).481

Proposition 4.1. Let max(∥β∥1, ∥γ∥1) ≤ 1. For any ṽ ∈ Rk++,482

(4.4) C := {(u, v) ∈ Rh+ × Rk : ψβ(u)− Ξ
ψγ

ṽ (v) ≥ 0}483

is a signomial-term-free (Sst-free) set. If max(∥β∥1, ∥γ∥1) = 1, then C is a maximal484

signomial-term-free set in G.485

Proof. Since max(∥β∥1, ∥γ∥1) ≤ 1, ψβ(u), ψγ(v) are concave. By Lemma 2.3,486

C is signomial-term-free. If max(∥β∥1, ∥γ∥1) = 1, then at least one of ∥β∥1, ∥γ∥1487

is 1. Therefore, one of ψβ(u), ψγ(v) is positive homogeneous of degree 1. More-488

over, ψβ(u), ψγ(v) are both continuously differentiable and positive over positive or-489

thants Rh++,Rk++ (the interiors of their domains). Since G = dom(ψβ)× dom(ψγ), by490

Thm. 3.5, C∩G = {(u, v) ∈ G : ψβ(u)−Ξ
ψγ

ṽ (v) ≥ 0} is a maximal signomial-term-free491

set in G. Therefore, C is also a maximal signomial-term-free set in G.492

Given that max(∥β∥1, ∥γ∥1) = 1 results in a desirable DCC formulation for the493

signomial-term set, we refer to this formulation as its normalized DCC formulation.494

Comparing Prop. 4.1 to Thm. 3.5, we extend the domain of Ξ
ψγ

ṽ (v) from Rk+ to Rk,495

since it is an affine function. However, the further extension requires a non-trivial496

concave extension of the power function ψβ , which we are unaware of.497

We have reduced the n-variate signomial term ψα(x) to a signomial term x
α−
− x

α+

+498

of lower order and constructed the corresponding signomial-term-free sets. A similar499

reduction is observed for gi to g
′
i in Subsec. 3.1, where we demonstrate the relationship500

between Slift-free sets and epi(g′i)-free/hypo(g
′
i)-free sets.501

Next, we let the lifted set Slift be the signomial lift, where all gi are signomial502

terms. Each equality constraint yi = gi(x) defining the signomial lift is equivalent to503

two inequality constraints yi ⋚ gi(x). Applying the normalized DCC reformulation504

to these inequality constraints, we thus obtain a reformulation of the signomial lift,505

which we call its normalized DCC reformulation.506

Corollary 4.2. Let C be as in (4.4), where ψα = gi for some i ∈ [ℓ] and507

max(∥β∥1, ∥γ∥1) = 1. Then the orthogonal lifting of C w.r.t. gi is a maximal508

signomial-lift-free (Slift-free) set in the non-negative orthant.509

Proof. We verify that the conditions of Thm. 3.1 are satisfied by the signomial510

lift. For any i ∈ [ℓ], the signomial term gi is continuous, and its domain and range511

are R++. Let Ji be the index set of variables of its reduced signomial term g′i. Let512

X :=×j∈[n]
R++,Y :=×j∈[ℓ]

R++. For all j ∈ [n + ℓ], let Dj := R++. For all513

i ∈ [ℓ], let X i :=×j∈Ji R++,Yi := R++. The underlying sets of the signomial lift are514

X ,Y, {X i,Yi}i∈[ℓ] that are 1d-convex decomposable by {Dj}j∈[n+ℓ]. By Prop. 4.1, C515

is a maximal hypo(g′i)-free set in X i × Yi. By Thm. 3.1, its orthogonal lifting w.r.t.516

gi is a maximal signomial-lift-free set in positive orthant. By continuity of ψβ , ψγ , we517

change the ground set (the positive orthant) to its closure, i.e., non-negative orthant.518
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The following examples show signomial term-free sets from different DCC formu-519

lations.520

Example 4 (Comparison of DCC formulations). Consider Sst = {(u, v) ∈ R2
+ :521

u ≤ v}, which is already in normalized DCC formulation. It is easy to see that522

C1 := {(u, v) ∈ R+ × R : u ≥ v} is a maximal Sst-free set in R2
+ given by Prop. 4.1.523

Let ṽ ∈ R++ be a linearization point. Consider the set S ′
st := {(u, v) ∈ R2

++ : log(u) ≤524

log(v)}. We find that S ′
st ⊊ Sst, but two sets almost coincide except for some boundary525

points of Sst. Since S ′
st admits a DCC formulation, applying the reverse-minorization526

technique at ṽ yields C2 := {(u, v) ∈ R2
+ : log(u) − (log(ṽ) + (v − ṽ)/ṽ) ≥ 0}, which527

is also an Sst-free set. For any 0 < µ < 1, Sst = {(u, v) ∈ R2
+ : uµ ≤ vµ} is a528

DCC set, applying the reverse-minorization technique at ṽ yields C3 := {(u, v) ∈ R2
+ :529

uµ−((1−µ)ṽµ+µṽµ−1v) ≥ 0}, which is also an Sst-free set. However, C2, C3 cannot be530

maximal in R2
+, because their intersections with R2

+ are not polyhedral. These sets are531

visualized in Fig. 2 with a linearization point ṽ = 0.5 and scaling parameter µ = 0.7.532

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(a) Sst and C1.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(b) Sst and C2.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(c) Sst and C3.

Fig. 2: Sst-free sets from Example 4.

Example 5. Consider the hypograph of signomial term x−2
1 x22 and Sst = {(x, y) ∈533

R3
+ : y ≤ x−2

1 x22}. For (x, y) ∈ R3
++, y ≤ x−2

1 x22 if and only if y1/3x
2/3
1 ≤ x

2/3
2 .534

The following set is maximal Sst-free in G = R3
+: C4 := {(x, y) ∈ R3

+ : y1/3x
2/3
1 ≥535

x̃
2/3
2 + 2

3 x̃
−1/3
2 (x2 − x̃2)}, where x̃2 ∈ R++. See Fig. 3a for x̃2 = 0.2.536

Example 6. Consider the epigraph of signomial term x31x2 and Sst = {(x, y) ∈537

R3
+ : y ≥ x31x2}. For (x, y) ∈ R3

++, y ≥ x31x2 if and only if y1/4 ≥ x
3/4
1 x

1/4
2 . The538

following set is maximal Sst-free in G = R3
+: C5 := {(x, y) ∈ R3

+ : ỹ1/4 + 1
4 ỹ

−3/4(y −539

ỹ) ≤ x
3/4
1 x

1/4
2 }, where ỹ ∈ R++. See Fig. 3b for ỹ = 0.2.540

4.2. Intersection cuts. We focus on the separation of intersection cuts for541

the extended formulation of SP. In Sec. 2 we presented a method to construct a542

simplicial cone R from an LP relaxation. The vertex of this cone is a relaxation543

solution z̃ = (x̃, ỹ). We choose z̃ as the linearization point for applying the reverse-544

minorization technique.545

We assume that the LP relaxation includes all linear constraints from (1.2). If z̃546

is infeasible for (1.2), then z̃ does not belong to the signomial lift. Thus, there is a547

signomial term gi such that ỹi ̸= gi(x̃). Given the reduced form g′i, we obtain a set of548
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(a) Sst and C4 from Example 5. (b) Sst and C5 from Example 6.

Fig. 3: Sst and Sst-free sets from Examples 5 and 6.

signomial terms Sst: If gi(x̃) > ỹi, we choose Sst to be the epigraph of g′i; otherwise,549

we choose it to be the hypograph of g′i. This signomial-term set yields a signomial550

term-free set C in (4.4) containing (ũ, ṽ) in its interior (Lemma 2.3). Using orthogonal551

lifting of Cor. 4.2, we can transform C into a signomial-lift-free set C̄.552

We next show how to construct an intersection cut in (2.2). It suffices to compute553

step lengths µ∗
j in (2.1) along extreme rays rj of R. Each step length µ∗

j corresponds554

to a boundary point z̃ + µ∗
jr
j in bd(C̄). The left-hand-side ψβ(u) − Ξ

ψγ

ṽ (v) of the555

inequality in (4.4) is a concave function over (u, v) ∈ Rh+ × Rk. Its restriction along556

the ray z̃ + µjr
j (µj ∈ R+) is a univariate concave function:557

τj : R+ → R, µj 7→ τj(µj) := ψβ(ũ+ rjuµj)− Ξ
ψγ

ṽ (ṽ + rjvµj),558

where rju and rjv are the projections of rj on u and v respectively. Let µ̄j :=559

supµj≥0{µj : ũ + rjuµj ≥ 0}. Therefore, µ∗
j is the first point in [0, µ̄j ] satisfying560

the boundary condition: either τj(µ
∗
j ) = 0 or µ∗

j = µ̄j . Since τj is a univariate con-561

cave function and τj(0) > 0, there is at most one positive point in R+ where τj is562

zero. We employ the bisection search method [66] to find such µ∗
j .563

5. Convex outer approximation. In this section we propose a convex non-564

linear relaxation for the extended formulation (1.2) of SP. This relaxation is easy to565

derive and allows us to generate valid linear inequalities, called outer approximation566

cuts, for SP. Unlike intersection cuts, outer approximation cuts do not require an LP567

relaxation a priori, so solvers can employ them to generate an initial LP relaxation568

of (1.2).569

With notation from Subsec. 4.1, we additionally assume that the domain of u570

(resp. v) is a hypercube U (resp. V) in Rh+(resp. Rk+). The assumption fits with the571

common practice of MINLP solvers. We construct the convex nonlinear relaxation by572

approximating each signomial-term set of the signomial lift within the hypercube.573

For brevity, we still call the intersection of the set in (4.3) and the hypercube574

U × V:575

(5.1) Sst := {(u, v) ∈ U × V : ψβ(u)− ψγ(v) ≤ 0},576

a signomial-term set. As long as max(∥β∥1, ∥γ∥1) ≤ 1, Sst is in a DCC formulation577

(in terms of the inequality constraint).578
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We consider the normalized DCC formulation that has max(∥β∥1, ∥γ∥1) = 1.579

In Subsecs. 5.3 and 5.4, we will explain the reason for choosing the normalized DCC580

formulation. The signomial-term set is usually nonconvex, so our construction involves581

convexifying the concave function ψβ in (5.1). This procedure yields a convex outer582

approximation of Sst, which is non-polyhedral. Consequently, replacing Sst by its583

convex outer approximation, we obtain the convex nonlinear relaxation of (1.2).584

Next, we introduce the procedure of relaxation. We should import the formal585

concepts of convex underestimators and convex envelopes. Given a function f and a586

closed set D ⊆ Rp, a convex function f ′ : conv(D) → R is called a convex underesti-587

mator of f over D, if for all x ∈ D f ′(x) ≤ f(x). The convex envelope of f is defined588

as the pointwise maximum convex underestimator of f over D, and we denote it by589

convenvD(f).590

In principle, the envelope construction procedure is similar to the convexifica-591

tion procedure of multilinear terms [74]. The following lemma gives an extended592

formulation of the convex envelope of a concave function over a polytope, where the593

formulation is uniquely determined by the function values at the vertices of the poly-594

tope.595

Lemma 5.1. [31, Thm. 3] Let P be a polytope in Rn, let f : P → R be a596

concave function over P , and let Q be vertices of P . Then, convenvP (f)(x) =597

min{
∑
q∈Q λqf(q) : ∃λ ∈ RQ+,

∑
q∈Q λq = 1, x =

∑
q∈Q λqq}.598

Based on the lemma above, we observe that the concave function f is convex-599

extensible from its vertices (i.e., convenvP (f)(x) = convenvQ(f)(x) for x ∈ P ), and600

convenvP (f) is a polyhedral function.601

For the case of P = U :=
∏
j∈[h][uj , uj ] and f = ψβ , Q = {q ∈ Rh : ∀j ∈ [h] qj =602

uj ∨ qj = uj} is the set of vertices of the hypercube U . The lemma yields an extended603

formulation of convenvU (ψβ). Replacing ψβ by its convex envelope convenvU (ψβ), we604

obtain the convex outer approximation of Sst in (5.1):605

(5.2) S̄st := {(u, v) ∈ U × V : convenvU (ψβ)(u) ≤ ψγ(v)}.606

By using this extended formulation, our convex nonlinear relaxation of SP con-607

tains additional auxiliary variables. In particular, we need 2h variables λq to represent608

each convex envelope. For most SP problems in MINLPLib where the degrees of the609

signomial terms are less than 6 and h is less than 3, the convex nonlinear relaxation610

is computationally tractable.611

5.1. Outer approximation cuts. The extended formulation is not useful, so we612

propose a cutting plane algorithm to separate valid linear inequalities in (u, v)-space613

from the extended formulation of the convex outer approximation. This algorithm614

generates a low-dimensional projected approximation of S̄st. Moreover, the projection615

procedure converts the convex nonlinear relaxation into an LP relaxation, which is616

suitable for many solvers.617

Given a point (ũ, ṽ) ∈ U ×V, the algorithm determines whether it belongs to S̄st.618

This verification can be done by checking the sign of convenvU (ψβ)(ũ) − ψγ(ṽ). If619

convenvU (ψβ)(ũ)− ψγ(ṽ) ≤ 0, then (ũ, ṽ) ∈ S̄st.620

Since convenvU (ψβ) is a convex polyhedral function, our cutting plane algorithm621

evaluates the function by searching for an affine underestimator a·u+b of convenvU (u)622

such that a · ũ+ b = convenvU (ũ), which is achieved by underestimating algorithms.623

If (ũ, ṽ) /∈ S̄st, then a · u + b ≤ ψγ(v) is a valid nonlinear inequality of S̄st. Subse-624

quently, our cutting plane algorithm linearizes this inequality, resulting in an outer625
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approximation cut a · u + b ≤ Ξ
ψγ

ṽ (v): we recall that Ξ
ψγ

ṽ (v) is the linearization of626

ψγ(v) at ṽ defined in Eq. (1.5).627

We present our first LP-based underestimating algorithm, which is used in our628

experiments. Due to Lemma 5.1, we can solve the following LP to find the affine629

underestimator:630

(5.3) max
a∈Rh,b∈R

a · ũ+ b s. t.∀q ∈ Q a · q + b ≤ ψγ(q),631

where we omit the linear constraints that bound (a, b). The maximum value resulting632

from this LP is exactly convenvU (ψβ)(ũ). The affine underestimator a ·u+ b is called633

an facet of the envelope convenvU (ψβ), if a ·u+ b ≤ t is a facet of epi(convenvU (ψβ)).634

We note that the solution of the LP is not necessarily a facet, and the number of635

constraints is 2h.636

We next give another enumeration-based underestimating algorithm. As ψβ is637

also concave, we recall the characterization [74] of the convex envelopes of concave638

functions f over hypercubes. A set of h-dimensional polyhedra P1, . . . , Pt ⊆ U forms639

a triangulation (i.e., simplicial covers) of U , if: (i) U = ∪i∈[t]Pt; (ii) Pi ∩ Pj is a640

(possibly empty) face of both Pi and Pj ; (iii) each Pi is an (h-)simplex. This means641

that each Pi is the convex hull of h + 1 affine independent points (denoted as Si).642

We restrict our interests in triangulations that do not add vertices, i.e., every Si is a643

subset of the vertices Q of U . We know that an appropriate triangulation gives the644

convex envelope of f .645

Lemma 5.2 (Thm. 2.4 of [74]). For any concave function f , there exists a tri-646

angulation {Pi}i∈[t] of U such that the convex envelope of f over U can be computed647

by interpolating f affinely over each simplex Pi.648

However, it is non-trivial to find such an “appropriate” triangulation. To explain649

Lemma 5.2, any set S := {u1, . . . , uh+1} ⊆ Q of h + 1 affine independent points650

determines a function over Rh via the following affine combination:651

(5.4) fS(u) :=

 ∑
j∈[h+1]

λjf(u
j) : ∃λ ∈ Rh+1

∑
j∈[h+1]

λj = 1 ∧
∑

j∈[h+1]

λju
j = u

 .652

Because of the affine independence of S, the barycentric coordinate λ is unique for653

any w in the above affine combination. We can consider fS as a single-valued affine654

function and call it the interpolation function induced by S. Since fS interpolates f655

at S, we can solve the linear system a · u+ b = f(u) (for u ∈ S) to compute a, b that656

define fS . It follows from that [74, Cor. 2.6], if fS underestimates f at any point of657

Q, then fS is a facet of convenvU (f). We call such an S facet-inducing.658

This result implies that we can focus on h-simplices instead of triangulations,659

since we want to find an affine underestimator for f = ψβ . Our enumeration-based660

underestimating algorithm finds the set of h+ 1 affine independent points in Q such661

that the interpolation function fS is an underestimator of f . The algorithm outputs662

the greatest interpolation function at the point ũ.663

Finally, we explore another property of ψβ that may help us reduce the search664

space. To simplify our representation, we translate and scale the domain of ψβ to665

[0, 1]h. This leads to a new function s(w) := ψβ(u), where for all j ∈ [h], uj :=666

uj +(uj −uj)wj . After these transformations, ũ becomes w̃, the transformed domain667

U of u becomes [0, 1]h, and we denote the set of its vertices by the binary hypercube668

Q = {0, 1}h. W.l.o.g., we focus on the study and computation of facets of convenvU (s).669
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A set D ⊆ Rh is called a product set, if D =×j∈[h]
Dj for Dj ⊆ R. Moreover,670

a function f : D → R is supermodular over D ([76, Sec. 2.6.1]), if the increasing671

difference condition holds: for all w1, w2 ∈ D, d ∈ Rh+ such that w1 ≤ w2 and w1 +672

d,w2 + d ∈ D, f(w1 + d) − f(w1) ≤ f(w2 + d) − f(w2). We find that the following673

operations preserve supermodularity.674

Lemma 5.3. Let w′ ∈ Rh, ρ ∈ Rh++, and let D′ be a product subset of D. The675

following results hold: (restriction) f is supermodular over D′;(translation) f(w+w′)676

is supermodular over D − d; (scaling) f(ρ ∗ w) is supermodular over D/ρ, where677

+,−, ∗, / are taken entry-wise.678

Proof. The results follow from the definition.679

We note that when D = Q = {0, 1}h, d is in Q. We observe a useful property of680

s.681

Proposition 5.4. The function s is supermodular over Q (i.e., {0, 1}h). More-682

over, convenvU (s) = convenvQ(s).683

Proof. According to [76, Example 2.6.2], the signomial term ψα with α > 0 is684

supermodular over Rh+. This implies that the power function ψβ is supermodular685

over Rh+. By Lemma 5.3, s is supermodular over U = [0, 1]h. As Q = {0, 1}h is a686

product subset of U , s is supermodular over Q. After the scaling and translation, s687

is still concave. By Lemma 5.1, convenvU (s) = convenvQ(s).688

Finding facets of s could be reduced to a more genera problem of finding facets689

of supermodular functions over binary hypercubes. We note that a similar argument690

can show that both power functions and multilinear terms over any product subset691

of Rh+ are supermodular.692

One may exploit the increasing difference property to determine candidate sets693

of affine independent points when searching for facets. When h = 2, we provide694

explicit projected formulations of convex envelopes of power functions. As a result,695

our cutting plane algorithm can efficiently separate outer approximation cuts for low-696

order problems. For h = 1, the only facet is s(0) + (s(1)− s(0))w1.697

5.2. Projected convex envelopes in the bivariate case. We present a gen-698

eral characterization of projected convex envelopes of supermodular functions f that699

is a restriction of a concave function. This gives a closed-form expression of the convex700

envelope of s in the bivariate case. We can use a bit representation to denote binary701

points in {0, 1}2. For example, 10 denotes the point w that w1 = 1 and w2 = 0. For702

an affine function a ·w+ b, we call binary points in {0, 1}2 where a ·w+ b equals f(w)703

its interpolating points.704

Using the above result, we can construct an envelope-inducing family for bivariate705

supermodular functions. Let706

(5.5) S2
1 := {00, 10, 01}, S2

2 := {11, 10, 01}.707

One can find that conv(S2
1) = {(w1, w2) ∈ [0, 1]2 : w1 + w2 ≤ 1}, conv(S2

2) =708

{(w1, w2) ∈ [0, 1]2 : w1 + w2 ≥ 1} are two triangles in [0, 1]2. We have that709

fS2
1
(w) = f(00) + (f(10)− f(00))w1 + (f(01)− f(00))w2,710

fS2
2
(w) = f(11) + (f(01)− f(11))(1− w1) + (f(10)− f(11))(1− w2).711

We show that these two affine functions define the convex envelope of f .712

17

This manuscript is for review purposes only.



Theorem 5.5. Given f : [0, 1]2 → R a concave function that has a supermodular713

restriction over {0, 1}2, {S2
k}k∈[2] as in (5.5) gives a triangulation of [0, 1]2 and induce714

facets of convenv[0,1]2(f).715

Proof. We know that convenv[0,1]2(f) = convenv{0,1}2(f). It is easy to see that,716

for all k ∈ [2], S2
k is affinely independent and {conv(S2

k)}k∈[2] is a triangulation of717

[0, 1]2. Therefore, it suffices to show that {S2
k}k∈[2] is facet-inducing, i.e., fS2

1
, fS2

2
are718

affine underestimators of f .719

Case i. We note that, for all w ∈ S2
1 = {00, 10, 01}, fS2

1
(w) = f(w). Note that720

{0, 1}2 ∖ S2
1 = {11}. It follows from the definition of the affine function fS2

1
that721

fS2
1
(11) = fS2

1
(10) + (fS2

1
(01)− fS2

1
(00)) = f(10) + (f(01)− f(00)).722

It follows from the supermodularity of f that723

f(10) + (f(01)− f(00)) ≤ f(10) + (f(11)− f(10)) = f(11).724

Thereby, fS2
1
underestimates f .725

Case ii. We note that, for all w ∈ S2
2 = {11, 10, 01}, fS2

2
(w) = f(w). Note that726

{0, 1}2 ∖ S2
2 = {00}. It follows from the definition of the affine function fS2

2
that727

fS2
2
(00) = fS2

2
(10)− (fS2

1
(11)− fS2

1
(01)) = f(10) + (f(11)− f(01)).728

It follows from the supermodularity of f that729

f(10)− (f(11)− f(01)) ≤ f(10)− (f(10)− f(00)) = f(00),730

which concludes the proof.731

5.3. Alternative convex outer approximations. According to Subsec. 4.1,732

we can have infinitely many DCC formulations of Sst parametrized by a scalar θ:733

Sθst := {(u, v) ∈ U × V : ψθβ(u)− ψθγ(v) ≤ 0},734

where max(∥β∥1, ∥γ∥1) = 1 and 0 < θ ≤ 1. Notice that S1
st is used to construct735

the convex outer approximation of Sst. Alternatively, we have other convex outer736

approximations derived from Sθst:737

S̄θst := {(u, v) ∈ U × V : convenvU (ψθβ)(u)− ψθγ(v) ≤ 0}.738

For any θ, θ′ ∈ (0, 1], Sθst = Sθ′st , but S̄θst could be different from S̄θ′st . To generate the739

tightest outer approximation cuts, one may ask which θ yields the smallest convex740

outer approximation S̄θst. We show that θ = 1 is optimal in this sense.741

We express Sθst as follows:742

S̄θst := {(u, v) ∈ U × V : (convenvU (ψθβ)(u))
1/θ ≤ ψγ(v)}.743

Since the right hand side ψγ(v) of the inequality does not depend on θ, we check the744

value of the left hand side (convenvU (ψθβ)(u))
1/θ at every point u ∈ U . We have the745

following observation on the bound of (convenvU (ψθβ)(u))
1/θ.746

Proposition 5.6. Given u ∈ U , for any θ ∈ (0, 1], (convenvU (ψθβ)(u))
1/θ is not747

greater than convenvU (ψβ)(u).748
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Proof. According to Lemma 5.2, convenvU (ψβ)(u) = fS(u), where S is the set749

of h + 1 affine independent points uj in the vertices Q of U , and the interpolation750

function f(u) is taken as ψβ(u). Given the combination form (5.4) of fS , we express751

convenvU (ψβ)(u) = fS(u) =
∑
j∈[h+1] λjψβ(u

j). Note that all λj ≥ 0 (because752

u ∈ U), thus, the expression is indeed a convex combination form. Due to Lemma 5.1,753

convenvU (ψθβ)(u) is the minimum of all convex combinations
∑
q∈Q λqψθβ(q). Thus,754

convenvU (ψθβ)(u) is at most the particular convex combination
∑
j∈[h+1] λjψθβ(uj).755

As 1/θ ≥ 1, t1/θ is convex and non-decreasing w.r.t. the indeterminate t. It follows756

from the Jensen’s inequality of convex function that757

(convenvU (ψθβ)(u))
1/θ ≤ (

∑
j∈[h+1]

λjψβ(u
j)θ)1/θ ≤

∑
j∈[h+1]

λjψβ(u
j),758

where the last convex combination is exactly convenvU (ψβ)(u).759

We then arrive at the conclusion on the optimality of θ = 1.760

Corollary 5.7. For any θ ∈ (0, 1], S̄st = S̄1
st ⊆ S̄θst.761

Proof. It is because (convenvU (ψθβ)(u))
1/θ underestimates convenvU (ψβ)(u).762

This explains why we choose θ = 1 for our DCC formulation. Note that the763

convex outer approximation derived from this formulation may not be the convex764

hull of Sst.765

5.4. Convexity and reverse-convexity. Our cutting plane algorithm can de-766

tect convexity/reverse-convexity of signomial-term sets. The detection is easily done767

by the normalized DCC formulation, which gives another advantage.768

Denote by ekj and ehj the j-th unit vector in Rh and Rk, respectively. Then, we769

have the following observations:770

i) if ∥β∥1 = 1, γ = 0, i.e., ψβ is concave and ψγ is 1, then Sst is reverse-convex;771

ii) if ∥β∥1 ≤ 1, γ = ekj for some j ∈ [k], i.e., ψβ is concave and ψγ is a linear772

univariate function, then Sst is reverse-convex;773

iii) if β = ehj , ∥γ∥1 ≤ 1 for some j ∈ [h], i.e., ψβ is a linear univariate function774

and ψγ is concave, then Sst is convex;775

iv) if ∥β∥1 = 0, ∥γ∥1 = 1, i.e., ψβ is 1 and ψγ is concave, then Sst is convex.776

We note that similar results are found in [22, 53]. The results in [22] are proved by777

checking the negative/positive-semidefiniteness of the Hessian matrix of a signomial778

term. According to the normalized DCC formulation, the results are evident.779

6. Computational results. In this section, we conduct computational experi-780

ments to assess the efficiency of the proposed valid inequalities.781

The MINLPLib dataset includes instances of MINLP problems containing signo-782

mial terms, and some of these instances are SP problems. To construct our benchmark,783

we select instances from MINLPLib that satisfy the following criteria: (i) the instance784

contains signomial functions or polynomial functions, (ii) the continuous relaxation of785

the instance is nonconvex. Our benchmark consists of a diverse set of 251 instances in786

which nonlinear functions consist of signomial and other functions. These problems787

come from practical applications and can be solved by general purpose solvers.788

Experiments are performed on a server with Intel Xeon W-2245 CPU @ 3.90GHz,789

126GB main memory and Ubuntu 18.04 system. We use SCIP 8.0.3 [14] as a frame-790

work for reading and solving problems as well as performing cut separation. SCIP is791

integrated with CPLEX 22.1 as LP solver and IPOPT 3.14.7 as NLP solver.792
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We evaluate the efficiency of the proposed valid inequalities in four different set-793

tings. In the first setting, denoted disable, none of the proposed valid inequalities794

is applied. In the second setting, denoted oc, only the outer approximation cuts795

are applied. The third setting, denoted ic, applies only to the intersection cuts.796

The fourth setting combines both the oc and ic settings by applying both cuts.797

We let SCIP’s default internal cuts handle univariate signomial terms and multilin-798

ear terms. Our valid inequalities only handle the other high-order signomial terms.799

The source code, data, and detailed results can be found in our online repository:800

github.com/lidingxu/ESPCuts.801

Each test run uses SCIP with a particular setting to resolve an instance. To solve802

the instances, we use the SCIP solver with its sBB algorithm and set a time limit of803

3600 seconds. In our benchmark, there are 150 instances classified as affected in which804

at least one of the settings oc, ic, and oic settings adds cuts. Among the affected805

instances, there are 86 instances where the default SCIP configuration (i.e., disable806

setting) runs for at least 500 seconds. Such instances are classified as affected-hard.807

For each test run, we measure the runtime, the number of sBB search nodes, and the808

relative open duality gap.809

To aggregate the performance metrics for a given setting, we compute shifted810

geometric means (SGMs) over our test set. The SGM for runtime includes a shift of 1811

second. The SGM for the number of nodes includes a shift of 100 nodes. The SGM for812

relative gap includes a shift of 1%. We also compute the SGMs of the performance813

metrics over the subset of affected and affected-hard instances. The performance814

results are shown in Table 1, where we also compute the relative values of the SGMs815

of the performance metrics compared to the disable setting. Our following analysis is816

based on the results of the affected and affected-hard instances. Moreover, we display817

the absolute value of the averaged separation time versus the absolute value of the818

averaged total runtime of each setting. We find that the separation time is much819

shorter than the total runtime.820

Setting
All (#251) Affected (#150) Affected-hard (#86)

solved nodes time gap solved nodes time gap solved nodes time gap

disable
absolute

138
6510 0/122 4.7%

71
15592 0/253 5.7%

7
175973 0/3600 26.7%

relative 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

oc
absolute

140
5954 1/118 4.5%

73
13443 2/241 5.4%

10
115262 9/2872 23.3%

relative 0.91 0.97 0.97 0.86 0.95 0.95 0.65 0.8 0.87

ic
absolute

140
6144 1/122 4.4%

73
14081 2/252 5.2%

10
128072 5/2994 22.0%

relative 0.94 1.0 0.95 0.9 0.99 0.91 0.73 0.83 0.82

oic
absolute

139
5934 1/117 4.6%

72
13275 3/236 5.6%

10
118054 10/2758 23.0%

relative 0.91 0.96 0.99 0.85 0.93 0.98 0.67 0.77 0.86

Table 1: Summary of performance metrics on MINLPLib instances.

First, we note that the proposed valid inequalities lead to the successful solution821

of 2 additional instances compared to the disable setting. The oc setting solves 2822

more instances than the disable setting.823

The reductions in runtime and relative gap achieved by the oc setting are 5% and824

5%, respectively, for affected instances and 20% and 13%, respectively, for affected-825

hard instances. The ic setting solves 2 more instances than the disable setting. The826

reduction in runtime and relative gap achieved by the ic setting is 1% and 9% for827

affected instances and 17% and 14% for affected-hard instances, respectively. The828
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oic setting resolves 1 additional instance compared to the disable setting. The829

reduction in runtime and relative distance achieved by the oic setting is 7% and 2%,830

respectively, for affected instances and 23% and 14%, respectively, for affected-hard831

instances.832

We note that the runtime does not provide much information about affected-833

hard instances, since only 10 instances can be solved within 3600 seconds. For these834

instances, the gap reduction is more useful to measure the reduction of the search space835

by the proposed valid inequalities. However, for all affected instances, the runtime is836

still important because it measures the speedup due to the valid inequalities.837

Second, we find that all cut settings have a positive effect on SCIP performance,838

although the magnitude of the reduction varies. When we compare the oc and ic839

settings, we find that the oc setting leads to a larger reduction in runtime. This840

difference in runtime is due to the fact that computing intersection cuts requires841

extracting a simplified cone from the LP relaxation and applying bisection search842

along each ray of the cone. These procedures require more computational resources843

compared to the construction of outer approximation cuts.844

On the other hand, the ic setting shows better performance in terms of reduc-845

ing gaps. Intersection cuts approximate the intersection of a signomial-term set with846

the simplicial cone, while outer approximation cuts approximate the intersection of a847

signomial-term set with a hypercube. Around the relaxation point, the simplicial cone848

usually provides a better approximation than the hypercube. Therefore, ic achieves a849

greater reduction in the relative gap. However, the better simplicial conic approxima-850

tion does yield a significant improvement compared to the hypercubic approximation.851

Finally, the oic setting combines both the oc and ic settings and achieves the best852

reduction in runtime. However, for affected and affected-hard instances, the setting853

shows different gap reduction results. In fact, the results for affected-hard instances854

give more insight, since the goal of the valid inequalities is to speed up convergence855

for hard instances. In this sense, the oic setting achieves almost the best result, so856

it carries the best of both valid inequalities. However, the improvement compared to857

each setting is not significant.858

We next look at instance-wise results on affected instances that are not solved by859

the disable setting. The scatter plots in Fig. 4 compare the relative gaps of such860

instances obtained by different settings. We find that, many data points (of gaps less861

than 20%) are around the diagonal line, and these unbiased results mean that they862

are not affected much by cutting planes. However, there are some data points (of863

gaps more than 40%) above the diagonal line, especially noticing those far in the top,864

so cutting planes achieve much smaller gaps than the disable setting on these hard865

instances.866

In summary, the performances of the oc and ic settings are comparable. They867

can lead to smaller duality gaps, which is desirable for solvers, and one can use either868

of them. Moreover, the combination of both cuts enhances performance slightly.869

7. Conclusion and discussions. In this paper we study valid inequalities for870

SP problems and propose two types of valid linear inequalities: intersection cuts871

and outer approximation cuts. Both are derived from normalized DCC formulations872

of signomial-term sets. First, we study general conditions for maximal S-free sets.873

We construct maximal signomial term-free sets from which we generate intersection874

cuts. Second, we construct convex outer approximations of signomial-term sets within875

hypercubes. We provide extended formulations for the convex envelopes of concave876

functions in the normalized DCC formulations. Then we separate valid inequalities877
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Fig. 4: Relative gaps (in percentage) between pairs of settings for affected and un-
solved (by the disable) instances

for the convex outer approximations by projection. Moreover, when h = 2, we use878

supermodularity to derive a closed-form expression for the convex envelopes.879

We present a comparative analysis of the computational results obtained with the880

MINLPLib instances. This analysis demonstrates the effectiveness of the proposed881

valid inequalities. The results show that intersection cuts and outer approximation882

cuts have similar performance and their combination takes the best of each setting.883

In particular, it is easy to implement outer approximation cuts in general purpose884

solvers.885

In the following, we have some further discussions that lead to some open ques-886

tions and possible extensions of the proposed cutting plane algorithms.887

7.1. Signomial aggregation. We currently deal with signomial terms explic-888

itly present in the signomial terms, but our results can be extended to deal with889

multiple signomial terms. In the future, the proposed valid inequalities can approx-890

imate nonlinear aggregations of constraints that define the signomial lift. Specifi-891

cally, given signomial constraints {ψαi(x) = yi}i∈[r] with any exponent vector ζ ∈892

Rr, we can employ signomial aggregation to generate a new signomial constraint:893

ψ(
∑

i∈[r] ζiα
i)(x) = ψζ(y). This constraint is valid for the signomial lift and encodes894

more variables and terms. Next, we can apply the DCC reformulation to the con-895

straints ψ(
∑

i∈[r] ζiα
i)(x) ≤ ψζ(y) and ψ(

∑
i∈[r] ζiα

i)(x) ≥ ψζ(y). Finally, we can sep-896

arate the proposed valid inequalities. As far as we know, the signomial aggregation897

operator is not yet used for polynomial programming, since it outputs a signomial898

constraint.899

7.2. Signomial constraints. Through lifting signomial terms, we have studied900

the extended formulation of SP. The proposed methods could be used for relaxing901

signomial constraints in the projected formulation of SP, but this may require a global902

transformation of variables. We can always write a signomial constraint as follows:903

(7.1)
∑
i∈I1

biψαi(x) ≤
∑
i∈I2

biψαi(x),904

where, for all i ∈ I := I1 ∪ I2, bi ≥ 0 and αi ∈ Rn. We want the signomial terms to905

have only positive exponents. As the both sides of the signomial constraint (7.1) are906

non-negative, we can multiply both sides by a signomial term ψα0(x) with α0 ≥ 0,907

which should yield all βi := αi + α0 ≥ 0. This reformulates the signomial constraint908
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(7.1) as follows:909

(7.2)
∑
i∈I1

biψβi(x) ≤
∑
i∈I2

biψβi(x).910

Note that ψβi(x) only have positive exponents, but they are not necessarily power911

functions. For the constraint in reformulated signomial-term set in (4.3), we applies912

powers on two signomial terms to rescale their exponents, and we obtain a DCC913

constraint. However, this power rescaling generally does not produce a DCC refor-914

mulation of (7.2), because the rescaled term (
∑
i∈I1 biψβi(x))µ for µ > 0 could be915

nonconvex. Instead, we can use power transformation to overcome this difficulty.916

Given γ ∈ Rn++, denote z = (x
γj
j )j , and we note that ψβi(x) = ψβi/γ(z), where / is917

taken entry-wise. When all ∥βi/γ∥1 ≤ 1, every ψβi(z) is a power function. Therefore,918

the signomial constraint (7.2) is equivalent to the following DCC constraint:919

(7.3)
∑
i∈I1

biψβi/γ(z) ≤
∑
i∈I2

biψβi/γ(z).920

Note that the SP can have other signomial constraints in x, and this global power921

transformation reformulates SP in the variable space of z. We should choose an ap-922

propriate parameter γ that transforms all signomial constraints into DCC constraints923

in z as well, and such a γ should satisfy that ∥β/γ∥1 ≤ 1 for all exponents β appearing924

in the reformulated signomial constraints as (7.2). Then, we could apply the proposed925

cutting planes on this space. However, it is not easy to implement this global power926

transformation in current solvers, or such a transformation does not exist for prob-927

lems mixed with signomial terms and other nonlinear functions. We pose some open928

problems here. Which γ yields DCC constraints that result in maximal S-free sets929

(S is taken as the feasible set defined by the constraint (7.3))? As Thm. 3.5 requires930

at least one part of the DCC function to be positive homogeneous of degree 1, could931

we reuse Thm. 3.5 to find γ? We conjecture that such a γ does not exist in general,932

because we have to ensure several ∥βi/γ∥ = 1.933
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Appendix.945

Proof of Thm. 3.1. It suffices to consider the case that C is a maximal epi(g′i)-free946

set in Gi. W.l.o.g., we can assume that C,Gi are full-dimensional in RIi . Since epi(g′i)947

includes graph(g′i), C, as an epi(g′i)-free set, is also graph(g′i)-free. First, we prove that948

C is a maximal graph(g′i)-free set in Gi. Assume, to aim at a contradiction, that C′ is a949

graph(g′i)-free set that C∩Gi ⊊ C′∩Gi. Suppose that epi(g′i)∩ int(C′∩Gi) is not empty950

and contains (x′Ji , y
′
i). As C is epi(g′i)-free, there exists a point (xJi , yi) ∈ int(C∩Gi) ⊆951
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int(C′ ∩ Gi) such that (xJi , yi) ∈ hypo(g′i). It follows from the continuity of g′i that952

there exists a point (x∗Ji , y
∗
i ) ∈ graph(g′i) in the line segment joining (xJi , yi) and953

(x′Ji , y
′
i). As int(C′ ∩ Gi) is convex, we have that (x∗Ji , y

∗
i ) ∈ int(C′ ∩ Gi), which leads954

to a contradiction to graph(g′i)-freeness of C′. Therefore, epi(g′i)∩ int(C′∩Gi) must be955

empty, so C′ ∩ Gi ⊆ hypo(g′i). This means that C′ is also epi(g′i)-free. However, note956

that C ∩ Gi ⊊ C′ ∩ Gi, this contradicts with the fact that C is a maximal epi(g′i)-free957

set in Gi. Therefore, C is a maximal graph(g′i)-free set in Gi. Secondly, we prove958

that C̄ is a maximal Slift-free set in G. Assume, to aim at a contradiction, that there959

exists an Slift-free set D̄ in G such that C̄ ∩ G ⊊ D̄ ∩ G. We look at their orthogonal960

projections on RIi . It follows from the decomposability that C∩Gi = C∩projRIi (G) =961

projRIi (C̄ ∩ G) ⊆ projRIi (D̄ ∩ G). Denote D := cl(projRIi (D̄ ∩ G)), which is a closed962

convex set in Gi. Since C̄ = C × RIci , D must strictly include C ∩ Gi. Note that963

D is graph(g′i)-free. Since C is a maximal graph(g′i)-free set in Gi, this implies that964

C ∩ Gi = D, which leads to a contradiction.965

Proof of Lemma 3.3. Let C be a set satisfying the hypothesis. Suppose, to aim966

at a contradiction, that there exists a closed convex set C∗ such that C ⊊ C∗ and C∗967

is an inner approximation of F . Then, there must exist an open ball B such that968

B ⊆ F ∖ C and B ⊆ C∗. Let z∗ be the center of B, so z∗ ∈ int(F ∖ C). W.l.o.g., we969

let C∗ = conv(C ∪ {z∗}), which is a closed convex inner approximation of F . Since970

z∗ /∈ C, by the hyperplane separation theorem, there exists λ ∈ dom(σC) such that971

(7.4) λ · z∗ > σC(λ).972

For any such λ, by the hypothesis, there exists a point z′ ∈ bd(F)∩ bd(C) such that973

(7.5) λ · z′ = σC(λ),974

and z′ is an exposing point of C. We want to show that, for any λ′ ∈ dom(σC∗),975

λ′ · z′ < σC∗(λ). We consider the following three cases. First, we consider the case976

λ′ = λ. Because z∗ ∈ C∗, by the definition of support functions, we have that977

(7.6) λ · z∗ ≤ sup
z∈C∗

λ · z = σC∗(λ).978

It follows from (7.4), (7.5), and (7.6) that979

λ · z′ = σC(λ) < λ · z∗ ≤ σC∗(λ) = σC∗(λ′).(7.7)980

Second, we consider the case λ′ = ρλ for some ρ > 0. Since σC∗ is positively homo-981

geneous of degree 1, it follows from (7.7) that λ′ · z′ = ρλ · z′ < ρσC∗(λ) = σC∗(λ′).982

Last, we consider the case λ′ ∈ dom(σC∗) ∖ {ρλ}ρ>0. By Lemma 3.2, σC ≤ σC∗ . By983

the hypothesis that z′ is an exposing point of C, provided that λ′ ̸= ρλ, we have that984

λ′ · z′ < σC(λ
′) ≤ σC∗(λ′). In summary, we have proved that for any λ′ ∈ dom(σC∗),985

λ′ · z′ < σC∗(λ′). So by Lemma 3.2, z′ ∈ int(C∗). We find that z′ ∈ bd(F) ∩ int(C∗).986

This finding means a point near z′ exists, which is in C∗, but not in F . Hence, C∗ is987

not an inner approximation of F , which leads to a contradiction.988

Proof of Lemma 3.4. Given z ∈ dom(f), f(ρz) = ρdf(z) is a real number for any989

ρ ∈ R++, so int(dom(f)) is a cone. Suppose that f is positive homogeneous of degree990

1. For any z ∈ dom(f), Ξfz̆ (z) = f(z̆) +∇f(z̆) · (z − z̆) = ∇f(z̆) · z, where the second991

equation follows from Euler’s homogeneous function theorem: f(z̆) = ∇f(z̆) · z̆. For992

any z = ρz̆ with ρ ∈ R++, Ξ
f
z̆ (z) = ∇f(z̆) · ρz̆ = ρΞfz̆ (z̆) = ρf(z̆) = f(ρz̆), where the993

first and second equations follow from the previous result, the third follows from that994

Ξfz̆ has the same value as f at z̆, and the last equation follows from the homogeneity.995
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[39] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analy-1105

sis, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.1106
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