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Abstract. Consider a digraph where the vertices represent people and
an arc (i, j) represents the possibility of i giving a gift to j. The basic
question we pose is whether there is an anonymity-preserving “gift as-
signment” such that each person makes and receives exactly one gift, and
such that no person i can infer the remaining gift assignments from the
fact that i is assigned to give a gift to j. We formalize this problem as
a graph property involving vertex disjoint circuit covers, give a polyno-
mial algorithm to decide this property for any given graph and provide
a computational validation of the algorithm.

1 Introduction

The problem we deal with is well described by the following Wikipedia [14] entry:

Secret Santa is a Christmas ritual involving a group of people exchang-
ing anonymous gifts. Participants names are placed in a hat and each
person draws a name for whom they are to buy a gift. Presents are then
exchanged anonymously. There is usually a gift giving occasion, where
all the presents are placed on a table, with the name of the receiver, but
not the giver.

We assume that additional constraints may exist in the definition of the problem.
For instance, it may be required that self-gifts and gifts between certain pairs of
participants should be avoided. These constraints are enforced on a graph model:
participants are represented by vertices and the possibility of a participant giving
a gift to another participant is represented by an arc between the corresponding
vertices.

Previous academic work on the Secret Santa problem is scarce. A secure
protocol for the distributed solution of the Secret Santa problem is proposed
in [11], with the corresponding implementation being described in [12]. Some
published works in social sciences exist [3]. A scholarly discussion ensued in
1999-2001 in the Mathematical Gazette [7, 9, 1] focussing on the probability of
picking a gift assignment without mutual gifts. This is extended in [8] to deal
with more constraints on pairs of people that cannot exchange gifts, and in [13]
to include at least a cyclic assignment of given length.
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We use a digraph to model arbitrary constraints on the possibility of people
exchanging gifts and propose a formalization of the Secret Santa problem as a
decision problem on digraphs. Our main result is that the problem of determining
whether anonymous gift assignments are possible on a given graph is in P.
An investigation of anonymous communication channels along the lines of [2]
provides further application-driven motivation for studying the Secret Santa
problem.

An instance of the Secret Santa Problem is a connected digraph G = (V,A)
where V is the set of the participants, and (i, j) ∈ A if participant i is allowed
to make a gift to participant j. If symmetry is assumed (i.e., if we assume that
if i can buy a gift for j then j can do the same for i) then A contains pairs
of opposing arcs (i, j) and (j, i). In what follows, given a vertex i ∈ V , we let
δ+(i) = {j ∈ V | (i, j) ∈ A} and δ−(i) = {j ∈ V | (j, i) ∈ A}. An istance of the
Secret Santa problem has a solution if for each person i ∈ V there exists another
assigned person j ∈ V such that (i, j) ∈ A such that i makes a gift to j (e.g. if
V | = {1, 2} and A = {(1, 2)} there is no solution, for 2 has no assigned person).
We model solutions as follows.

Definition 1.1 A Vertex Disjoint Circuit Cover (VDCC) for G = (V,A) is a
subset S ⊆ A of arcs of G such that: (a) for each v ∈ V there is a unique u ∈ V ,
called the predecessor of v and denoted by πS(v), such that (u, v) ∈ S; (b) for
each v ∈ V there is a unique u ∈ V , called the successor of v and denoted by
σS(v), such that (v, u) ∈ S. We denote by C the set of all VDCCs in G.

Let xij ≥ 0 be real non-negative continuous variables for all (i, j) ∈ A, and
consider the equations:

∀i ∈ V
∑

j∈δ+(i)

xij = 1 (1)

∀i ∈ V
∑

j∈δ−(i)

xji = 1. (2)

The support of any mapping x∗ : A → R
+ satisfying (1)-(2) defines a VDCC (this

follows by total unimodularity of the constraint matrix of (1)-(2)). Assuming G

admits at least a VDCC, it is easy to see that x∗ defines a permutation on
{1, . . . , |V |} and therefore an assignment of maximum size on the undirected
(bipartite) graph subjacent to the bipartite digraph B = (U1, U2, A

′) where
U1 = U2 = V and A′ are the same arcs as in A such that their heads are in
U1 and their tails in U2. The best method for finding such an assignment is
reported in [10] (Thm. 16.5) as O(ν(B)

1
2 |A|), where ν(B) is the maximum size

of a matching in B. Since in our case ν(G) = |V |, we obtain a total (polynomial)

worst-case complexity of O(|V |
1
2 |E|) for solving the VDCC.

Since gifts must be exchanged anonymously, not all VDCCs are acceptable:
e.g. when V = {1, 2} and A = {(1, 2), (2, 1)}, there is a unique VDCC given by
(x12, x21) = (1, 1), so each person knows that the other person will make them
a gift. Informally, we define a graph G as a Secret Santa graph if it admits at
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least a VDCC ensuring gift anonymity; i.e., if knowing a (donor,receiver) pair
in the VDCC does not uniquely identify any other (donor,receiver) pair. Such a
VDCC is an “acceptable” solution (precise definitions are given in Defn. 2.1).

The rest of the paper is organised as follows: in Section 2 we formalize the
Secret Santa problem and discuss a few basic properties. In Section 3 we give
a polynomial-time algorithm for deciding whether a given graph has the Se-
cret Santa property or not. In Section 4 we discuss some computational results.
Section 5 concludes the paper.

2 Characterisation of anonymity and basic results

Given a connected digraph G = (V,A), let n = |V | and m = |A|. We aim to char-
acterize the set S ⊆ C of “acceptable” solutions (i.e. anonymity-preserving VD-
CCs) formally: Secret Santa graphs are those for which |S| > 0. The anonymity
requirement on VDCCs reflects the notion of ignorance in epistemic logic [4],
and is translated in graph-theoretical terms in the following definition.

Definition 2.1 A graph G is a Secret Santa graph (SESAN) if there exists a
VDCC S for G such that for each pair of distinct arcs a, b ∈ S ∩ A, there is
another VDCC T for G with a ∈ T and b 6∈ T . The set

V(S) = {S} ∪ {Tab ∈ C | a ∈ S ∩ Tab ∧ b ∈ S r Tab} (3)

is a verification family for G, and S is a witness. Elements of a verification
family are called acceptable solutions.

By the definition of SESAN, even if a participant knows his/her own gift as-
signment a, he/she does not gain any knowledge with respect to any other gift
assignment b. We define S as the union of all verification families for G.

Proposition 2.2 If the graph G = (V,A) contains a vertex v such that |δ−(v)| =
1 or |δ+(v)| = 1 then G is not SESAN.

Proof. Let δ−(v) = {(u)} (the proof for δ+(v) is the same). All VDCCs S will
necessarily contain (u, v), thereby contradicting Defn. 2.1.

The converse to Prop. 2.2 is of course false: the complete digraph over three
vertices is an example of a graph where |δ−(i)| = |δ+(i)| = 2 for each i ∈ {1, 2, 3},
but since there are only two possible VDCCs, G is not SESAN.

Lemma 2.3 A verification family for G = (V,A) contains at most τ(V ) =
|V |(|V | − 1) + 1 VDCCs.

Proof. This follows trivially from Eq. (3), as apart from S there is at most one
VDCC for each pair of distinct arcs in S (the fact that |S| = |V | follows trivially
from (1)-(2)).

We formally define the Secret Santa problem as follows.
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Definition 2.4 Secret Santa Problem (SESANP). Given a graph G =
(V,A), decide whether it is SESAN.

Notice that the SESANP asks for the existence of particular subgraphs (the
VDCCs) whose added condition (anonymity) requires checking against O(m2)
similar subgraphs. A naive approach of finding an arbitrary VDCC and then
checking over all pairs of arcs whether it is acceptable might yield the answer
NO without proving that the graph is not SESAN, for a different initial choice
might have yielded a different answer. In order to make this approach work,
one would need a complete enumeration of an exponentially large set (that of
all VDCCs), suggesting that SESANP might be NP-complete. It turns out,
however, that SESANP is in P (see Sect. 3).

2.1 Some examples

Consider the directed graph obtained from K4 (in Fig. 1, left) by replacing edge
edge with two antiparallel arcs. The second graph on from the left of Fig 1 is
a possible witness; a verification family is displayed on the right, therefore the
graph is SESAN.

Fig. 1. K4, a witness and its verification family.

Consider now the graph in Figure 2. This graph is SESAN: it is sufficient
to take two equal solutions for K4, as in Figure 1, to guarantee an acceptable
solution. However, not all VDCCs for this graph are acceptable solutions. Indeed,
on the right hand side of Figure 2, the arc (i, j) does not guarantee anonymity
for the arc (j, i), because there is no other VDCC in which (i, j) appears, and
(j, i) does not. In this case the set S is a proper subset of C.

Fig. 2. An instance with two copies of K4 and a non-anonymous VDCC.
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3 A polynomial time algorithm

Algorithm 1 is a polynomial time algorithm for deciding whether a given graph is
SESAN. The algorithm is based on the following observation: let T be a VDCC
that does not guarantee anonymity. This implies that there exists an arc a ∈ T

such that, for some arc b ∈ T , all the VDCCs of G containing a also contain b.
The key observation here is that all VDCCs of G containing a cannot satisfy the
anonymity requirement (because of the necessary presence of b). The algorithm
incrementally builds a set α of arcs that are not permitted and uses this set as
additional constraints when looking for possible VDCCs. If no VDCC can be
found satisfying the additional constraints given by α the graph is not SESAN.

Let P be the constraint satisfaction problem (1)-(2) such that x ≥ 0. For
α ⊆ A define Pα as P with the added constraints xij = 0 for each (i, j) ∈
α. For given (i, j), (k, l) ∈ A define Pα

ijkl as Pα with the added constraints
xij = 1 and xkl = 0. Recall C is the set of all VDCCs and S is the set of all
acceptable solutions. Let Cα (resp. Sα) be the set of all VDCCs (resp. acceptable
solutions) not containing the arcs in α and let Cα

ijkl (resp. Sα
ijkl) be the subset

of Cα (resp. Sα) containing (i, j) but not (k, l).

Lemma 3.1 For any α ⊆ A and distinct (i, j), (k, l) ∈ A, if Pα
ijkl is infeasible

then no acceptable solution in Sα contains the arc (i, j).

Proof. Since Pα
ijkl is infeasible, ∀T ∈ Cα ((i, j) ∈ T → (k, l) ∈ T ), hence ∀T ∈

Cα ((i, j) ∈ T → T 6∈ Sα). This implies that ∀S ∈ Sα ((i, j) 6∈ S).

Theorem 3.2 Alg. 1 correctly solves the SESANP.

Proof. By Lemma 3.1 and Line 13 in Alg. 1, no arc in α is contained in an
acceptable solution. First assume G is SESAN and suppose Alg. 1 fails. This
happens either when Pα is infeasible at Line 3 or when |α| > |A| − |V | at
Line 2. The former case implies that Cα = ∅ and hence Sα = ∅, which means
that all the acceptable solution must have an arc in α, a contradiction with
the construction of α in Lines 11-12. The latter case would imply an acceptable
solution with fewer than |V | arcs, again a contradiction as |T | = |V | for all
T ∈ C. Therefore the algorithm terminates with an acceptable solution. Assume
now that G is not SESAN. Then for each α ⊆ A (and hence also the sets α

generated during the algorithm run) there exist distinct (i, j), (k, l) ∈ A such
that Pα

ijkl is infeasible, i.e. Cα
ijkl = ∅. By Lines 11-12 and 3, the only possibility

for |α| not to increase monotonically at each outer iteration is for Pα to be
infeasible. Since |α| is bounded above by |A| − |V |, in either case the algorithm
terminates with IsSesan = False.

Note that P, Pα and Pα
ijkl are simply instances of the VDCC problem (i.e. the

problem of determining whether a given graph has a VDCC) on graphs that are
modifications of the original digraph G given by the forced absence of the arcs in
α and (k, l) and by the forced presence of the arc (i, j): when these instances are
infeasible, the maximum matching mentioned in Sect. 1 has size strictly smaller
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Algorithm 1 Polynomial algorithm for solving the SESANP.

Require: G = (V, A).
Ensure: Whether G is SESAN or not.
1: Let α = ∅, ExitLoop = False, IsSesan = False

2: while |α| ≤ |A| − |V | and ExitLoop = False do

3: if P α is feasible then

4: Let S be a solution to P α

5: Let ExitLoop = True

6: else

7: Let IsSesan = False

8: exit While loop
9: end if

10: for all (i, j), (k, l) ∈ S : (i, j) 6= (k, l) do

11: if P α
ijkl is infeasible then

12: Let α← α ∪ {(i, j)}
13: Let ExitLoop = False

14: exit For loop
15: end if

16: end for

17: if ExitLoop = True then

18: Let IsSesan = True

19: end if

20: end while

21: if IsSesan = True then

22: G is SESAN
23: else

24: G is not SESAN
25: end if

than |V |. Solving P, Pα, Pα
ijkl has the same worst-case polynomial complexity as

finding a VDCC in G, namely O(n
1
2 m).

Lemma 3.3 Alg. 1 has worst case O(n
5
2 m2) time complexity.

Proof. An n2 term arises because of the internal loop on the distinct arcs in S

(Line 10), as |S| = |V |. An m term arises because of the external loop (Line 2),
and because |α| increases at each outer iteration (Line 13) unless the algorithm

terminates. The remaining n
1
2 m term refers to the solution of each Pα

ijkl problem
in Line 11.

Corollary 3.4 SESANP is in P.

4 Computational results

We tested Alg. 1 on a class of randomly generated graph instances. As the main
target application of the SESANP is in communication protocols, communication
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between any two agents (gifts between participants) is assumed to be bidirec-
tional. Thus, we generated groups of 20 undirected random graphs with vertex
set V and edge generation probability p for various values of |V | and p, and then
replaced each edge with two antiparallel directed arcs. Alg. 1 was implemented
in AMPL [5] and the ILOG CPLEX 10.1 solver [6] was deployed on the VDCC
sub-problems Pα, Pα

ijkl. This yields a practical algorithm that is nonpolynomial
in the worst case but efficient on the average case, as we solved each sub-problem
using the simplex method. Using CPLEX’s barrier method yields a polynomial
algorithm but is practically less efficient.

The plot in Fig. 3 refers to |V | ∈ {10i | 1 ≤ i ≤ 5} and p ∈ {0.05i | 1 ≤ i ≤ 8}.
The plot in Fig. 4 refers to |V | ∈ {10+5i | 0 ≤ i ≤ 6} and p ∈ {0.04+0.02i | 0 ≤
i ≤ 10}. It took around 4h of user CPU time to solve the 2340 instances on an
Intel Core Duo 1.2GHz and 1.5GB RAM running Linux. The plots suggest that
the SESAN property is correlated to graph density and graph size.
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Fig. 3. Proportion of SESAN random graphs with p ranging in [0.05, 0.4].

5 Conclusion

We formalized the Secret Santa problem as a decision problem related to finding
subgraphs of a given graph with a particular structure (vertex-disjoint circuit
covers) subject to an anonymity condition, and proved that it is in P. We pro-
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Fig. 4. Proportion of SESAN random graphs with p ranging in [0.04, 0.24].

vided an O(|V |
5
2 |A|2) polynomial algorithm and a limited computational study

thereof.
Future work will focus on a generalized decision problem: given a graph,

a particular graph structure and a particular anonymity property, are there
families of subgraphs with the given structure that are anonymous according
to the given property? A practical interest is attached, for example, to path-
structured subgraphs in the study of networks providing anonymity of the source
and/or intermediate vertices.
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