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Abstract

Solving Mixed-Integer Nonlinear problems (MINLPS) involving bilinear terms is a very hard task,
both in terms of complexity measures and practically. Such problems occur in a variety of inter-
esting real-life applications; many graph-theoretical problem can also be formulated as continuous
nonconvex models. Obtaining tight lower bounds to these problems is useful for two reasons: (a)
optimal solution via Branch-and-Bound algorithms; (b) estimation of heuristic solution quality. We
derive tight relaxations of MINLPs which involve bilinear terms and linear equality constraints by
automatically reformulating the problems to an equivalent form with less bilinear terms.

1 Introduction

In this paper we show how to derive tight convex relaxations of MINLPs involving bilinear terms and
linear equation constraints in the following formulation:
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m' xn,beR™ bV e Rm’, g:R* — R™" are nonlinear inequalities containing any number of bilinear
terms in the z variables, and I is a subset of {1,...,n}. Thus, problem (1) is the most general form of
equality-constrained mixed-integer nonlinear problem (MINLP) involving bilinear terms.

Such problems occur frequently in many application fields, ranging from continuous or mixed-integer
problems arising in engineering fields [ATS99, TS02b, ABH'02, GK97] to graph theory [BBPP98, ABP01,
Ans03]. In Section 7 we show the application of our techniques to various classes of problems, namely to:

e the Pooling and Blending problem (PBP);
e the Quadratic Knapsack problem (QKP);
e the Quadratic Assignment problem (QAP);

e the Multi-Processor Scheduling problem with Communication Delays (MSPCD).

The reformulation is achieved by replacing some of the bilinear terms with appropriately generated linear
constraints. The following example shows the basic idea on which our reformulation is based.



1 INTRODUCTION 2

1.1 Example

Consider the problem min{zy | z = 1,0 < z < 2,—2 < y < 2}, which has a bilinear term zy in the
objective function and a linear equality constraint © = 1. It is clear that the reformulation min{w | w =
zy, =1,0<2<2,-2 <y <2,—4 <w <4}, obtained by introducing a variable w and the constraint
w = zy, is equivalent to the original problem. The feasible region is F N{(z,y,w) |0 <z <2,-2<z <
2,—4 < w < 4}, where F = {(z,y,w) | w = zy,x = 1}. It is easy to see from Fig. 1 that the feasible
region, although expressed in terms of a bilinear term and a linear equality constraint, is in fact linear.
This fact can be made explicit in the definition of the set F' as follows: multiply the linear constraint
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Figure 1: The feasible region of Example 1.1 defined by w = 2y, = 1.

x = 1 by the variable y, to obtain the new constraint xy = y; since xy = w, this becomes a linear
equation constraint w —y = 0. The corresponding plane can be used to replace the constraint w = xy in
the definition of F, so that F = {(z,y,w) | w —y = 0,z = 1}. This can be verified by inspection of Fig.
2.
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Figure 2: The feasible region of Example 1.1 can be expressed linearly by w —y =0,z = 1.

Although the example above is too trivial to motivate the ideas in this paper, it nonetheless gives an
insight into what we are trying to achieve. We shall see in what follows how the geometrical property
which allows the replacement of bilinear terms with linear equality constraints can be applied in full
generality.
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The method we propose relies on a procedure which is similar to the Reformulation-Linearization
Technique (RLT) [She02] applied to continuous bilinear problems [SA92]. In fact, the linear constraints
that replace the bilinear terms are RLT-type constraints. The RLT linearizes the bilinear terms in the
problem and generates a number of linear equations and inequalities by considering multiplications of
bound factors and constraint factors. In a sequence of papers published from the 1980s onwards (see
for example [SA86, SA92, ST97, SA99, She98, SWO1]), it was shown that a full application of the RLT
generates the convex envelope of any nonconvex problem (be it continuous or integer). This result finds
its practical limitation in the extremely large number of added constraints necessary to achieve not only
the convex envelope, but even a reasonably tight convex relaxation. A number of heuristic techniques
was proposed in the papers cited above to help filter out RLT constraints which are not valid. We address
this drawback by generating only those linear constraints which are guaranteed to replace a bilinear term
in the problem. As it turns out, the set of replaced bilinear terms is usually not unique. We also explain
in Section 6 how to choose the most convenient such set in terms of the volume gap between the original
problem and its convex relaxation.

2 Linearizing the bilinear terms

As in Example 1.1, the first step is to reformulate the original problem (1) so that each bilinear terms
z;z; is substituted by a new variable w] and a corresponding defining constraint w] = z;x; is added to
the problem formulation. By commutativity, we shall consider wg and w; the same added variable, and
write wf with ¢ < j. Consider the set 8 of index pairs {7, j} such that the bilinear term z;x; appears in
the original problem (1). This substitution process results in the following reformulation:

min plw + a'z )
Ar = b
Az <V
g'(@w) < 0 | (2)
V{i,jt€p w] = ;v
2l < x <2V
wl< w <WwY
Viel (x; € Z), )

where w € Rl is the vector of added variables wf , p'w is the linear form obtained by the bilinear form
z"Qz where each bilinear term z;z; has been substituted by the corresponding variable wf , ¢' has been
obtained from g via the same substitution, and w”, wV € RI8! are the variable bounds on w, obtained by
simple interval arithmetic from the bounds on the z variables. Clearly, the projection of reformulation
(2) to the original problem space results in the original problem itself (this reformulation is therefore
exact).

3 Reduction constraints

In this section we shall give a theoretical foundation to the concept of replacing a bilinear term with
a linear constraint called a reduction constraint. Reduction constraints have been discussed in [Lib04a,
LP04, Lib04b, Lib03]; in particular, it was shown in [Lib03] that reduction constraints are a subset of
RLT constraints. Theorem 3.1 shows how some of the defining constraints w] = z;z; can be implied by
a set of linear equations (reduction constraints) relating the w and the z variables. Thus, they can be
replaced by the reduction constraints without changing the feasible region.

Let 3’ be the set of all possible index pairs {7, j} leading to distinct bilinear terms x;x;. Consider the
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following augmented reformulation:

min p'w + a'z )
Ax = b
Az <V
!
T R )
V{i,j}€p w] = iz
k< o <2V
wr < w < wY
Viel (z; € Z), )

obtained from reformulation (2) by replacing 8 with 8’. This reformulation, although it might have many
more bilinear terms than the original problem, is clearly still exact.

We now multiply the linear equation constraints Az = b by each of the variables z1, ..., z,, to obtain
the system of equations Vi < n ((Az)z; = bz;). If we define w; = (w;},. .. ,wg‘)T, we can substitute each
z;z; by the corresponding w] to obtain the linear system of equations

Vi<n (Aw; —bz; =0). (4)

We call system (4) above a reduction constraint system (RCS) and each equation in the system a reduction
constraint (RC). Note that RCSs have mn equations and in(n + 1) unknowns. By construction, an RCS
is redundant with respect to the feasible region of problem (3). In other words, adding an RCS to the
feasible region does not change it. It does, however, make some of the w defining constraints redundant
as well, thus allowing their deletion.

Observe that b = Az, so the RCS (4) is equivalent to Vi < n (Aw; — (Az)z;) = 0, i.e. to Vi <
n (A(w — z;z) = 0). For each {i,j} € #', let 2} = w! — z;z;, and let z; = (2}, .. .,zz-")T. System (4) is
then equivalent to
Vi<n (dz; =0). (5)
We call system (5) the companion system for the RCS (4). Each RCS is equivalent to the corresponding
companion system. Let B, N be sets of index pairs {i,j} such that {2} | {i,j} € B} is a set of basic
variables of the companion system and {z/ | {i,5} € N} is the corresponding set of nonbasic variables.
Notice B, N form a partition of §'.

We can express the feasible region of problem (3) as F'N R, where F' is given by the linear equation
constraints Az = b and the w defining constraints w] = z;z; for all index pairs {i,j} in 4, and R is
given by the other constraints.

3.1 Theorem ([Lib03])
Let

F = {(z,w)| Az =b, ¥{i,j} € B (w] = z;x;)},
F' = {(z,w)| Az =10, Vi <n (Aw; — bz; = 0), V{z’,j}EN(w{ = z;25)}.
Then F = F'.

Theorem 3.1 shows that it suffices to impose the w defining constraints wf = z;x; for a set of pairs

{i,j} corresponding to nonbasic variables zzj of the companion system. The other defining constraints
are implied by the RCS. In other words, the RCS replaces the bilinear terms z;z; corresponding to basic
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variables. The following reformulation, called the reduction constraint reformulation, is therefore exact:

min plw + a'z )
z,w
Ax = b
Vi<n Aw;—br; = 0
Az < b
g (z,w) < 0 (6)
V{i,j}eN w] = wmizj
zl < z < zY
wt < w < wY
Viel (z; € Z) )

Notice that for most linear systems of equations, the partition of the variables in basic and nonbasic
is not unique. Thus, there are many possible exact reformulations (6): one for each set N of nonbasic
variables of the companion system. We shall explain in Section 6 how to choose the nonbasic set so that
the convexity volume gap is minimized.

4 Reduction constraints in sparse bilinear problems

Recall that § is the set of bilinear terms in the original problem expressed as in (2). Generation of RCs is
certainly useful if it reduces the number of bilinear terms in the problem, i.e. if the following requirement

NI <18 (7)

holds: any convex relaxation of the problem in form (6) is bound to be tighter than a convex relaxation
of the problem in the original form (1), since it relaxes fewer nonconvex terms.

By Theorem 3.1, the number of bilinear terms that can be replaced by RCs is equal to the rank p
of the RCS. Computational experiments seem to indicate that p is always strictly less than the number
of variables in(n + 1) in the RCS. This would imply that N is never the empty set. In particular, if
the original problem has few bilinear terms, requirement (7) might not be satisfied. In practice, this

occurrence is not rare. In the remainder of this section, we show some methods to address this problem.

Let J be a set of indices such that for all j € J the variable z; appears with nonzero coefficient in
at least one equation of Az = b. Let I be a set of indices such that if 4 € I, then for all j € J we have
{i,j} € B. We can construct a restricted reduction constraint system (RRCS) with respect to I,J by
multiplying Az = b by each variable z; with i € I:

Viel (Au";z —bx; = 0),

where @w; is the vector with components wf for each j € J. Theorem 3.1 can easily be adapted to this
new setting by replacing 8’ with §; in particular, this yields |N| < |3|. Thus, if a RRCS can be generated
for a given problem, it is guaranteed to reduce the number of bilinear terms in the original problem,
since requirement (7) is automatically satisfied. Notice that the index sets I, .J have been chosen so that,
when multiplying system Ax = b by problem variables x; with ¢ € I, the bilinear terms involved in this
operation are exactly those corresponding to index pairs (i,5) € 5.

4.1 Example (Example 1.1 revisited)

In Example 1.1, the system Az = b only consists of the constraint x = 1. Setting J = {1} and I = {2}
implies multiplying x = 1 by y, which yields the RRCS w — y = 0. This linear constraint replaces the
bilinear defining constraint w = zy.

The following example shows a case where it is impossible to generate a RRCS as defined above. We
tackle this case by restricting the set of linear equation constraints considered for generation of the RRCS.
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In other words, reduction constraints systems can be restricted in the subset of multiplier variables as
well as in the subset of linear constraints considered for RC generation.

4.2 Example
Consider the following problem.
min m% + 2129 — T3T4
wl,...,w420
T1+x2+2x3t+Ts = 1
T, +2x9 = 1

The companion system for the RCS of this problem, in row echelon form, is

11 1 1 0 0 0 0 00
01 -1 -1 0 0 0 0 00
o0 1 1 1 1 1 0 00
00 0 -1 -1 0 -1 1 10/ _,
00 0 0 1 -1 -1 0 o00]|*™%
00 0 0 0 1 0 -1 -1 0
00 0 0 0 0 -1 0 11
00 0 0 0 0 0 0 00
where z = (z%,zf,zf,zf,zg,zg,zg,zg,zgl,zi)T. B.V inspection, |N| = |{Z§,Z§,Zi}| = 3; since |ﬁ| =

{{1,1},{1,2},{3,4}}| = 3, requirement (7) does not hold. If we define J = {1,2,3,4} (indices of
variables appearing with nonzero coefficients in the linear constraints), it is clear than any nontrivial
choice of I will produce a RRCS w.r.t. I,J involving at least a bilinear term x;x; with {i,j} ¢  (in
other words, multiplying the linear equations by any non-empty subset of problem variables will generate
new bilinear terms which are not in the original problem formulation); so RRCSs, as defined above,
cannot be applied.

Notice, however, that if we only consider equation x1 + 2x2 = 1 and we multiply it by x; and x2, we
obtain the following RRCS:

wi + 2w} — 1z

wi 4+ 2ws —xy = 0,

12 0\,
(0 1 2>z_m

where z = (2}, 22,22)". If we now add the defining constraint w? = 2 to the problem formulation, we
can use the above RRCS w.r.t. I = {1,2}, J = {1,2} to replace both bilinear terms %, z,x> in the
objective function. The following reformulation is therefore exact:

with corresponding companion system

min wi +w? —wi )
z,w>0
T1+Tot+azst+xs = 1
T1+2x2 = 1
wh+2w? -z = 0 (
wi 42wl —zy = 0
wh = T3m4
wi = zi.

/

This reformulation contains only two bilinear terms, whereas the original problem contained three bilinear
terms. Observe that in order to arrive at this reduction, we first increased the number of bilinear terms
by introducing the term z2, then we looked for a subset of the linear constraints (corresponding to the
set J) and a subset of the variables (corresponding to the set I) such that the resulting RRCS could be
used to replace more bilinear terms than we needed to add.
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The example above shows that by carefully adjusting I, J and the subset of linear equality constraints
considered for RC generation, it is possible to obtain RRCSs that can reduce the number of bilinear
terms in the problem even when ordinary RCSs would not work. We therefore generalize the concept
of RRCS to depend on I, J and a subset K of {1,...,m} of linear equality constraint indices. J is the
subset of variable indices occurring with nonzero coefficients in the constraints indexed by K, and I is
the maximal subset of variable indices such that the cardinality of v = {{i,j} | i € I,j € J} is strictly
less than |3|. Here -y corresponds to the set of bilinear terms required to define the RRCS. Let Axz = bg
be the set of linear equality constraints indexed by K. A RRCS w.r.t. I, J, K is a reduction constraint
system obtained by multiplying the subsystem Axx = bx by all problem variables in z; with ¢ € I. Since
the number of bilinear terms reduced depends on the rank of the companion system of the RRCS, we
aim to maximize |K| subject to I (and hence ) being non-empty.

Algorithmically, requirement (7) is difficult to verify, since it involves calculating a set of basic variables
for each candidate RRCS. For this reason, we consider a relaxation of (7) that requires that a candidate
RRCS should have more constraints than the number of new bilinear terms needed to define it. This
relaxation rests on the experimental observation that on average, each new RC can be used to replace
a bilinear term; so far, the results obtained by following this observation have been very good. Whilst
requirement (7) is exact, however, we are not claiming that its relaxation is. Two fundamentally different
algorithms for identifying RRCSs w.r.t. “adjusted” I, J, K are presented in [Lib03, LP04]. Both of them
allow an increase in the number of bilinear terms if the subsequent RRCS contains strictly more reduction
constraints than the number of new bilinear terms introduced in the problem.

5 Convex relaxation

Replacement of bilinear terms by RCs, as described in Sections 3 and 4, reformulates the original problem
(1) to:

min plw + a'z )
Ax = b
Az <V
g(@w) < 0 @)
(z,w) € S
z < z < zV
wr < w < wY
Viel (z; € Z), )

where S is the set given by:

e an appropriate RRCS

o the defining constraints wf = x;x; where {zf} is a set of nonbasic variables of the corresponding
restricted companion system.

We obtain a convex relaxation for problem (8) by applying the convexification methods described in
[Smi96, SP99]. This first involves linearizing each nonconvex term by replacing it with an added variable
wy,, and adding the corresponding defining constraint “w; = nonconvex term” to the formulation (much in
the same way as we did for bilinear terms in earlier sections). This process results in an exact reformulation
of the original problem, which consists of a linear objective function, a set of linear constraints, and a set
of simple defining constraints for each linearized variable wy,. At this stage the NLP is in standard form.
An NLP in standard form is much more amenable to algorithmic symbolic manipulation than the original
problem, because the data structures required to store a list of defining constraints are simpler than those
required to store a general nonlinear equation. A convex relaxation of an NLP in standard form can be
obtained by replacing each nonconvex defining constraint by a convex underestimating inequality and a
concave overestimating inequality.
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Tight convex underestimators and concave overestimators for many simple nonconvex terms exist in
the literature [SP99, ADFN98, TS02c, Flo00]. In particular, extensive work has been carried out on
bilinear terms [McC76, AKF83, SA92], linear fractional terms [ZG99, TS01, TS02a], piecewise convex
and concave terms [LP03], polynomials [MF95, RS03, She98, GJS02], signomials [BLWO03], and general
nonconvex terms [AF96, Adjog].

In particular, we are concerned with the convex relaxation of defining constraints for bilinear terms,
thus we deal with the cases w] = z;z;, w! = #? for suitable i,j < n. A linear relaxation is available for
the former defining constraint, due to McCormick [McC76] and proven to be the envelope by Al-Khayyal
and Falk [AKF83]:

wf > :ciij + .'E]I-'Z‘,' — mfoL

w] > alzj+ oz — ozl 9)
w; < afej+ale - il

w! < oVz;+ wjl-’mi — wﬁjxf,

where zF, 2¥ are the bounds on the variable z;. As for quadratic defining constraints of the form w! = z?,

the convex/concave envelope is clearly provided by the function z? itself as the underestimator, and a
chord as the overestimator:

2
(z£)? + (z?)s—(zj)Q (z; — k). } (10)

i Ty —T;

IN IV

Notice that reformulation (8) is exact as long as the defining constraints wf = x;x; corresponding
to the nonbasics N of the companion system are present in the formulation. When we replace these
constraints by their convex relaxations, the reduction constraints fail to algebraically imply the bilinear
terms corresponding to the basic variables B in the companion system. Therefore, it is possible that the
convex relaxation of one of the bilinear terms B might be a valid cut to the convex relaxation of the
problem. This shortcoming can be dispensed with by also including the convex relaxations of the bilinear
terms B. In our computational experience, however, we have found no instance where this was necessary.
Moreover, we were unable to construct a simple example showing this occurrence.

6 Reducing the convexity volume

Recall that in Section 4 we introduced new bilinear terms in the problem in order to be able to replace
more bilinear terms with RCs than we introduced. This does in fact achieve the goal of reducing the overall
number of bilinear terms in the problem. The ultimate goal of our reformulation methods, however, is to
generate a tight convex relaxation of the problem. In this respect, the introduction of new bilinear terms
may lead to trouble. Given a nonconvex term and its convex relaxation, the convexity gap between the
nonconvex term and the relaxation is a measure of how tight the relaxation is. Suppose, as in Example
4.2, that we are introducing the term z2 and replacing terms z2, z1 x5 with suitable RCs. It might happen
that the convexity gap relative to z2 is “larger” than the combined convexity gaps deriving from z? and
21Z2. Thus, even though we have in fact reduced the number of bilinear terms in the problem, overall
we made things worse by generating a looser convex relaxation than the one we started with. To avoid
this situation, we must be careful in the choice of the new bilinear terms introduced in the problem.

One further motivation for an in-depth analysis of the convexity gap between a nonconvex term and
its relaxation is that, as has been observed at the end of Section 3, the set N of nonbasic variables of
a linear equation system is usually not unique. Since by Theorem 3.1 N determines the bilinear terms
that should remain in the problem after the reformulation, it makes sense to choose N so that the total
convexity gap is minimized. This further tightens the convex relaxation.

We start by introducing a more precise definition of the convexity gap. Consider a function f : X C
R* = R. Let f(z) be a convex lower bounding function for f and f(x) be a concave upper bounding
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function for f. Then the set S = {(z,w) | underlinef(z) < w < f(z)} is a convex relaxation of the set
S = {(z,w) | w = f(x)}. We define the convezity gap V(S) between S and S to be the volume of the set
S; namely,

ves)= [ (7@~ 1)

We denote the convexity volume for a bilinear term z;z; with V;/.

6.1 Convexity volume for a quadratic term z?

As has been mentioned in Section 5, the convex relaxation of the set & = {(z;,w}) | wi = z?,zF < z; <

zY} (where i < n) consists of the area between the function z? and the chord, as shown in Fig. 3. The

i
w;

Ti

~
el e

Figure 3: Convex relaxation of the defining constraint wi = z?.

convexity volume of £ is given by:

' ol UN\2 _ (L2 1
R I R e R ) L o

6.2 Convexity gap for a bilinear term z;z;

It was shown in [AKF83] that the set defined by the linear inequalities in system (9) is the convex
envelope of the set ¢ = {(z;,z;,w!) | w! = zz;,zk < z; < e al < x; < 2¥} (where i < j < n).
System (9) defines a tetrahedron in R® whose vertices are (z¥,zY), («f,x}), (zf,2Y), (zf,z]) (see
Fig. 4). The volume 7(a,b,c,d) of a tetrahedron with vertices (a, ¢),(a,d),(b,c),(b,d) can be calculated

Figure 4: Tetrahedron ABCD: convex (linear) envelope of the defining constraint w! = z;z;.

through elementary geometry, and it turns out to be

(b —a)(d— )/ (02 + a* — (c(b — a))2aZ — 2bcZa + a2c2b2 — 2a3¢2b — 2ba + b2c2 + a2¢c2 + a2b% — 2a3b + a%c2 + a2)(d — ¢)2
6vVa>+c2+1 ’
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In order to obtain this formula, we computed the area h = 1/||[CDI[?|[BD]|> — (CD - BD)? of the
triangle BCD and the distance | = (ad + be — ac — bd)/v/b?> + d? + 1 of A from the plane containing
BCD. The formula for h was found by choosing BD as the base of the triangle BCD and computing
the length of the segment from C' perpendicular to BD. The formula for [ was derived from the usual
formula of the distance from a point z* = (z7,z5,2%) to a plane ayz1 + a222 + aszrs + a4, given
by |onz} + oz} + aszl + as|/\/oF + a% + o2. The volume of the tetrahedron is then given by Lhl.
The formula for 7(a, b, c,d) was obtained by running the MAPLE V commands below. Tested with the
calculation of the volume of the tetrahedron defined by a = —1,b=1,¢ = —1,d = 1 (MAPLE command:
“evalf(vol(-1,1,-1,1));”), the script returned 2.666, which is (correctly) a third of the volume of the
cube with side length 2.

f := (p,q) -> (pl[1l-q[11)~2 + (p[2]1-q[2]1)"2 + (p[3] - q[31)"2; // distance
vtx := (x,y) -> vector([x,y,x*yl); // vector on bilinear surface
A = vtx(xL,yL); // vertices
B = vtx(xL,y0);

C = vtx(xU,yL);

DD := vtx(xU,yU); // ’D’ is already a protected name
with(linalg):

h := factor (sqrt (£ (DD,C)*£f(B,DD) - (dotprod (DD-C,B-DD))"2)); // 2*area
1 = (yUxxL+xUsyL-xL*yL-xU*yU) / (sqrt (yU~2+xU~2+1)) ; // height
vol := unapply(abs(factor(1#*h)/6),xL,xU,yL,yU); // volume

The convexity volume of ¢ is thus given by V/ = r(a¥, 2L, 2V, 2%).

6.3 Tightness test for the reduction constraint reformulation

Equipped with closed-form expressions for the convexity volume, we can now perform a test to verify
that the application of reduction constraints to a particular problem has indeed been successful. Let V
be the set of index pairs {4, j} present in the reduction constraint reformulation (8). If

VN = Z Vik< Z Vika (11)

{i,k}eN {i,k}€p

then the total convexity volume of the reformulation is smaller than that of the original problem. In
Eq. (11), B is the set of index pairs (i, k) corresponding to bilinear terms x;xy present in the original
problem; N is the set indices (i, k) of nonbasic variables z¥ of the restricted companion system. The set
4 of bilinear terms necessary to define the RRCS (i.e. all (i, §) such that w’ appears in the RRCS) might
be larger than 3, as described in Sect. 4. Thus N is not necessarily a subset of 3.

6.4 Choosing a convenient basis for the companion system

There is often more than one way to choose a set of nonbasic variables of a linear system of equations.
Thus, when choosing the set of nonbasic variables NV of the companion system of an RCS, we can choose
it so that the total convexity volume Vj is minimized. In practice, it is easier to find a set B of basic
variables of the companion system such that Vg = ) {i,j}eB Vi] is maximized. This problem has a
matroidal structure, since in fact it reduces to finding sets of linearly independent weighted columns of
B. Thus, its solution is achieved by the greedy algorithm in Fig. 5, which can also be applied to RRCSs.
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Notation: Let v be the set of index pairs {7, j} such that wf is a variable in
the RRCS. For all {4, j} € 7 let ¢(i, j) be the column corresponding to variable
z] of the companion system, and let p be its rank.

1. Order v so that {i,j} < {k,1} & V7 < V} and initialize B = 0.
2. Let {i,j} = max(v, <) (this picks the max. convexity volume gap pair).

3. If ¢(4, ) is linearly independent from the vectors in {c(k,!) | {k,!} € B}
then update B < B U {4, j}.

4. Update v + Y\{i,j}.
5. If |B| = p, terminate.
6. Go back to step 2.

Figure 5: Greedy algorithm to construct a basis B of the companion system which maximizes the con-
vexity volume.

7 Applications of reduction constraints

In this section we show four different applications of the reduction constraints methods presented in
this paper. The classes of problems we worked on range from continuous nonconvex to combinatorial
optimization.

7.1 Pooling and Blending problems

Pooling and Blending problems (PBPs) involve the determination of optimal amounts of different raw
materials that need to be mixed to produce required amounts of end-products with desired properties.
Such problems occur frequently in the petrochemical industry and are well known to exhibit multiple
local minima. There is a vast literature on these problems [FHJ92, VF93, BTEG94, VF96, ATS99, TS99,
ABHT02, TS02b]. Full computational results relating to the application of RCs to this problem are
reported in [LP04]. The formulation we employed in the tests is that of [ATS99] (also known as the
p-formulation [TS02b]):

p T T 14
minZZcijfij — kzldk Zl.ill'jk (12)
—_— J:

Fae i i
nj r
> fii =Y wi =0, Vi<p (13)
i=1 k=1
r n;
Giw Y Tik — O Nijwlfij =0, Vi<pVw<l (14)
k=1 i=1
p
Zﬂfjk < Sk, Vk<r (15)
7j=1
p p
qu'wwjk — Zrw Z-’Ejk <0, Vi <rVw <l (16)
j=1 7j=1

fE<f<tV " <q< gV, 2" <z <aY, (17)
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where f;; is the flow of input stream ¢ into pool j, z;; is the total flow from pool j to product k£ and
gjw is the w-th quality of pool j; p is the number of pools, r the number of products, ! the number of
qualities, n; the number of streams; c;j, dk, Sk, Zrw, Aijw are given parameters.

Solving several PBP instances to optimality with a spatial Branch-and-Bound (sBB) algorithm showed
an improvement of the reduction constraint reformulation over the original formulation ranging up to five
orders of magnitude. Various instances were solved at the first sBB iteration, meaning that the objective
function value of the convex relaxation was the same as that of the original problem. Such gains were
simply due to the reformulation, as no other parameter was changed in the sBB run. This exceptional
performance was explained by noting that the constraint sets (14) and (16) (the bilinear constraints in
the general blending problem formulation above) define more bilinear products than is really necessary.
If we were to re-write the first term on the left hand side of (14) as > ;_; ¢jw®;k, we would not need
to create all the variables t;,,. In other words, reduction constraints automatically “recognized” that
distributing products over sums is advantageous. It is important to note that this is typically an easy
“cognitive task” for a human mind, but very hard to formalize for a computer.

7.2 The Quadratic Knapsack problem

This problem occurs frequently in resource allocation and multicommodity network flow problems [FV95].
Its formulation is as follows:
min c¢'z+2'Qx
x
a'z = v (18)
2l <z <2V

where z, 2", 2V, a € R?, @ is an n x n symmetric matrix, and v € R. Reduction constraints can be

generated by multiplying the knapsack constraint a2 = v by all problem variables to obtain

Vk<n aw?=~yxy. (19)
The companion system
a, ax az ... a, O
ag 0 ... 0 a2 a3 ... ap 0o ...
ap 0 0 as 0 ... 0 as ... Qap 0 =0
aq as as Gn
is already in echelon form. Supposing a; # 0 for all i < n, the set z1,22,..., 2] is a set of basic variables

of the companion system. In fact, by applying any permutation to the original variable vector z it is easy
to see that each set Z; = {zF | k < n} is a basic set for each i < n. By applying the methods in Section
6 we can therefore choose the most convenient Z; in terms of convexity volume gap. Since the bilinear
terms x;x, corresponding to the basic variables z¥ € Z; get replaced by the reduction constraints, we
select Z; such that the total convexity volume Vz, = Y, V}¥ is maximum. V7, turns out to be a function
of zF,2¥, i = 1,...,n as explained in Sections 6.1, 6.2, and can be readily computed. Computational
work on this class of problems is still ongoing.
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7.3 The Quadratic Assignment problem

The Quadratic Assignment Problem (QAP) can be formulated as the following integer bilinear problem:

n \

n
mzin > aijbuzikzy + Y cijTij
1,5

i’j7k7l
n
Vi<n Ti; = 1
- El “ b (20)
V] <n Z Ty = 1
i=1
Vi,j<n zi; € {0,1}, )

where z;; is an n xn array of binary variables and A = (a;;), B = (bi;), C = (c;i;) are given n X n matrices.
This is known as the Koopmans-Beckmann formulation [KB57]. Since the problem has bilinear terms
and linear equality constraints, it is amenable to the application of reduction constraints.

We now generate reduction constraints for (20) by multiplying the assignment constraints by each
problem variable x;, to obtain the following RCS:

n

Vi, k,l1 <n Zwijkl = Ty
i=1
n

Vi, k,l<n Zwijkl = T,
=1

where w;jr; is the linearizing variable that replaces the bilinear term z;;xr;. We show next that these
reduction constraints imply w;jr = TijTh-

7.1 Lemma

Let x;; € {0,1} for all 4, j < n and wij € [0,1]. If the assignment constraints Vi <n Y 7, z;j = 1 (AC)
and the derived reduction constraints Vi, k,l <n 2?21 Wikt = g (RC) hold, provided w;jp = wiy;j for
all i,7,k,1 <n, we have Wijkl = Ti5Tki, and in particular, Wijkl € {0, 1}

Proof. Constraints (RC) and the fact that wijr = wg; imply that Vi, j, k, | < n(wijm < 2rAwijn < ;)
(LT), whence for any subset J of {1,...,n} we have ZfEJ Wik < ZfEJ z;r. Pick j <n. By considering
J={1,...,5=1,7+1,...n}, for each k,I < n we obtain:

Z Tif 2 Z Wifkl = (add and subtract w;jr)

F#3 F#i
Zill','f > Z Wifkl — Wijkl = (substitute T by (RC))
F#3 f<n
Wijkt > Tk — Z Tif = (add and subtract z;;)
F#i
Wijki > Tij + Tg — Z Tif = (substitute 1 by (AC))

f<n
Wijp > Tij + T — 1 (GT).
Thus, if z;; = 1 and xp; = 1, inequality (GT) implies w;ji > 1, i.e. wyjm = 1. If either x;; or xy is zero,

inequalities (LT) imply w;jr < 0, i.e. wijm = 0, as claimed. O

The result above was cited in [SB94] as appearing originally in [SL96], but the proof given therein is
different.
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Thus, reduction constraints provide an exact MILP reformulation of problem (20). Since the converse
does not hold, reduction constraints actually provide a reformulation whose associated continuous relax-
ation is tighter than that derived from the “usual” linearization constraints (LT) and (GT). Notice also
that enforcing the symmetry constraints wijr = wri; is equivalent to eliminate some of the w variables,
so the number of linearization variables is 1n?(n? + 1) rather than n.

We can further tighten the formulation by noting that multiplying the equation z;; = 1 by the problem
variable z;; generates the reduction constraints w;j;; = x;; for each 4,5 < n. Although fixing all z;; =1
is not a valid problem constraint, the derived reduction constraints hold even when z;; = 0, so we can
include them in the formulation. What these reduction constraints express is that since z;; is a binary
0-1 variable, #3; = ;.

As was the case for the PBP, this reformulation has already been proposed and studied in [FY83], and
employed extensively in many other works about the QAP. Again, reduction constraints automatically
generated a result which was already known, but which cost people many hours of toil to think up, verify
and publish.

7.4 Multi-processor Scheduling with Communication Delays

The Multi-processor Scheduling problem with Communication Delays (MSPCD) arises in parallel com-
puting. It consists of scheduling dependent tasks with communication delays (due to data transfer) onto
homogeneous, arbitrary connected multiprocessor architecture such that the total completion time is min-
imum. The model [DMMO3] is further complicated by the fact that communication delays between tasks
also depend on what processors the tasks are being executed on; namely, we assume that the connections
among the processors do not form a complete graph, so transferring data from a processor to an adjacent
processor requires less time than between non-adjacent processors.

The MSPCD then can be formulated as follows:

min I;lsa,;({tj +L;} (21)
subject to:
P n
D2 =1 Vi<n (22)
k=1 s=1
n
Yy <1 Vk<p (23)
j=1
n n
ZyijZyj-k_l VE<p Vse{2,...,n} (24)
J=1 Jj=1
V4 n P n
ti > ti+Lit Y D D> > yhyh Vi€ Pred(j),Vj<n (25)

t; > ti+Li—« l2— (yfk-l- Z y;k)] Vk<pVs<n-—1,Vi,j<n (26)
r=s+1

yir €{0,1}, Vj,s<n Vk<p (27)

t;>T"—L; Vj<n, (28)

where p is the number of processors, n is the number of tasks, Pred(j) is the set of tasks that have to
be executed before task j, L; is the length of task j, vfjl is the communication delay between tasks 4
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and j when they are executed on processors k and [, « is a sufficiently large penalty coefficient, y7, if
task j is the s-th process to be executed on processor k and t; is the starting time of process j. T%
is a lower bound on the total completion time given by either load balancing considerations or a CPM
method applied to the task precedence graph where the arcs are weighted by the running times L;.

This MINLP formulation has O(n?p) binary variables and O(n*p?) bilinear terms in constraints (25).
A straightforward exact linearization of the bilinear terms, obtained by replacing each bilinear term y, y7;
with a continuous variable w{f,, € [0,1] and adding the following constraints to the formulation (for all
i,J,8,7 <n,k,l < p):

Wiy <Yk N wiy <y A wily >yit+yn— 1, (29)

yields an exact MILP reformulation with O(n?p) binary variables and O(n*p?) continuous variables.
Reduction constraints can be generated by multiplying the assignment constraints (22) by the y variables,
obtaining

4 n

SN wia =vh Vi <nl<p.

k=1 s=1
As in the case of the QAP (Section 7.3), the linearizing constraints (29) can be inferred from assignment
constraints (22) and reduction constraints (7.4) in a similar manner as Lemma 7.1, and can therefore
be removed from the formulation, provided we add the symmetry constraints wij,, = w(j, (or we use
the symmetry equations to eliminate some of the variables). Preliminary computational results using
CPLEX 8.1 are very promising (up to 92% CPU time reduction when using the reduction constraints
reformulation rather than the usual linearization constraints (29)). Note that in this case we are not
finding improvements in the objective function value, since the objective function is “artificially” bounded
below by T'*, which is in fact a very tight bound (in some instances it is a precise bound) for the optimal
value. On the other hand, the set of reduction constraints derived by the assignment constraints is much
smaller than the usual set of linearization constraints (29), thus improving the CPU time efficiency.
Furthermore, the formulation is tighter in the sense that even in the LP relaxation many (in some cases,
all) variables turn out to have integer values.

8 Conclusion

This paper introduces the concept of reduction constraints, which are a subset of RLT constraints de-
rived by multiplying linear equality constraints by problem variables. Reduction constraints are used
to generate (in a wholly automatic way) exact reformulations for bilinear problems involving a smaller
number of bilinear terms; in practice, some of the bilinear terms are replaced by the (linear) reduction
constraints. These reformulations are generally much tighter than the ones derived from the original
problem formulation. We show that there is usually a choice of the set of bilinear terms being replaced.
In order to further tighten the formulation, we propose replacing those bilinear terms causing the high-
est convexity volume gap between the original problem and the convex relaxation. Finally, we analyse
reduction constraints reformulations of four of well-known classes of problems in the literature. In some
cases, the reformulation generated by reduction constraints had already been discovered by other means,
albeit not in an automatic way. This fact, aside from being a validation of this method, emphasizes its
importance as an efficient automatic reformulation technique.
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