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Abstract

In this paper we compare four different ways to compute a convexrlieésxation of a quadri-
linear monomial on a box, analyzing their relative tightness. We compuédiijocompare the
quality of the relaxations, and we provide a general theorem on paicgisgarison of relaxation
strength, which applies to some of our pairs of relaxations for quadrnilmeaomials. Our results
can be used to configure a spatial Branch-and-Bound global optinmizajorithm. We apply our

results to the Molecular Distance Geometry Problem, demonstrating thenesef of the present
study.

Keywords quadrilinear; convex relaxation; reformulation; global optimization tigp8ranch-
and-Bound

1 Introduction

Monomials of degree four occur often in the mathematicajpmmming formulation
of important applications, such as the Molecular Distaneer@etry Problem [7] and the
Hartree-Fock Problem [10]. Such applications can be madatenon-convex Nonlinear
Programs (NLPs), which often exhibit several local and glaptima. The most widely
employed deterministic method for the global solution ofifemnvex NLPs is the spatial
Branch-and-Bound (sBB) algorithm [1]. One of the most caisteps of this algorithm is
the computation of the lower bound at each sBB node, whichuially based on providing
tight convex and/or concave relaxations (or preferablyepes) for each term appearing
nonlinearly in the objective functions and/or constraints

Convex/concave envelopes in explicit form currently ekistconcave/convex uni-
variate functions [14], bilinear terms [12], trilinear mes [13], univariate monomials of
odd degree [11] and fractional terms [15]. The multivaristenomials of smallest de-
gree for which the convex envelopes are not completely knasgrthe quartic ones. We
focus in particular on the quadrilinear tesixoXsX4, for which we compare four convex
relaxations.

A key idea in sBB is that given a sufficiently rich set of “elemery” convex en-
velopes, one can compose convex relaxations (albeit net@mes) of complex functions



relatively easily. For example, given two functiofiéx) and g(x) for which the con-
vex/concave envelopes are available, a convex relaxatiothé productf (x)g(x) can be
obtained by applying the bilinear convex envelope to thelpetw;w,, where the neces-
sary “defining constraintsi; = f(x), wo = g(X), can be replaced by the convex/concave
envelopes off and ofg. This strategy, however, due to the associativity of thalpab,
yields sometimes non-unique ways of combining terms whehawve products of many
functions and consequently different convex relaxations.

The relaxation strength is crucial for the performance &f $BB process. In this
paper, we undertake a computational as well as a theoretiegtigation of the relative
tightness of four relaxations of quadrilinear terms. Owuits indicate, not surprisingly,
that a grouping leading to the exploitation of a trilineavenpe yields tightest bounds.
This is important especially in view of the fact that the ttimhal grouping used by sBB
algorithms [1, 3] if (x1%2)X3)X4. We remark that our main result (Theorem 1 in Section 2)
can be applied in full generality to any pair of relaxations\vhich one is derived from
the other by a natural contraction operation — for produgis amounts to the deletion
of parentheses.

2 Comparison of relaxations

Given a quadrilinear monomiad xox3Xs, We consider the following four types of
term grouping: ((X1X2)X3)Xa, (X1X2) (XaXa), (X1X2X3)X4, (X1X2)X3Xs. We will derive four
corresponding linear relaxations fomxoxsX4. Let us consider the following sets:

S = {(xw) e R*xR¥|x € [, x], W1 = XaXo, Wa = WiXg, W3 = WoXy},
S = {(xw) eR*xR3|x €[x La X, W1 = X1Xo, Wo = XaXg, W3 = WiWo },
S = {(xw) e R*xR2|x € [}, %], wy = xyxox3, Wo = Wixs},
S = {(xw) € R*xR?|x € X, %], Wi = X1Xp, W2 = WiXaXs}.

To derive the four relaxations, we exploit a bilinear enpeldhrice for the first two cases,
a trilinear envelope followed by a bilinear envelope$eand a bilinear envelope followed
by a trilinear envelope fo;.

In the next subsections we first describe a computationdlysind get some signifi-
cant evidence for what is the best relaxation, then we peoaitheorem that confirms the
validity of some of the obtained results.

2.1 Computational comparison

We generated a set of eighty test instances by varying thes si§the bounds on
the variablesq and, starting from the same initial width of the bound ingdsvfor all
variables, progressively reducing the width of the bounelriral ofx;, i = 1,2, 3. Abound
interval[x-,x"] is changed tdx- +1/2,x” — 1/2]. This simulates a typical behavior of a
sBB algorithm, that progressively reduces the size of thiabe intervals.

We compare the considered relaxations in terms of the volintiee corresponding
enveloping polytopes. This method of comparison, intreduin [8], is independent of
any objective function.

Because exploiting envelopes for bilinear and trilineamte leads to an increased
number of variables, so that the obtained polytope$; live in R, andS;, & in RS. So



we project the polytopes of(x, f (X) := X;XpXsX4) € R®} in order to compare the results.
The projection is computed by using the softw&ieD [4]. Then, the volume of each
of the obtained projected polytopes is computed by usind & code [2]. Both codes

provide results in exact arithmetic.

For each problem instance, we compare the volumes of thégpay corresponding to
S1,S, s, S projected orR®. As expected, reducing the width of the bounds on variables,
the polytopes have decreasing volumes, while keeping the salative size with respect
to the others. Our results are that for 85% of the test instaitlee smallest volume are
obtained with the relaxation correspondingSp For a small percentage of instances
(5%), these volumes are also obtained wish é4nd (1)S; or with (1). . We also find
that for some instances the same volume is obtained for ail felaxations. For the
remaining instances, the smallest values are obtainedyittive never find that; and
S provide the lowest volumes.

Our computational results suggest tBaand S, always provide the best relaxations.
That is, the best relaxations appear to be obtained empgjayinvex envelopes for trilin-
ear terms and not just bilinear ones. Our computationalesad for this apparent fact is
confirmed by Theorem 1, reported in the next section.

We computationally get a further more precise informatibou tightness of the con-
sidered relaxations by checking relative containmenthefdorresponding (projected)
polytopes. For each pair of polytopBQ, we check ifP is contained imQ by checking
that every extreme point d® satisfies all the inequalities definir@ We find that, as
expected, relaxatiof, gives a polytope that is the most frequently contained irothe
ers. In particular, it is always contained or equivalentiat ttorresponding t6; andS,.
The polytope corresponding & is also always contained in or equivalent to that given
by S;. This is particularly interesting, becauSeis currently the most utilized isBB
implementations.

2.2 Mathematical comparison

The aim of this subsection is to provide a theoretical fraprwo investigate relax-
ation strength. We point out that it can be applied to coneéexations of any mathemat-
ical program.

We define a language whose strings are the functions usee iobflctive and con-
straints of a mathematical program, and we define a semahstrings of this lan-
guage. To construct the language, we consider the alphabet. 2" URU &, where
Z ={x1,...,% } is a set of variable symbols ardis a set of operator symbols. L&f
be the class of strings built recursively in such a way thaitréd expressions of a single
variable or real number are in the languagéd¢ RU 2" (¢ € %)), and for every operator
and potential arity, if the arityp is compatible with the operator, then by applying the
operator top (ordered) elements of the language, we get another elerhtve @mnguage
(Voed,pew(pea(®)—Vlh... lpe L ()((,....Ll) € L))).

We now introduce the formal definition of relaxed semanticsmings in.Z. Let
x € R" be such thax < x < xV for x-,xY € R", and letf € .Z. Consider the sets:

L) = {(w,x) | wp = f(x), x- <x<xV},
{(ws,x) | Af(wg,x) < bg, Xt <x<xU},

X
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wherebs € R™andAs € R™ (") are such that”(f) C 2(f). We callZ( f) therelaxed
semantic of f.

We also consider a relaxed semantic over substrings. Fordlllet fi,g,h € £ be such
thath(x) = g(f1(x),..., fp(x)). Letws = (Wyy,...,Ws,), W = (Wy,...,Wp), and consider
sets

h) = {(wg,ws,x) | Ag(Wg,wi) < bg, Ag(ws,X) < by Vi<p, x-<x<x’},

h) = {(wx)|3w e RP such tha{w,w,x) € R},

/;g/\

whereR(h) is the projection oR(h) on the subspacgw,x) € R™*. R(h) is therelaxed
composite semantic of h with respect to its substring( f1,.. ., fp).

We assumeZ(h) C R(h), i.e. the relaxed semantic is tighter than the relaxed com-
posite semantic. Lef € . andh such thath(x) = g(f1(x),..., fp(x)). LetF’ beF
rewritten using the rulg(fy,..., fp) — h, i.e. using the alphabet’ = 2" URU ¢’,
whered” = ¢' U {h}. The following theorem compares the strength of two relaxat

Theorem 1. R(F") CR(F).

Theorem 1 applied to relaxations of a quadrilinear term corsfithe validity of some
of the computational results reported in the previous sectin particular, it proves that
among the relaxations that we considered, those utilizifigdar envelopes (namel$s
andS;) always provided relaxations that are at least as tightastiier two (i.e.S and
S) For example, if we compareXoxs) x4 and((X1X2)x3)Xs, Theorem 1 ensures that the
relaxed semantic of the former is at least as tight as theadlaemantic of the latter
(using the known convex envelopes for bilinear and trilirteams).

3 TheMolecular Distance Geometry Problem

We applied our results to the well-known Molecular Distarlig@eometry Problem
(MDGP), whose main use is to find the three-dimensional 8iraof a molecule given a
subset of the atomic distances [7]. Consider an undirecigahg = (V, E) with weights
d:E — R., whereV is the set of vertices (also callatbms) andE is the set of weighted
edges (also callehter-atomic distances). Letdij = d({i, j}), for {i, j} € E. A solution
of the MDGP is a set of pointsy, ..., Xy| € R3 satisfying

X —xjll2=dij, v{i,j} €E. 1)

The MDGP can be naturally cast as a continuous non-convgxeulial NLP with terms
of degree up to four, by minimizing the sum of squared erroes the equations (1):

min f(x) = Z (I —xj|I5 —df)>. 2
{i,7TeE

xcRIVIx3

Note that (2) typically has a large number of local minimafreon a practical point of
view, this is a hard global-optimization problem.

The natural application of tight lower bounds computed tiigitoa convex relaxation
is within the sBB algorithm. In order to quickly assess thaligy of our proposed alter-
native bound for quadrilinear terms on the MDGP without hgib implement a full sBB



framework, we implemented a simplified “partial sBB” alghm which, at each branch-
ing step, only records the most promising node and discérelother, thus exploring
a single branch up to a leaf. This corresponds to well-knodixirig heuristics” em-
ployed in integer programming. At each node, a (linear) eamelaxation is constructed
automatically by thdRose software [9] in the four different ways corresponding to the
relaxationsS; — &. It is then solved byCPLEX [5]. Table 3 shows the results obtained
on four MDGP instances, that are randomly generated asibdeddn [6]. We report the
lower bounds obtained with the four relaxations. On all & ihstances, the best lower
bound is that obtained with a relaxation involving a tritimesnvelope. In particulag,
gives the tightest bound for most cases, and this boundngfisiantly better than the val-
ues obtained with bilinear relaxations on the largest msta This confirms the results of
the previous sections and suggests that they can be usedfigure a sBB algorithm to
be efficiently applied to problems containing quadrilingsams.

Instance ((Xax2)Xg)Xa | (xaX2)(XgXa) | (XaXoXa)Xa | (XaiX2)XsXa
lavor 6 -1006.75 -1839.21 | -1006.75 | -990.167
l avor 7 -1285.67 -1279.88 | -1175.95 | -1216.91
| avor 8 -1711.27 -1694.56 | -1718.41 | -1671.09
| avor 10 -3149.29 -3172.05 | -3007.41 | -2755.04

Table 1: Results obtained on MDGP instances.

4 Conclusion

We computationally and mathematically evaluated fourdirelaxations of a quadri-
linear term, showing that the tightest one can be obtainecobybining the convex en-
velope of a trilinear term and that of a bilinear term. A mowmplete view of our
computational results will appear in a full-paper versidriis extended abstract. Our
results can be exploited in a sBB algorithm to compute tightrals. Our mathematical
result can be applied to compare relaxations of more gepevhlems.
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