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Abstract

These are notes from my lectures at the Pretty Structures conference at
the Institut Henri Poincaré in Paris, in early May 2011. I had planned to
give three talks about derangements; but in the event, the third lecture was
devoted to the topic of synchronization, and as a result some of this material
was not covered in the talks.

A general reference on permutation groups is my book [2].
Notes on synchronization (containing far more than I put into the single

lecture in Paris) can be found at

http://www.maths.qmul.ac.uk/~pjc/LTCC-2010-intensive3/

1 From classical times
A derangement is a permutation of {1, . . . ,n} which has no fixed points. In these
lectures I will consider counting and finding derangements in the symmetric group
Sn and its subgroups. On the way, we will see that derangements are intimately
connected with many other topics in mathematics, including number theory, game
theory, enumerative combinatorics, representations of quasigroups, and more.

A classical problem asks: how many derangements are there in the symmetric
group? It turns out that the number is the closest integer to n!/e. In other words,
if we choose a random permutation, the probability that it is a derangement is
close to 1/e. This is sometimes known as the “secretary problem” or “hat-check
problem”: if a secretary types n letters and addresses the envelopes, then puts
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letters in envelopes at random, the probability that nobody gets their correct letter
is close to 1/e.

Here are two proofs of this fact.

First proof: Inclusion–Exclusion The number of permutations of {1, . . . ,n}
which fix a given set of k points (and possibly more) is (n− k)!. So, if d(n) is the
number of derangements, then Inclusion–Exclusion gives

d(n) =
n

∑
k=0

(−1)k
(

n
k

)
(n− k)!

= n!
n

∑
k=0

(−1)k

k!
.

The series is the truncation of the Taylor series for ex at x =−1. It is an alternating
series, so the difference between the finite sum d(n)/n! and its limit 1/e is smaller
than the next term, whose modulus is 1/(n+1)!. So the difference between d(n)
and n!e−1 is smaller than 1/(n+1), proving our assertion.

Second proof: a structural proof Every permutation is uniquely expressible
as the product of a derangement and an identity permutation (since the domain
decomposes uniquely into the set of fixed points and the set of moved points). So
the exponential generating functions

P(x) = ∑
n≥0

n! xn

n!
=

1
1− x

, I(x) = ∑
n≥0

xn

n!
= ex, D(x) = ∑

n≥0

d(n)xn

n!

of all permutations, identity permutations, and derangements respectively, satisfy

D(x)I(x) = P(x).

So D(x) = e−x/(1− x), from which the same formula as before is easily derived.
This proof is most naturally expressed in the language of species [13].
We will see a third proof using the Orbit-Counting Lemma later.

2 Jordan’s Theorem
Let G be a subgroup of Sn. The orbits of G are the equivalence classes of the
relation ∼ defined by i ∼ j if there exists g ∈ G with ig = j. We say that G is
transitive if there is just one orbit.

In 1872, Jordan [12] proved:
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Theorem 2.1 A transitive subgroup of Sn (with n > 1) contains a derangement.

I highly recommend Jean-Pierre Serre’s beautiful paper “On a theorem of Jor-
dan” [16], for an account of this theorem and some spectacular applications in
topology, number theory, and modular forms.

The easiest proof to explain (essentially Jordan’s, but dressed up differently)
uses the Orbit-Counting Lemma (often called Burnside’s Lemma, but not due to
Burnside):

Theorem 2.2 For any subgroup G of Sn, the number of orbits of G is equal to the
average number of fixed points of elements of G.

Now, if G is transitive, the average number of fixed points is 1; the identity
fixes more than one point (if n > 1); so some element fixes fewer than one.

3 First variations on Jordan’s Theorem
For the purposes of computation, a subgroup of the symmetric group Sn is con-
veniently described by giving a set of permutations which generates it. However,
there is a problem which we need to address, since in principle we may be given
a huge set of permutations which would take exponentially long just to read!

The way round this is to filter the permutations as they are read. My favourite
version of this is due to Mark Jerrum [11]. He shows that every subgroup of Sn has
a “special” generating set, where these special sets have the following properties:

• a special set contains at most n−1 permutations;

• if S is a special generating set for G, and g is any permutation in Sn, then a
special generating set for 〈G,g〉 can be found in time polynomial in n.

In detail, we associate with each permutation g an edge {i, j}, where i is the
smallest point moved by g, and j = ig. A set of permutations is special if the cor-
responding set of edges is acyclic. Now the first property is clear. For the second,
we show that if S is special but S∪{g} is not, then with a polynomial amount
of processing we can replace g by g′ such that S∪{g′} and S∪{g} generate the
same subgroup, and the smallest point moved by g′ is greater than the smallest
point moved by g. After at most n such moves, either the new permutation be-
comes the identity, or a new special set is obtained.
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So, by reading all the generators and doing a polynomial amount of computa-
tion after each one is read, we obtain a set of polynomially bounded size (indeed,
at most n−1) generating the same subgroup. (Jerrum’s filter actually shows that
any subgroup of Sn can be generated by at most n− 1 elements; this is not ob-
vious!) So, for complexity questions about permutation groups, we may assume
that the generating set has polynomial size.

Problem How difficult is it to find a minimum-size set of generators for G?
Note that McIver and Neumann [15] showed that any subgroup of Sn can be gen-
erated by at most n/2 elements if n > 3. This is best possible (consider the group
generated by bn/2c disjoint transpositions). But their proof is not obviously con-
structive; I do not know whether a generating set of size at most n/2 can be found
in polynomial time.

3.1 Is there a derangement?
Now the obvious question about derangements is: how hard is it to decide whether
a subgroup of Sn contains a derangement? Given Jordan’s theorem, we might
expect that this would be fairly easy. However, Taoyang Wu [5] showed that,
given a set of generators for G (assumed to be of polynomial size), the problem of
deciding whether G contains a derangement is NP-complete.

However, we can decide efficiently (in polynomial time, even in log-space)
whether G is transitive. (This just asks whether the digraph having edges (i, j)
whenever there is a generator mapping i to j is connected.) If G is transitive, then
Jordan gives us a constant-time algorithm for the decision problem!

Problem Given a subgroup G of Sn having at most k orbits, where k is fixed,
what is the complexity of deciding whether G contains a derangement?

3.2 Finding a derangement
What about the problem of finding a derangement in a transitive group? There is
an efficient randomized algorithm depending on the following result of Cameron
and Cohen [3]

Theorem 3.1 If n > 1, then the proportion of derangements in the transitive sub-
group G of Sn is at least 1/n.
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Proof Let π be the permutation character of G (so π(g) is the number of fixed
points of g). This is a character, i.e. the trace of a matrix representation (by
permutation matrices). However, we don’t need any character theory.

Consider the function θ = (π − 1)(π − n). The average of π2 over G is at
least 2. For π2(g) is the number of ordered pairs fixed by g, so the average is
equal to the number of orbits of G on ordered pairs. This is at least 2, since pairs
(i, i) and (i, j) (with j 6= i) cannot lie in the same orbit. So the average of θ is at
least 2− (n + 1)+ n = 1. But θ(g) ≤ 0 unless g is a derangement, in which case
θ(g) = n. So the number of derangements is at least |G|/n.

We can see that equality holds if and only if two things happen:

• G has two orbits on ordered pairs, i.e. it is 2-transitive;

• π(g) = 0 or 1 for all non-identity elements g ∈ G.

In other words, equality holds if and only if G is sharply 2-transitive. Such groups
are known to be the 1-dimensional affine groups over nearfields, and are associ-
ated with particular kinds of finite projective planes.

Back to finding derangements. Pick m random elements of G. (See the next
paragraph for how to do this.) The probability that none of these elements is a
derangement is at most (1−1/n)m < e−m/n; so with about cn2 random elements
we find a derangement with probability exponentially close to 1.

The method of choosing a random element is due to Sims, the father of com-
putational permutation group theory. Sims showed that any subgroup G of Sn has
a strong generating set. This consists of subsets S1,S2, . . . ,Sb of G, where b < n
and |Si| ≤ n for all i, such that every element of G can be written uniquely in the
form s1s2 · · ·sb with si ∈ Si for i = 1, . . . ,b. He showed that such a set can be
found in polynomial time. Now to choose a random element of G, we just choose
random elements of the polynomial-sized sets S1, . . . ,Sb and multiply them.

What about a deterministic algorithm for finding a derangement? There is one,
but proof of its correctness uses the Classification of Finite Simple Groups. I will
discuss this in the next section.

4 Second variations on Jordan’s theorem
There are several problems, coming from a wide range of applications, where we
seek derangements with some additional property.
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4.1 Derangements of prime power order
I begin with a digression.

The quaternions form an algebra (associative but non-commutative) over the
real numbers. This algebra is simple (it has no non-trivial proper ideals) and
its centre consists of just the scalars. Such an algebra is called central simple.
The Pauli spin matrices show that the quaternions can be represented by 2× 2
matrices over the complex numbers; indeed, if we allow complex rather than real
coefficients (in other words, take the tensor product of the quaternions with the
complex numbers over the real numbers), the algebra is isomorphic to the algebra
of all 2×2 complex matrices.

In the case of the real numbers, the quaternions are the only such (finite-
dimensional) algebra. But in other cases, things are more generous. A local
field is either a finite extension of the rationals, or a finite extension of F(t), the
function field in one variable over a finite field F . Now Fein, Kantor and Schacher
[8] proved the following theorem:

Theorem 4.1 Let K be a local field, and L a finite extension of K (with L 6= k).
Then there are infinitely many different central simple algebras A over K such that
A⊗K L is a matrix algebra over L.

From our point of view, the remarkable thing about this theorem is the fol-
lowing. Let G be the Galois group of (the normal closure of) L over K. Then
G is a transitive subgroup of Sn, where n is the degree of L over K. Now Fein,
Kantor and Schacher prove that the conclusion of their theorem holds if and only
if G contains a derangement of prime power order, that is, one all of whose cycle
lengths are powers of a fixed prime p. So their theorem is a consequence of the
following result, which should be compared to Jordan’s:

Theorem 4.2 A transitive subgroup of Sn (with n > 1) contains a derangement of
prime power order.

The proof of Jordan’s theorem is by elementary counting. For contrast, I will
sketch the proof of this theorem.

First, we may assume, without loss of generality, that G is primitive (this
means that it preserves no equivalence relation on {1, . . . ,n} except for the two
trivial relations, equality and the relation with a single equivalence class). For, if
G does preserve an equivalence relation, it induces a transitive permutation group
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on the set of equivalence classes; and if h is an element of G inducing a derange-
ment of p-power order on the equivalence classes, then some power hm (where m
is coprime to p) induces a derangement of p-power order on the original points.

Next, we may assume, without loss, that G is a simple group. For if G is prim-
itive, then a minimal normal subgroup of G is transitive (since its orbit partition
is preserved by G), and is a direct product of copies of some finite simple group.
Replace G by this group G1. Now repeat the two steps to obtain a minimal normal
subgroup G2 of G1, which is a simple group. Finally, repeating the first step, we
may assume that the action of G2 is primitive.

In group-theoretic terms, we have a simple group, which we now call G, and
a maximal subgroup H (the stabiliser of a point in G); we want to find an element
of prime power order which lies in no conjugate of H.

Now the Classification of Finite Simple Groups, announced in 1980 but not
proved for another quarter of a century, provides a list of all the possible simple
groups. Considering the various types of simple group, using detailed information
about each, it is possible to prove the theorem.

Unfortunately, the proof of CFSG, as I shall call it for short, is very long (of
the order of 10000 pages) and not at all easy to read even for a specialist. So
adding the words “of prime power order” to Jordan’s Theorem is done at great
cost!

The other important thing to remark is that all the reductions in the proof,
and finding the required element in each type of simple group, can be done in
polynomial time. So we have finally answered the question at the end of the last
section, in strengthened form: there is a deterministic polynomial-time algorithm
for finding a derangement of prime power order in a transitive subgroup of Sn.
Of course, the algorithm is rather complicated, and the proof of its correctness
requires CFSG.

In computer science there is the notion of “derandomisation”, finding a deter-
ministic version of a randomised algorithm. In this case, where the randomised
algorithm is so simple, and the deterministic algorithm so complicated, it may be
worth testing these techniques to see whether they can be applied!

As a final remark, since the number-theoretic statement of Fein, Kantor and
Schacher is equivalent to the statement about derangements, there is the possibility
of finding a direct proof of their number-theoretic statement and deducing the fact
about derangements from it, avoiding the need for CFSG. It is not at all clear to
me whether such a proof could be made algorithmic.
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4.2 Derangements of prime order
Not every transitive group contains a derangement of prime order; but examples
are not so common. A transitive group is called elusive if it has no derangement
of prime order. The smallest elusive group has degree 12. Elusive groups were
studied in [4].

Here are two problems.

Problem Is it true that the set of degrees of elusive permutation groups has
density zero?

Problem We say that a permutation group G is 2-closed if every permutation
which preserves all G-orbits on ordered pairs belongs to G; equivalently, G is
the automorphism group of an edge-coloured digraph. Mikhail Klin asked: Is it
true that no 2-closed transitive group is elusive (i.e. every such group contains
a derangement of prime order)? The truth of this would show that every vertex-
transitive graph is a pseudo-circulant: that is, it can be partitioned into circulant
graphs of prime order. This could be useful in the study of vertex-transitive graphs.

4.3 Which prime?
50 years ago, Isbell [10] was studying n-player zero-sum games, in the sense
of von Neumann and Morgenstern. The theory of such games is of course very
complicated; but there is a class of such games, called simple games, where all
that matters is coalitions between players. If one set of players cooperate, we
have essentially a 2-player game between this set and all the rest; the theory of
such games is of course known. So an n-player game is determined by the set W
of winning coalitions. This set has the following properties:

• it is closed upwards;

• for any set A of players, either A or its complement belongs to W .

Isbell’s intention was to study fair games, where no player has any advantage
over any other. His idea was that a game is fair if its symmetry group (the group
of permutations of the players preserving the game structure) acts transitively on
the players. Now it is easy to see that

A subgroup G of Sn is contained in the symmetry group of a simple
game if and only if it contains no derangement of order a power of 2.
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For if g is a derangement of 2-power order, then all its cycles have even length;
taking alternate points in the cycles, we obtain a set A which is mapped to its
complement by g. But if W is the set of winning coalitions in a simple game, then
one or other of A and its complement belongs to W ; so W cannot be preserved
by g. Conversely, it can easily be shown that, if G is a group containing no such
derangement, then the orbits of G on subsets fall into complementary pairs; taking
one of each pair (using the larger if the cardinalities are unequal) gives the set of
winning coalitions in a simple game.

Isbell’s conjecture There is a function f such that if n = 2a.b with a > f (b),
then any transitive group of degree n contains a derangement of 2-power order.

This would immediately imply that, for such values of n, there is no fair simple
game on n players. This conjecture has been open for half a century now; it is one
of the problems I would most like to see solved.

The conjecture can be generalised from 2 to an arbitrary prime: the general
form asserts that there is a function fp for any prime p such that, if n = pa.b
with a > fp(b), then a transitive group of degree n contains a derangement of p-
power order. This is open for all p. Halpenny and Spiga showed that it is true for
primitive groups (unpublished), though this is no help for transitive groups.

I made an even stronger conjecture in the hope of making progress on this.
The conjecture asserted that, for any prime p, there is a function gp such that, if P
is a permutation group of p-power order having b orbits each of size at least pa,
for a > gp(b), then P contains a derangement. Taking P to be the Sylow subgroup
of a group G as in Isbell’s conjecture, we see that the truth of this conjecture would
imply that of Isbell’s. Sad to say, this conjecture is false for all primes p > 3; this
was shown by Crestani and Spiga [6].

5 Miscellanea
This section contains some miscellaneous results which fell off the end of the
lectures.

5.1 The Shift Theorem
There’s more to be said about counting derangements. The following result is due
to Boston et al. [1]. Let Pi be the probability that a random element of G has
exactly i fixed points, and P(x) = ∑

n
i=0 Pixi, the probability generating function

9



for the number of fixed points of a random element. Also, let Fi be the number
of orbits of G on the set of i-tuples of distinct points, and F(x) = ∑

n
i=0 Fixi/i! its

exponential generating function. Often it is easier to compute the numbers Fi than
the Pi: for example, if G is the symmetric group Sn, then

Fi =
{

1 for 0 ≤ i ≤ n,
0 otherwise,

so that F(x) is the truncated exponential function.
The Shift Theorem asserts:

Theorem 5.1 With the above notation, F(x) = P(x + 1). In particular, P(x) =
F(x−1), so that P(0), the proportion of derangements in G, is equal to F(−1).

We recover the proportion of derangements in the symmetric group. In fact,
we see that the distribution of fixed points in a random permutation is approxi-
mately Poisson with parameter 1.

The proof is easy. Since a permutation with j fixed points fixes j( j−1)cdots( j−
i+1) i-tuples of distinct points; so the Orbit-Counting Lemma gives

Fi = ∑
j≥0

Pj j( j−1) · · ·( j− i+1).

Multiply by xi/i!, sum over i, and reverse the order of summation on the right:

F(x) = ∑
j≥0

Pj ∑
i≥0

(
j
i

)
xi = ∑

j≥0
Pj(1+ x) j = P(1+ x).

In fact, this can be generalised. It is possible to calculate the joint distribution
of the numbers of cycles of lengths 1,2,3, . . ., in the symmetric group; they are
approximately independent Poisson variables with parameters 1,1/2,1/3, . . .. In-
deed, there are multivariate forms of both polynomials P and F , and a multivariate
Shift Theorem.

5.2 Other groups
One can ask about the limiting proportion of derangements in other permutation
groups. For example, let G(n,k) be the permutation group induced by Sn on the
set of k-subsets of {1, . . . ,n}. For n > 2k this is the automorphism group of the
Kneser graph Kn,k.
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One can show that, for fixed k, the proportion of derangements in G(n,k)
tends to a limit αk as n → ∞. Thus, α1 = e−1. Also, it can be shown that α2 =
2e−3/2. However, calculations by John Britnell and Mark Wildon show that the
convergence to the limit is rather complicated. In addition, it is not known whether
αk increases monotonically with k, though Britnell and Wildon verified this for
k ≤ 23.

The reason for the importance of this class of groups can be seen from a paper
of Diaconis, Fulman and Guralnick [7], which shows that they are in a sense
the only classes of primitive groups in which the proportion of derangements is
bounded away from zero.

5.3 Latin squares and quasigroups
A Latin square is an n×n array with n distinct entries, each of which occurs once
in each row and once in each column. In other words, if the symbols are 1, . . . ,n,
then each row or column is a permutation.

A quasigroup is an algebraic structure consisting of a set with a binary opera-
tion whose Cayley table is a quasigroup; that is, if the operation is multiplication,
then left and right division are unique (that is, the equations a◦x = b and y◦a = b
have unique solutions x and y for given a and b.

A representation theory of quasigroups, generalising that for groups, has been
developed by J. D. H. Smith. It is “controlled” by the multiplication group of the
quasigroup Q, the group generated by the rows and columns of the Cayley table
of Q (regarded as permutations, that is, elements of the symmetric group). The
representation theory is “trivial” if and only if the multiplication group is doubly
transitive (that is, transitive on ordered pairs of distinct elements).

Now I conjectured that almost all quasigroups have trivial representation the-
ory. (“Almost all” here means that the proportion of objects with the given prop-
erty tends to 1 as n → ∞.) This conjecture was proved by Łuczak and Pyber [14]:

Theorem 5.2 For almost all Latin squares, the group generated by the rows is the
symmetric group.

Their proof used the following remarkable result:

Theorem 5.3 For almost all elements g of the symmetric group Sn, the only tran-
sitive subgroups of Sn containing g are Sn and (possibly) An.
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The class of permutations referred to are in some sense the opposite extreme
from derangements, which are permutations which lie in no point stabiliser. Sim-
ilarly, cycles are the only permutations lying in no intransitive subgroup. The
theorem asserts that most permutations lie in no proper transitive subgroup. The
rate of convergence in the theorem is not known.

Now the first row of a random Latin square is a random permutation, and
the group generated by the rows is obviously transitive; so almost always it is
symmetric or alternating. The proof is finished by a theorem of Häggkvist and
Janssen [9], asserting that the probability that all rows of a Latin square are even
permutations is exponentially small.

A loop is a “group without the associative law”, a quasigroup with identity
and inverses. Is it also true that almost all loops have trivial representation theory?
The above argument no longer applies, since (assuming that the first element is
the identity) the first row is the identity permutation. But the second row is a
(nnon-uniform!) random derangement.

In detail, we define a probability measure on derangements can be defined as
follows. Say that a Latin square is “normalised” if its first row is the identity.
Now define the probability of a derangement g to be the proportion of normalised
Latin squares which have second row g. This probability depends only on the
cycle structure of the derangement, but is not the uniform distribution for n > 3.
For example, when n = 4, the derangement (1,2)(3,4) has probability 1/6, while
(1,2,3,4) has probability 1/12. (Said otherwise, there are 4 normalised Latin
squares with second row [2,1,4,3], but only 2 with second row [2,3,4,1].

However, experiment suggests that this probability distribution is very close
to the uniform distribution.

For example, for n = 7, the table below gives the numbers of normalised Latin
squares having a given derangement with a specified cycle type as second row.

Cycle type Number of squares
7 6566400

5.2 6604800
4.3 6543360

3.2.2 6635520

5.4 Further directions
There are interesting things to say about infinite analogues (not of derangements
themselves, but of the formal methods for counting them, including the Shift The-
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orem), and about analogues for linear groups over finite fields; but I will not speak
of these here.

References
[1] N. Boston, W. Dabrowski, T. Foguel, P. J. Gies, J. Leavitt, D. T. Ose and

D. A. Jackson, The proportion of fixed-point-free elements of a transitive
permutation group, Commun. Algebra 21 (1993), 3259–3275.

[2] Peter J. Cameron, Permutation Groups, London Math. Soc. Student Texts
45, Cambridge University Press, Cambridge, 1999.

[3] Peter J. Cameron and Arjeh M. Cohen, On the number of fixed point free
elements of a permutation group, Discrete Math. 106/107 (1992), 135–138.

[4] Peter J. Cameron, Michael Giudici, Gareth A. Jones, William M. Kantor,
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