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1 Introduction

We consider the problem of the transportation of hazardous materials on a
road network (Hazardous Materials Transportation Problem). We can figure it
this way: there are N trucks which have to transport some kind of dangerous
material from one or many production points to one or many garbage dumps
and we have to select a set of paths which is optimal from the point of view
of risk, cost and equity. The optimization of cost and risk on a network leads
quite spontaneously to shortest path and flow problems which are milestones of
Operational Research, but equity is somehow unusual and hard to define. We
consider and compare two different ideas. The first approach simply requires
that all the areas involved in the transportation network share the same level
of risk. This is a fair and intuitive idea but it could also lead to “improper”
solutions where risk is equal but uniformly high. The second (more interesting)
definition of equity we use is inspired by the concept of fairness of J. Rawls
[2,3]. Basically, in this context, the difference principle means that we may
introduce disparities only if they advantage the worst-off, namely reduce the
risk of the less favourite area (the most exposed to the risk).

The aim of this work is to provide rational elements to be able to estimate the
cost of choosing a particular definition of equity (for hazmat trasportation).
We investigate the relation between each definition of equity and the cost it
generates. This can be used as a first criterion to make a choice.
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2 Mathematical programming formulation

Let G = (V,A) be a directed graph, modelling a road network.
We consider many origin-destination pairs (s, t) ∈ C ⊆ V × V . For every pair
(s, t) there is a commodity to be trasported from a source s to a destination t to
respond to a specific demand which we indicate with dst. We look for a global
route planning given by a multicommodity flow function x : C × A → R+

(the situation involving only one origin and one destination is a special case).
Typically we can imagine that the road network covers a geographic area
which is divided into zones; in particular each arc (road) belongs to a zone
ζ ∈ Z. For the sake of simplicity we assume that each arc belongs to only
one zone. Each arc (i, j) has a positive traversal cost cij , a probability pij of
an accident occurring on that arc, a value of damage (in monetary units) ∆ij

caused by a potential accident on that arc and a capacity χij.

(1) Sets:
• C ⊆ V × V is the set of all pairs (s, t);
• Z is the set of all zones;
• ζl ⊆ A is a zone (1 ≤ l ≤ |Z|);

(2) Parameters:
• 1 ≤ l ≤ |Z| = zone index
• pstij : probability of accident on an arc;
• ∆st

ij : damage (in monetary units) caused by an accident on an arc ;
• cstij : cost on an arc;
• s : source;
• t : destination (target);
• dst : demand of commodity (st);

We call pstij∆
st
ij traditional risk and we indicate it, alternatively, as rstij .

(3) Decision variables:
∀(i, j) ∈ A, ∀(s, t) ∈ C xst

ij : flow of the commodity (st) on the arc
(i, j)

(4) Constraints.
• (capacity)

∑

(st)∈C xst
ij ≤ c(ij)

• (demand)
∑

(i)∈V xst
it = dst

• (flow conservation) ∀(st) ∈ C
∑

(i,j)∈A
xst
ij −

∑

(j,i)∈A
xst
ij =



























1 if i = s

−1 if i = t

0 otherwise

(5) Objective function 1 (Cost): minimize total cost

min
∑

(i,j)∈A

∑

(s,t)∈C

cstijx
st
ij (1)

(6) Objectives concerning equity, two possible versions:
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• Objective function 2 (a) (Risk sharing): minimize the difference
of traditional risk between two zones

min





∑

∀(ζl,ζm)∈Z×Z
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∑

(i,j)∈ζl

∑

(s,t)∈C

rstijx
st
ij
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∑

(h,l)∈ζm

∑

(s,t)∈C

rsthlx
st
ij
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(2)

• Objective function 2 (b) (Rawls’ principle): minimize the tradi-
tional risk of the least advantaged zone

min



max
ζ∈Z

∑

(i,j)∈ζ

∑

(s,t)∈C

rstijx
st
ij



 (3)

3 Methodology and Tests

The problem we are considering belongs to the special class of optimization
problems called Multicriteria Optimization Problems (MOP) [5,7,6]. Proba-
bly, the most common approaches are the weighted sum method and the ǫ-

constraint method. Since the latter can be used either with convex or with
non-convex objectives space, and we plan to introduce many sources of non-
convexity in next refinements of our model, we adopt from the outset the
ǫ-constraint method. The basic idea of this method consists in the trasforma-
tion of all the objectives in constraints, out of one which is minimized (or
maximized). Varying ǫi, alternative solutions are obtained (even if it is known
that it is difficult to chose proper values for the vector ǫ and arbitrarily ones
produce no feasible solutions).

We consider first small instances of the problem based on networks composed
by a kept down number of nodes and involving a few zones and shipments and
only one origin and destination. We used the AMPL modelling environment
and the off-the-shelf CPLEX 10.1 solver running on a 64-bit 2.1 GHz Intel
Core2 CPU with 4GB RAM. The results we got using an instance composed
by 15 nodes distributed in 2 zones, with 10 shipments show that both kind
of equity have a negative impact on the cost and make it grow, which is the
awaited outcome. The aim is to establish which one makes it increase most.
In order to solve this question we introduce some methodological expedients.
In fact, even if we solved either C1 and C2 applying the ǫ-constraint method,
we can not simply compare the cost for a fixed equal threshold of ǫ because
it has a different meaning in the two situations. We have to normalize the
comparison to “equal levels” of equity and to map the cost to the share of
equity instead of its absolute value. For example, we compare the cost we get
when we have the peak of equity in Risk Sharing and Rawls sense, then when
we get the 99% of equity (independently from the different corresponding
values of ǫ which are different in C1 and C2), the 98% . . . and so on. Thus we
establish first the maximal possible level of equity and then we (can) define the
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Fig. 1. Comparison between Risk Sharing and Rawls’ Principle

values corresponding to its fractions. We measure the increment of cost while
equity varies from its possible minimum to its possible maximum and we map
it on the share of equity. We discover that the raise of cost induced by equity
in the sense of Rawls is weaker that the one induced by the “naive” one. We
report some sample results (in the format [Equity Share; Cost of Risk Sharing;
Cost of Rawls’ Principle] : [0;40;40], [50;41;41], [60;42;42], [70;43;43], [80;45;44],
[90;50;45], [95;53;49], [96;55;52], [97;57;54], [98;58;55], [99;60;58], [100;67;67]).
Fig.1 shows the corresponding plot. The tests are partial since we use small
artificial instances. We plan to use real data and different multi objectives
methods in future work to corroborate our conclusions.
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