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aLIX, École Polytechnique, 91128 Palaiseau, France
bIRISA, University of Rennes 1, Rennes, France

cIOE, University of Michigan, Ann Arbor (MI), USA
dDepartment of Applied Mathematics (IMECC-UNICAMP), University of Campinas,

13081-970, Campinas - SP, Brazil

Abstract

Several application fields require finding Euclidean coordinates consistent with a
set of distances. More precisely, given a simple undirected edge-weighted graph,
we wish to find a realization in a Euclidean space so that adjacent vertices are
placed at a distance which is equal to the corresponding edge weight. Realiza-
tions of a graph can be either flexible or rigid. In certain cases, rigidity can be
seen as a property of the graph rather than the realization. In the last decade,
several advances have been made in graph rigidity, but most of these, for ap-
plicative reasons, focus on graphs having a unique realization. In this paper
we consider a particular type of weighted Henneberg graphs that model protein
backbones and show that almost all of them give rise to sets of incongruent
realizations whose cardinality is a power of two.

Keywords: Distance geometry, graph rigidity, Branch-and-Prune, partial
reflection, protein conformation.

1. Introduction

The fundamental problem of Distance Geometry (DG) is that of determining
the Euclidean coordinates corresponding to a given set of distances [9]. By
“distances” we mean here a set E of unordered pairs {u, v} of vertices of a set
V together with a function d : E → R+ mapping each pair {u, v} to a distance
value duv between u and v. We thus formalize this problem as the
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benoit.masson@inria.fr (Benôıt Masson), jonxlee@umich.edu (Jon Lee),
clavor@ime.unicamp.br (Carlile Lavor), antonio.mucherino@irisa.fr (Antonio Mucherino)

Preprint submitted to Discrete Applied Mathematics November 8, 2012



1 INTRODUCTION 2

Distance Geometry Problem (DGP). Given a positive integer
K and a weighted simple undirected graph G = (V,E, d), where
d : E → R+, find a function x : V → RK such that

∀{u, v} ∈ E ‖xu − xv‖2 = duv. (1)

A vertex function x : V → RK is a realization. A realization is valid if it
satisfies Eq. (1). The DGP, also known as the Embeddability problem, is
strongly NP-hard even when K = 1 and the edge weights are restricted to take
values in {1, 2} [42]. It was shown in [1] that all graphs having a realization in
some Euclidean space are realizable when K ≥ 1

2 (
√

8|E|+ 1−1), so, in a sense,
the smaller the dimension, the harder the problem.

Historically, DG was first studied by Menger in the 1930s [31] and then
fully discussed and extended by Blumenthal [4]. At that time, the main notion
was that of a distance space (S, d), where S is a set and d : S × S → R is
a distance function. The “fundamental problem” (also called subset problem
by Blumenthal) was that of determining necessary and sufficient conditions for
given weighted sets (S, d) to be distance spaces. In other words, given a square
n× n matrix D = (dij), determine whether it is a distance matrix, i.e. a matrix
for which there exists a realization x in K dimensions such that dij = ‖xi−xj‖
for all i, j ∈ S. Schoenberg [44] proved in 1935 that this is the case if and only if
the matrix −V �DV is Positive Semi-Definite (PSD), where V is the n× (n− 1)
matrix:

1√
2




−1 −1 . . . −1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1



.

We remark that Schoenberg used another notation; our notation is taken from
[10, Sect. 5.4.1]. Since a matrix can be ascertained to be PSD in polynomial
time, Blumenthal’s subset problem is in P.

A finite simple weighted undirected graph may have uncountably many or
finitely many realizations. In this paper we are interested in rigid graphs, which
have finitely many realizations. Graph rigidity was discussed time and again in
connection with several different application fields, the main ones being statics,
molecular biology, robotics and localization of wireless sensor networks. Histor-
ically, this generated several slightly different definitions of the concept of graph
rigidity. An advanced but didactical account can be found in [14].

We consider the case where the graph G has a vertex order such that each
(K+1)-tuplet of consecutive vertices of V induces a (K+1)-clique as a subgraph
of G (see Fig. 1). The class of DGP instances with such an order, collectively
known as the generalized Discretizable Molecular Distance Geometry
Problem (KDMDGP), is also NP-hard when K = 3 [22]. The KDMDGP order
is a particular type of Henneberg order [46], and therefore characterizes a rigid
graph. However, in most cases the graph is not uniquely rigid. In this paper
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Figure 1: A KDMDGP graph with K = 3.

we prove that, for almost all edge weight functions, KDMDGP graphs have a
number of incongruent realizations which is a power of two. As Hendrickson
pointed out in [16, Sect. 3], nonuniquely rigid graphs are not well studied. This
might be because one of the most important applications of DG (the localization
of sensor networks [12]) requires the input data to be dense enough so that the
graph is uniquely rigid [3]. More importantly, Hendrickson also pointed out that
the key to non-unique rigidity is partial reflection of the realization: we shall
make use of this concept to derive our result.

Our motivation for studying rigid graphs which are not uniquely rigid arises
from the conformation of proteins. In general, a molecule can be seen as a unit
sphere graph [19] defined by a distance threshold given by the resolution scope
of Nuclear Magnetic Resonance (NMR) machinery (this is between 5Å and 6Å
[43]). In other words, all atom pairs closer than this threshold are adjacent.
The class of DGP instances defined by these unit sphere graphs, with K = 3,
is known as the Molecular Distance Geometry Problem (MDGP) (see
[29] and citations therein). We argued in [28, 22] that whenever the instance
represents a protein backbone, the natural backbone order is a KDMDGP order.
Since, however, the DGP and its variants require exact distances, whereas NMR
data are best represented by intervals due to their associated measurement error
[2], a remark is in order. Certain interatomic quantities are known reasonably
precisely: notably, covalent bonds and covalent angles [43]. Moreover, because
of the scaling between interval width and NMR machinery resolution scope,
certain NMR intervals can be considered as finite sets of values [39]. This allows
one to define a virtual order on protein backbones such that each consecutive
quadruplet of atoms induces a 4-clique with the property that at most one of its
edges is weighted by a finite set of values (instead of a single value) [23]. Under
these conditions, the resulting graph can be seen as a collection of finitely many
KDMDGP graphs, each of which is rigid.

The present work falls into a sequence of works about solving realizability
problems using the BP approach. In this paper we make an important theoret-
ical contribution about the structure of the solution set of KDMDGP instances:
given any solution x, the others can all be obtained as “partial reflection” op-
erators applied to x. This can also be used to speed up the time to find X , as
shown in [33], where we apply some of the ideas of this paper to the problem of
finding 3D realizations of protein backbones.
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The rest of this paper is organized as follows. We recap some rigidity defini-
tions and results (Sect. 2) and sketch the Branch-and-Prune (BP) algorithm for
finding KDMDGP graph realizations (Sect. 3). We then give formal descriptions
of the KDMDGP and of the BP algorithm (Sect. 4). Next, we study the geomet-
rical properties of the BP search tree (Sect. 5), and prove that the number of
solutions of YES instances of the KDMDGP is a power of two with probability
one (Sect. 6). We exhibit a (zero measure) family of counterexamples to the
“power of two” conjecture in Sect. 7, and finally we extend our results to the
application-specific setting of protein conformation (Sect. 8).

2. Rigidity

Two distance spaces (S, d) and (S′, d′) in RK are congruent when there
exists an affine operator T : RK → RK such that the restriction of T to S is a
bijection S → S′ and d(p, q) = d′(Tp, T q) for all p, q ∈ S. Such operators are
also called isometries. A framework is a pair (G, x) where G = (V,E, d) is a
simple undirected graph weighted by d : E → R+ and x : V → RK is a valid
realization of G. A displacement of a framework (G, x) is a continuous function
y : [0, 1] → RK|V | such that y(0) = x and y(t) is a valid realization of G for
all t ∈ [0, 1]. A flexing of a framework (G, x) is a displacement y of (G, x) such
that y(t) is incongruent to x for any t ∈ (0, 1]. A framework is flexible if it has a
flexing, otherwise it is rigid. The rigidity matrix R of a framework (G, x) has |E|
rows and K|V | columns; the row indexed by {u, v} ∈ E has exactly 2K nonzero
components, namely xuk − xvk in the columns indexed by (u, k) and xvk − xuk
in the columns indexed by (v, k) (for k ≤ K). The complete rigidity matrix R̄
refers to the case where G is the full clique on V . The rigidity matrix is used
to give a stronger definition of rigidity (namely that of infinitesimal rigidity)
which is used in statics [47, 48]. Intuitively, infinitesimally rigid structures are
resilient to collapse when certain forces are applied to them. Since for the kinds
of frameworks considered in this paper rigidity and infinitesimal rigidity are
equivalent [46, p. 23], we only limit the discussion to rigidity.

As defined above, rigidity is a property of frameworks rather than of graphs.
It turns out, however, that if a graph has a certain type of rigid framework,
then all its frameworks are rigid. More precisely, if x is a valid realization whose
components are all algebraically independent over Q (i.e. there is no polynomial
over Q having all the components as roots), then x is called a generic realiza-
tion: if (G, x) is rigid, then all generic realizations of G are rigid, and we can
then say that G is a rigid graph. This statement implicitly assumes that G is
not weighted: in other words, a graph is rigid if its rigidity properties depend
on the graph topology itself rather than the edge weight function, apart per-
haps from a set of edge weight functions which have at most the cardinality of
algebraic relations over Q. Since the latter is a countable cardinality, whereas
the set of all edge weight functions is uncountable, that is another way of say-
ing that almost all edge weight functions yield a rigid framework if the graph
is rigid. Having said that, the definition of generic realization given above is
too stringent. Typically, rigid graphs might fail to yield rigid frameworks for
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edge weight functions which cause (K + 1)-cliques to be embedded in a space
of dimension < K (e.g. a 3-cycle embedded in R2 as three collinear points).
Graver’s definition of a generic realization [13] makes this concept precise: each
nontrivial minor of the complete rigidity matrix must be nonzero. This implies
that there is no need for calling in the very strong requirement of full algebraic
independence over Q: it suffices to make sure that the components of the real-
ization giving rise to a rigid framework do not satisfy the polynomial equations
engendered by the nontrivial minors of the complete rigidity matrix. If G has
such a realization, then the graph is rigid. Also see Sect. 3.1.

Graphs with a unique realization are known as uniquely or globally rigid.
Global rigidity recently generated several theoretical advances, such as a polyno-
mial algorithm for realizing such graphs using the duality theory of Semidefinite
Programming (SDP) [45] and the equivalence between unique K-localizability
and generic universal rigidity [49] (among others). Unique K-localizability and
universal rigidity are strong forms of unique realizability, which also involve
uniqueness in higher dimensions. All these interesting properties arise in the
study of localization of sensor networks, and are based on two application-driven
requirements: unique realizability and the presence of a set of vertices (called
beacons or anchors) whose realization is known a priori. Since at any time the
network has exactly one localization to be determined, graphs should be dense
enough so that they guarantee some unique realizability property. Moreover,
most sensor networks are linked to other communication networks by means of
routers (representing the anchors) whose position in space is fixed and known.
When there are sufficiently many anchors in general positions, one can guaran-
tee that any valid realization of the network can only take place in the full K
space, and not in any smaller dimensional one. The application of rigidity to
protein fails to provide either anchors or unique realizability guarantees. Quite
on the contrary, it is interesting, from a biological point of view, to have a list
of possible bio-polymers that a given set of distances can realize.

2.1. Henneberg type I graphs

Several important results on the rigidity of frameworks date from the end
of the XIX century [8, 41], motivated by the construction of buildings whose
supporting structures consisted of bars and joints. It appears from the literature
of the period that verifying rigidity was an inductive process: one would start
with a rigid structure and then add rigid components to it, so that the resulting
structure would also be rigid. Henneberg [17] was the first to formalize two
inductive steps for verifying rigidity. The first of these (known as Henneberg
type I step [46, 18]) can be paraphrased (and generalized) as follows: if there
is an order on V such that the first K vertices have a known realization, and
such that every subsequent vertex is adjacent to at least K predecessors, then
the graph almost certainly has a rigid realization in RK . This idea was already
present in the works of Saviotti [40, Sect. XI, p. 57 and Fig. 30, pl.XV]. A similar
order, which asks for the first K vertices to be a clique and each subsequent
vertex to be adjacent to at least K predecessors, is called discretization vertex
order, and the problem of finding such an order given a graph is known as
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the Discretization Vertex Order Problem (DVOP) [20]. The DVOP is
NP-complete, but only because the K-clique problem trivially reduces to it.
Once the initial K-clique is known, a greedy procedure can find the order or
decide it does not exist. The DVOP is therefore in P for fixed K. Because in
Henneberg type I orders a partial realization is given for the first K vertices,
it follows that the initial K-clique is known in advance; finding such an order
in a graph is therefore also in P. Graphs with a Henneberg type I vertex order
are also called Henneberg type I graphs. It is shown in [34] that graphs with a
discretization vertex order are rigid; the realization problem for such graphs is
known as the Discretizable Distance Geometry Problem (DDGP) and
is NP-hard [34]. We remark that requiring that each vertex should have at least
K + 1 adjacent predecessors (instead of only K) yields a K-trilateration order:
graphs with such orders are called K-trilateration graphs and can be realized in
polynomial time [12]. It is interesting that the difference between the definitions
of Henneberg type I orders andK-trilateration orders is as small as possible, and
yet marks the distinction between an easy and a hard corresponding realization
problem.

In the rest of this paper we are concerned with a particular type of Henneberg
type I orders, namely those that ensure that the next vertex is adjacent to
exactly K immediate predecessors, and perhaps also to other (not necessarily
immediate) ones. We call these KDMDGP orders: they are important in using
distances to find the conformation of proteins in space. As mentioned above, this
restriction on the order does not make the corresponding realization problem any
easier from the worst-case computational complexity standpoint [22]. It does
guarantee rigidity, however, and it allows us to devise a recursive procedure for
finding all incongruent realizations. Moreover, as we shall see, it also allows us
to determine that the number of these realizations is a power of two for almost
all edge weight functions.

3. Sphere intersections and Branch-and-Prune

Henneberg type I graphs are rigid because they enjoy the Sphere Intersection
Property (SIP). Let v ∈ V and suppose the first v−1 vertices have already been
realized in RK : we know then that the v-th vertex is adjacent to at least K
predecessors. Consider K of these. Since they precede v in the order, their
position in RK is already known by induction. Their distance to v is known
because they are adjacent to v. Therefore, the position for v can only belong to
the intersection of K spheres centered at these K adjacent predecessors. Since
the intersection of K spheres in RK generally consists of either 0 or 2 points
(see Fig. 2), no vertex can ever be placed in an uncountable set of positions
in RK , as the definition of flexing would imply. Here, the term generally has
a meaning similar to the one given by Graver’s definition of generic rigidity
[13]: the set of edge weight functions for which the statement fails to hold has
countable cardinality. Since such sets have Lebesgue measure 0 in RK , we also
speak of this statement holding with probability 1. In this particular case, the set
of K-tuples of spheres for which the SIP does not hold has Lebesgue measure
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Figure 2: General case for the intersection P of three spheres in R3.

0 in the set of all possible K-tuples of spheres (see Fig. 3). See Sect. 3.1 for a

Figure 3: When three adjacent predecessors are collinear in R3, the sphere intersection (the
thick black circle) might have uncountable cardinality.

more complete discussion about probability 1 statements.
The SIP can be exploited algorithmically by a recursive algorithm which will

test in turn each of the two possible positions for the current vertex. If they yield
valid partial realizations, then the algorithm calls itself recursively and tries to
place the next vertex. This algorithm is called Branch-and-Prune (BP) [28].
The branching occurs because at each rank in the vertex order, two positions
are possible. Pruning occurs when a vertex is adjacent to more than K adjacent
predecessors: when a proposed position for the v-th vertex is inconsistent with
some adjacent predecessor, recursion on the next vertex does not occur. The
BP algorithm was originally only defined for KDMDGP graphs [21, 22], but was
then extended to several other settings: for Henneberg type I graphs [34], for
certain types of interval-weighted graphs related to proteins [32, 26, 23], and
for the purpose of overcoming a technical limitation of NMR machinery, which
generally only provides reliable distance measures for pairs of hydrogen atoms
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[35, 24, 25, 27]. A publically available BP implementation is described in [38].
The current computational state-of-the-art for the BP algorithm is attained with
a parallel BP implementation [37, 36], which can realize a protein backbone of
104 atoms (183444 distances) in R3 in 1.57s of CPU time on a cluster of 64
nodes.

It is easy to see that the BP yields a worst-case exponential behaviour,
occurring when each vertex has exactly K adjacent predecessors. In such a
case, the BP search tree is a full binary tree of height at most |V | and width
2|V |−K attained at the last level. Paths of length |V | from the root to a leaf
node encode realizations of the input graph and hence denote YES instances
of the KDMDGP, whereas a tree with height strictly less than |V | certifies a
NO instance. In practice, however, the BP outperforms its continuous search
competitors in both efficiency and reliability [22]. One particularly useful feature
of BP is that, because the search is complete, it finds the setX of all incongruent
realizations for a given graph, whereas most other DGP algorithms only find one
realization. As already remarked, this is useful in biology because it allows one
to list all the bio-polymers that are consistent with a particular set of distances.

In all our computational tests on KDMDGP instances, we observed that the
number of incongruent realizations is a power of two: this comes to no surprise in
the exponential worst case mentioned above, but there is no apparent reason why
this should be the case when adjacent predecessors also include other vertices
than the K immediate predecessors; and, indeed, in Sect. 7 we exhibit a set of
counterexamples to the conjecture that all YES instances of the KDMDGP have
power of two solutions. Yet, the computational trend remained unexplained.
The main contribution of this paper is a proof that the set of YES instances
of the KDMDGP such that |X | is a power of two has Lebesgue measure 1 in
the set of all YES instances of the KDMDGP. The statement is based on the
assumption that we consider edge weight functions whose range consists of real
numbers. We also partially extend this result to graphs which are more realistic
protein models.

3.1. Statements holding with probability 1

In the following, we assume that the probability of any point of RK belonging
to any given subset of RK having Lebesgue measure zero is equal to zero. Based
on this assumption, when we state “(∀p ∈ P F (p)) with probability 1” for a
certain well-formed formula F with a free variable ranging over a set P having a
strictly positive Lebesgue measure, we really mean that there exists a Lebesgue
measurable subset Q ⊆ P , with Lebesgue measure equal to that of P , such that
∀p ∈ Q F (p). Equivalently, statements holding with probability 1 should be
taken to mean that the set of KDMDGP instances and partial realizations x for
which the statements do not hold has Lebesgue measure zero in the set of all
KDMDGP instances and partial realizations.

In this paper, zero Lebesgue measure sets are associated to cases that occur
whenever pairs of real numbers (such as components of vectors) happen to be
equal: we remark that affine subspaces of RK defined by linear equations all
have zero Lebesgue measure in RK . For example, the set of all pairs of points
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y, y′ ∈ RK having t equal components (say, the first t), is described by the t
linear equations ∀j ≤ t (yj = y′j) and therefore has zero Lebesgue measure in

the set of all pairs of points in RK . In other words, when uniformly sampling
pairs of points randomly from RK , the event that they should end up having
at least one equal component has probability zero. This is similar to the spirit
of Graver’s definition of genericity using the nontrivial minors of the complete
rigidity matrix [13]. The guiding principle in most of the results in this paper
is that whenever a logical case of a proof requires two (or more) real values,
sampled in a uniform distribution over a set of positive Lebesgue measure, to
be equal, then this case has probability 0 to occur. The sampling usually refers
to choosing instances randomly from the KDMDGP set, and more precisely to
the real weights assigned to the edges of G. This directly translates to a uniform
sampling over vectors of RK (the components of the realizations associated to
each instance).

We remark that the notion we consider is different from the usual generic-
ity notion employed in rigidity theory [6], which requires distances to be alge-
braically independent over Q. In order to solve the KDMDGP practically, we
deal with instances whose edge weights are encoded in floating points, which
are certainly not algebraically independent over Q (since they are themselves a
subset of Q). For example, Lemma 4.2 would not hold under algebraic indepen-
dence (the intersection of K+1 “generic spheres” in RK is empty), but it holds
under our weaker requirement.

4. Formal definitions: the KDMDGP and the BP algorithm

For a set U = {xi ∈ RK | i ≤ K + 1} of points in RK , let D be the
symmetric matrix whose (i, j)-th component is ‖xi − xj‖2 for all i, j ≤ K + 1

and let D′ be D bordered by a left (0, 1, . . . , 1)� column and a top (0, 1, . . . , 1)
row (both of size K + 2). Then the Cayley-Menger formula states that the

volume ∆K(U) of the K-simplex on U is given by ∆K(U) =
√

(−1)K+1

2K(K!)2 |D′|.
The strict simplex inequalities are given by ∆K(U) > 0. For K = 2, these
reduce to strict triangle inequalities. We remark that only the distances of the
simplex edges are necessary to compute ∆K(U), rather than the actual points
in U ; the needed information can be encoded as a (K + 1)-clique with these
distances as edge weights.

Let n = |V | and m = |E|. For all v ∈ V , let N(v) = {u ∈ V | {u, v} ∈ E}
be the star of vertices around v (also called the adjacencies of v); for a directed
graphs (V,A), where A ⊆ V ×V , we denote the outgoing star by N+(v) = {u ∈
V | (v, u) ∈ A}. For an order < on V , let γ(v) = {u ∈ V | u < v} be the
set of predecessors of v, and let ρ(v) = |γ(v)| + 1 be the rank of v in <. For
V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′. For a finite set
M , let P(M) be its power set. For a sequence x = (x1, . . . , xn) and a subset
U ⊆ {1, . . . , n} we let x[U ] be the subsequence of x indexed by U . If x is an
initial subsequence of y, then y is an extension of x. We denote a clique on q
vertices by Kq.
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generalized Discretizable Molecular Distance Geometry
Problem (KDMDGP). Given an undirected graph G = (V,E), an
edge weight function d : E → R+, an integerK > 0, a subset V0 ⊆ V
with |V0| = K, a partial realization x̄ : V0 → RK valid for G[V0],
and a total order < on V such that for each v with ρ(v) > K there
is a set Uv ⊆ N(v) ∩ γ(v) with the following properties:

{v ∈ V | ρ(v) ≤ K} = V0; (2)

∀u ∈ Uv (ρ(v) −K ≤ ρ(u) ≤ ρ(v) − 1); (3)

∀v ∈ V � V0 (G[Uv] = KK ∧ ∆K−1(Uv) > 0), (4)

decide whether there is a valid extension x : V → RK of x̄.

Condition (2) requires the first K vertices to induce a K-clique in G. Condi-
tion (3) requires the K immediate predecessors of v to be also adjacent to it.
Condition (4), which was not mentioned in the informal discussion in Sect. 1-
2, prevents the realizations x of G from being flexible because of an algebraic
dependence on the components of x. Specifically, requiring the Cayley-Menger
determinants to be strictly positive implies that no K-clique determined by im-
mediate predecessor will embedded as a volume 0 simplex in RK−1 (Fig. 3 shows
the effect of a triangle embedded in a line instead of in a plane: the SIP fails to
hold).

Two further remarks are in order.

• Whenever vertex v is being considered in the BP algorithm, all its pre-
decessors have already been placed. Hence, all of the distances between
all predecessors are already known; thus, the BP can also solve instances
for which G[Uv] is not the full K-clique, although they are not formally
in the KDMDGP.

• Edge weights are real numbers in KDMDGP instances: this naturally
makes the Turing machine model difficult to apply. We observe, how-
ever, that it is not known whether the DGP is in NP, since the certifying
realizations might have irrational components even in the case when the
weights are restricted to be integer (just take an equilateral triangle with
unit weights). In practice, our algorithms work with floating point num-
bers, so whenever we say “exact” we mean “exact in theory”. In practice,
solutions will be floating point approximations of the exact solutions. This,
however, holds for all existing methods targeting DGP-type problems.

4.1. Branching and Pruning

Let G be a KDMDGP instance. Consider v ∈ V with rank ρ(v) = i > K,
let Gv = G[γ(v) ∪ {v}] and x be a valid realization of G[γ(v)]. We characterize
the number of extensions of x valid for Gv in the following lemmata (which also
hold for the DDGP). Lemma 4.1 (resp. 4.2) essentially state that, under the
given conditions, G[{v} ∪ (N(v) ∩ γ(v))] is a rigid (resp. uniquely rigid) graph.
The results in this section are not new, but we list the proofs here because these
Lemmata form the basic toolbox for what is to follow.
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4.1 Lemma
If |N(v) ∩ γ(v)| = K then there are at most two distinct extensions of x that
are valid for Gv. If one valid extension exists, then with probability 1 there are
exactly two distinct valid extensions.

Proof. Since |N(v)∩γ(v)| = K, Uv = N(v)∩γ(v) and v is at the intersection of
exactly K spheres in RK (each centered at xu with radius duv, where u ∈ Uv).
The position z ∈ RK of v must then satisfy:

∀u ∈ Uv ‖z − xu‖ = duv ⇒ ‖z‖2 − 2xu · z + ‖xu‖2 = d2uv. (5)

As in [11], we choose an arbitrary w ∈ Uv, say w = max< Uv, and subtract from
the row of Eq. (5) indexed by w the other rows of (5), obtaining the system:

∀u ∈ Uv � {w} 2(xu − xw) · z = (‖xu‖2 − d2uv)− (‖xw‖2 − d2wv)
‖z‖2 − 2xw · z + ‖xw‖2 = d2wv.

}
(6)

System (6) consists of a set of K − 1 linear equations and a single quadratic
equation in the K-vector z. We write the linear equations as the system Az = b,
where the (u, j)-th component of A is 2(xuj − xwj), the u-th component of b is
‖xu‖2 − ‖xw‖2 − d2uv + d2wv, A is a (K − 1)×K matrix and b ∈ RK−1. By the
strict simplex inequalities, A has full rank (for otherwise the linear dependence
condition

∑
u�=w ξu(xu − xw) = 0, for some coefficients ξu, implies that xw is in

the span of {xu | u ∈ Uv}, and hence that ∆K−1(Uv) = 0); so without loss of
generality assume that the square matrix B formed by the firstK−1 columns of
A is invertible. Let zB be the vector consisting of the first K− 1 components of
z; then the linear part (first K − 1 equations) of (6) yields zB = B−1(b−NzK)
as a function zB(zK) of zK , where N = 2(xuK − xwK | u ∈ Uv � {w}) ∈ RK−1.
After replacement of zB in (6) with zB(zK), we obtain the following quadratic
equation in zK :

(‖N̄‖2 +1)z2K − 2((b̄+ xwB)N̄ + xwK)zk +(‖xwB − b̄‖2 + x2wK − d2wv) = 0, (7)

where b̄ = B−1b and N̄ = B−1N . If the discriminant of (7) is negative then
no extension of x̄ to v is possible and the result follows. If the discriminant
is nonnegative, (7) has solutions z′K , z

′′
K yielding points z′ = (zB(z

′
K), z′K) and

z′′ = (zB(z
′′
K), z′′K) ∈ RK , which are distinct with probability 1 because the

discriminant is zero with probability 0. The extended realizations, distinct with
probability 1, are given by (x, z′) and (x, z′′). �

4.2 Lemma
If |N(v) ∩ γ(v)| > K then, with probability 1, there is at most one extension of
x.

Proof. Consider a subset S ⊆ N(v) ∩ γ(v) such that |S| = K + 1 and S ⊇ Uv.
Either there is at least one point xv such that (x, xv) is a realization of G[S∪{v}]
that is valid w.r.t. the system:

∀u ∈ S
∑
k≤K

(x2vk − 2xukxvk + x2uk) = d2uv, (8)
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or the system has no solution. In the latter case, the result follows, so we assume
now that there is a point xv satisfying (8). Since the points xu are known for all
u ∈ S, (8) is a quadratic system with K variables and K + 1 equations. As in
the proof of Lemma 4.1, we derive an equivalent linear system from (8). Since
d satisfies the strict simplex inequalities on Uv with probability 1 and S ⊇ Uv,
by [7] {xu | u ∈ S} are not co-planar and the system has exactly one solution,
as claimed. �

4.3 Lemma
With the notation of Lemma 4.1, if x̄ is a valid realization for G[Uv], then z

′′ is
a reflection of z′ with respect to the hyperplane through the K points of x̄.

Proof. Any sphere in RK is symmetric with respect to any hyperplane through
its center; so the intersection of up toK spheres in RK is symmetric with respect
to the hyperplane containing all the centers. �

4.4 Remark
Reflections with respect to hyperplanes are isometries, and can therefore be

represented by linear operators. If a ∈ RK is the unit normal vector to a
hyperplane H containing the origin, then the reflection operator R0 w.r.t. H
can be expressed in function of the standard basis by the matrix I − 2aa�,
where I is the K ×K identity matrix [5]. Let H be a hyperplane with equation
a�x = a0 (with a0 �= 0) and ai, for some 1 ≤ i ≤ K, be the nonzero coefficient
of smallest index in a. Then, the reflection operator R acting on a point p ∈ RK

w.r.t. H is given by R(p) = R0(p− a0
ai
ei)+

a0
ai
ei, where ei ∈ RK is the unit vector

with 1 at index i and 0 elsewhere: we first we translate p so that we can reflect
it using R0 w.r.t. the translation of H containing the origin, then we perform
the inverse translation of the reflection.

4.2. The BP search tree

We denote the BP binary search tree by T = (V ,A). The tree is directed
from the root to the leaf nodes, which are triplets α = (x(α), λ(α), µ(α)). In-
formally, x(α) is a realization from the root to node α, λ(α) is 0 or 1 according
as to whether α is a left or right subnode of its parent, and µ is � if x(α) is
feasible and � otherwise.

More formally, for α ∈ T we denote by p(α) the unique path from the root
node r of T to α, and by α− the unique parent node of α (unless α = r, in which
case we define r− = r). The symbol x(α) is defined recursively to denote an
extension of the realization x− = x(α−) found on p(α−). The symbol λ(α) ∈
{0, 1} distinguishes whether α is a “left” or a “right” subnode of α−. More
precisely, let α be a node at level i in T , v = ρ−1(i), x̄ be a partial realization
of G[Uv], and a

�
v x = av0 be the equation of the hyperplane through the points

of x̄, which is (K − 1)-dimensional by (4). Assuming that u = ρ−1(i − 1) and
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av ∈ RK is oriented so that av · au ≥ 0; then:

λ(α) =

{
0 if a�v x(α)i ≤ av0
1 if a�v x(α)i > av0.

(9)

Lastly, µ(α) = � if x(α) is a valid extension of x−, in which case the node is
said to be feasible, and µ = � otherwise. This allows us to retrieve the set X of
all valid realizations of G by simply traversing T backwards from the leaf nodes
marked � up to r.

Although the notation we introduced to describe the BP algorithm looks
overly formal and complicated, it allows us to give rigorous proofs of subsequent
material.

We remark that Alg. 1 differs from the original BP formulation [28] because
it applies to K dimensions and explicitly stores several details of the binary
search tree.

4.5 Lemma
At termination of Alg. 1, X contains all valid realizations of G extending x̄.

Proof. Z (in Step 17) exists with probability 1 by Lemma 4.1. Every realization
in X is valid because of Steps 17 and 19-20. No other valid extension of x̄ exists
because of Lemmata 4.1-4.2. �

The realizations in X are incongruent apart perhaps from between 1 and n−K
reflections along the hyperplane defined by x̄1, . . . , x̄v. The exact number of
these reflections depends on the order on V and the edges in G.

We now partition V in pairwise disjoint subsets V1, . . . ,Vn where for all
i ≤ n the set Vi contains all the nodes of V at level i of the tree T . We show in
Prop. 4.6 that no level of T has two distinct feasible nodes having respectively
one and two feasible subnodes.

4.6 Proposition
With probability 1, there is no level i ≤ n having two distinct feasible nodes
β, θ ∈ Vi such that |{α ∈ N+(β) | µ(α) = �}| = 1 and |{α ∈ N+(θ) | µ(α) =
�}| = 2.

Proof. We show that for all i ≤ n the event of having two distinct nodes
β, θ ∈ Vi, with ρ−1(i) = v, such that β has one feasible subnode and θ has two
has probability 0. Consider Tv = N(v) ∩ γ(v): if |Tv| = K then, by Lemma
4.1, β should have exactly two feasible subnodes with probability 1. Since by
hypothesis it only has one, the event |Tv| = K occurs with probability 0. Since
|Tv| ≥ K by (4), the event |Tv| > K occurs with probability 1. Thus by
Lemma 4.2 there is, with probability 1, at most one valid realization extending
the partial realization at v, which means that the two feasible subnodes of θ
represent the same realization, an event that occurs with probability 0. �

We remark that Prop. 4.6 also holds for the DDGP, provided Uv is chosen in
Alg. 1 as any subset of N(v) ∩ γ(v) satisfying the constraints of Eq. (4).
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Algorithm 1 The Branch and Prune algorithm.

Require: Partial realization x̄ of first K vertices of G
Ensure: Set X of valid realizations of G
1: Let α = (x̄1, 0,�) and α′ = (x̄1, 1,�)
2: Initialize V = {α, α′} and A = {(r, α), (r, α′)}
3: for 1 < i ≤ K do
4: Let α = (x̄i, 0,�), α′ = (x̄i, 1,�), β = (x̄i−1, 0,�)
5: Let V ← V ∪ {α, α′} and A ← A∪ {(β, α), (β, α′)}
6: end for
7: BranchAndPrune(K + 1, (x̄K , 0,�))
8: Let X = {x(θ) | θ ∈ V ∧ |N+(θ)| = 0 ∧ µ(θ) = �}
9: stop

10:

11: function BranchAndPrune(i, β):
12: if i > n ∨ µ = � then
13: return
14: end if
15: Let v = ρ−1(i)
16: Compute the equation a�v x = av0 of the hyperplane through x[Uv]
17: Let Z = {z′, z′′} be extensions of x(β) to v, and Z ′ = Z
18: for z ∈ Z do
19: if ∃{u, v} ∈ E ‖x(β)u − z‖ �= duv then
20: Let Z = Z � {z}
21: end if
22: end for
23: if Z = {z′, z′′} then
24: if a�v z

′ ≤ av0 then
25: Let α = (z′, 0,�), α′ = (z′′, 1,�)
26: else
27: Let α = (z′′, 0,�), α′ = (z′, 1,�)
28: end if
29: else if Z = {z} then
30: if a�v z ≤ av0 then
31: Let α = (z, 0,�), α′ = (Z ′ � {z}, 1,�)
32: else
33: Let α = (z, 1,�), α′ = (Z ′ � {z}, 0,�)
34: end if
35: else
36: return
37: end if
38: Let V ← V ∪ {α, α′} and A ← A∪ {(β, α), (β, α′)}
39: for θ ∈ N+(β) such that µ(θ) = � do
40: BranchAndPrune(i+ 1, θ)
41: end for
42: return
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Lastly, we emphasize the fact that for all � ∈ {i, . . . , n} and for all α ∈ V�
the set p(α) ∩Vi has a unique element, as it contains the unique node at level i
on the path from α to the BP tree root node.

5. Geometry in BP Trees

The most important result of this section is that, for any valid realization
y ∈ X , if the BP tree branches at level i = ρ(v) on the path to y and both
branches continue to the last level, then the realization obtained by reflecting
all the points of y past the (i− 1)-st vertex through the hyperplane defined by
y[Uv] is also valid with probability 1. We remark that the results in this section
only apply to the KDMDGP (not to the DDGP, as shown in the counterexample
of Fig. 8).

We need to emphasize those BP branchings which carry on to feasible leaf
nodes along both branches. For y ∈ X and a vertex v ∈ V � V0 we denote
Υ(y, v) the following property:

Υ(y, v): there are feasible leaf nodes β, β′ ∈ Vn such that x(β) = y,
p(β) ∩ Vρ(v)−1 = p(β′) ∩ Vρ(v)−1 and p(β) ∩ Vρ(v) �= p(β′) ∩ Vρ(v).

In other words, Υ(y, v) holds whenever p(β) ∩ Vρ(v)−1 contains a feasible node
with two feasible subnodes leading to different valid realizations.

5.1. Partial reflection operators

With Υ(y, v) true, we letRv be the Euclidean reflection operator with respect
to the hyperplane through y[Uv] (as discussed in Remark 4.4). Define

R̃v = Iρ(v)−1 × (Rv)n−ρ(v),

i.e., R̃vy = (y1, . . . , yρ(v)−1, R
vyρ(v), . . . , R

vyn) for any realization y. This is a
partial reflection of y which only acts on vertices past rank ρ(v)− 1.

We remark that the matrix representing Rv could change depending on y.
Since we wish Rv to represent the effect of a reflection at level v rather than
the reflection matrix itself, we introduce the following technicality. Consider an
equivalence relation on the set of all possible (not necessarily feasible) realiza-
tions V → RK extending x̄. Let Ed ⊆ E be the set of edges {u, v} ∈ E such that
|ρ(v)−ρ(u)| ≤ K, and Gd be the subgraph of G defined by Ed. Two realizations
y, y′ are equivalent if both are valid for Gd. Now Rv can be formally defined as
the set of matrices representing Rv over all realizations of the same equivalence
class. This definition carries over to R̃v.

The following is an easy corollary to Lemma 4.3, and states, with the formal
notation introduced for Alg. 1, that two feasible subnodes of a feasible node are
associated with partial realizations whose last components are K-vectors which
are reflections of each other.

5.1 Corollary
Let α ∈ Vi−1 for some i > 1, v = ρ−1(i) and N+(α) = {η, β} with µ(η) =
µ(β) = �. Then x(η)v = Rvx(β)v .
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5.2. Probability of conditional events

In most subsequent results, we assume the considered KDMDGP instance to
be a YES one, so that probabilities are conditional to this event.

The following remark is in order.

5.2 Remark
If Υ(y, v) holds for some y ∈ X and v ∈ V � V0, then by definition there are

feasible leaf nodes in the BP tree, which implies that the considered KDMDGP
instance is YES.

An important consequence of Remark 5.2 is that all statements assuming Υ(y, v)
and claiming a result with probability 1 implicitly also assume that the proba-
bility is conditional to the event of the KDMDGP instance being a YES one. In
particular, since the instance is YES, certain points must be placed at certain
distances with probability 1 (notably, at distances satisfying the equations (1)),
for otherwise the instance would be NO. This is evident in Prop. 5.4, Cor. 5.6,
Cor. 5.7, and Thm. 5.9, where we state that certain real scalars and vectors must
belong to certain finite sets with probability 1. The sense of these assertions,
in this context, is that the Lebesgue measure of the set of YES instances not
satisfying the result is zero in the set of all YES instances.

5.3. Reflections in the BP tree

We build towards the main result of the section; we start with a technical
lemma which relates the position of reflected points in the realizations with the
“left/right” λ-components of the corresponding BP node triplets.

5.3 Lemma
Let α ∈ Vi−1 for some i > 1 such that N+(α) = {η′, β′}, let u = ρ−1(i), let v
with ρ(v) = � be such that � > i, and consider two feasible nodes η, β ∈ V� such
that {η′} = p(η)∩Vi and {β′} = p(β)∩Vi. Further, ∀ i ≤ j ≤ � let w = ρ−1(j),
p(η)∩Vj = {η′′} and p(β)∩Vj = {β′′}. Then, with probability 1, the following
statements are equivalent:

(i) ∀ i ≤ j ≤ � x(β′′)w = Rux(η′′)w;

(ii) ∀ i ≤ j ≤ � λ(η′′) = 1− λ(β′′).

Proof. Let a0v
�
x = a0v0, a

1
v
�
x = a1v0 be the equations of the hyperplanesHη, Hβ

defined respectively by x(η)[Uv ] and x(β)[Uv ], with the normals oriented as
explained in Remark 4.4. We prove by induction on � − i that the following
statement is equivalent to (i) and (ii):

(iii) for all i ≤ j ≤ �, x(β′′)w = Rux(η′′)w and au · a0w = au · a1w, where a0w
and a1w are the normal vectors of the hyperplanes Hη′′ and Hβ′′ oriented
as usual.
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The induction starts because, if � = i, then (i), (ii), and (iii) hold simultane-
ously. Indeed, η = η′ and β = β′, hence x(β)v = Rux(η)v (Lemma 4.3) and
λ(η) = 1 − λ(β) (Alg. 1, Steps 25 and 27). In addition, we have Hη = RuHβ ,
therefore |au · a0v| = |au · a1v|. Because the orientation of a0v, a

1
v is such that

au · a0v, au · a1v ≥ 0, the result holds. Assume that the equivalence stated above
holds for level � − 1, we show that it is still the case at level �. In the sequel,
denote t = ρ−1(�− 1).

(iii) ⇒ (i): trivial.

(i)⇒ (ii). Suppose for all i ≤ j < �, x(β′′)w = Rux(η′′)w and λ(η′′) = 1−λ(β′′)
(by the induction hypothesis, both statements are equivalent). Hence, Hη′′ =
RuHβ′′ holds for all j, because the K points generating the hyperplanes either
belong to Hα, or are reflections of each other. This is true in particular if we
choose η′′, β′′ ∈ V�−1. In addition, if we use the induction hypothesis (i) ⇒
(iii), we have au · a0t = au · a1t , so a0t , a1t are directed similarly w.r.t au, and
hence λ(η) = 1− λ(β) if and only if x(β)v = Rux(η)v (see Fig. 4).
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η
λ=0

β
λ=1

x(β)vx(η)v
reflection

Hα

Hη′′Hβ′′

η′′ β′′

au a1v
a0v

(b) a0v
�
x(η)v > a0v0 and a1v

�
x(β)v < a1v0

Figure 4: Proof of Lemma 5.3: Case (4a) shows the contradiction deriving from λ(η) = λ(β) =
0 (or x(β)v �= Rux(η)v), and case (4b) the situation that actually occurs.

(ii)⇒ (iii). Suppose for all i ≤ j ≤ �, λ(η′′) = 1−λ(β′′). By the previous result,
we also know that for all i ≤ j ≤ �, x(β′′)w = Rux(η′′)w. It remains to prove
that au ·a0v = au ·a1v, i.e. that the angles θ0v and θ1v formed by these vectors have
the same cosine. Notice once again that Hη = RuHβ. By induction, we know
that the angles θ0t , θ

1
t formed by au and respectively a0t , a

1
t , have same cosine.

With probability 1, the hyperplanes Hη, Hβ are not parallel, hence their normal
vectors cannot be identical, therefore, θ0t = −θ1t (see the illustration on Fig. 5).
Denote θ0, θ1 the angles formed respectively by a0t and a0v, and by a1t and a1v.
We also have, Hη′′ = RuHβ′′ , where η′′, β′′ ∈ V�−1, hence the normal vectors of
these 4 hyperplanes are also symmetric, which implies θ0 = −θ1 or θ0 = π− θ1.
By the definition of a0v and a1v (page 12), since the scalar products are positive,
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Hα

au

a0t

θ0t

a0v

θ0

θ0v

a1t

θ1t

a1v

θ1

θ1v

Figure 5: Proof of Lemma 5.3: illustration of the fact that au · a0v = au · a1v.

−π/2 ≤ θ0, θ1 ≤ π/2, thus θ0 = −θ1. Therefore, θ0v = θ0t +θ
0 = −θ1t −θ1 = −θ1v,

which concludes this part of the proof. �

The following important proposition considers vertices u, v ∈ V such that
|ρ(v) − ρ(u)| = K + 1 and states that there are only two possible values of
‖yu − yv‖ if y is to be a feasible realization.

5.4 Proposition
Consider a subtree T ′ of T consisting of K+2 consecutive levels i−K−1, . . . , i
(where i ≥ 2K + 1), rooted at a single node η and such that all nodes at all
levels are marked �. Let p = 2K+1 and consider the set Y ′ = {yj | j ≤ p} of
partial realizations of G at the leaf nodes {αj | j ≤ p} of T ′, such that ∀j ≤
p (yj = x(αj)). Let u = ρ−1(i −K − 1) and v = ρ−1(i). Then with probability
1 there are two distinct positive reals r, r′ such that ‖yju − yjv‖ ∈ {r, r′} = Huv

for all j ≤ p.

Proof. Fig. 6 shows a graphical proof sketch for K = 2. With a slight abuse
of notation, for a vertex w ∈ V in this proof we denote by Rw the set of all
reflections at level w. We order the αj nodes (and the corresponding yj) so that
the action of Rv on (α1, . . . , αp) is the permutation

∏
jmod 2=1(j, j + 1). Let

t = ρ−1(i− 1). Since all nodes are feasible, ‖yjv − y
j
t‖ = dtv and ‖yju− y

j
t‖ = dut

for all j ≤ p (we remark that {t, v} and {u, t} must be in E by the KDMDGP
definition). With probability 1, the segments through yju and yjt (where j ≤ p)
do not respectively lie within the hyperplanes defining the reflections Rv; and
the same holds for the segments through yjt and yjv. Thus, there is a set Q of
positive reals r1, . . . , rp s.t. for all j ≤ p with jmod 2 = 1 we have ‖yju−yjv‖ = rj
and ‖yj+1

u − yj+1
v ‖ = rj+1, which shows |Q| ≤ p = 2K+1. By Lemma 5.3, the

action of Rt on (α1, . . . , αp) is the permutation
∏
jmod 4=1(j, j+3)(j+1, j+2):

this implies that rj = rj+3 and rj+1 = rj+2 for all j mod 4 = 1, which shows
|Q| ≤ p/2 = 2K . Inductively, for a vertex w s.t. i−K ≤ ρ(w) ≤ i− 1 the action
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t
v v
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r′

Figure 6: Proof of Prop. 5.4 in R2. The arrangement of three segments gives rise, in general,
to two distances r, r′ between root and leaves.

of Rw is
∏
jmod 2j−ρ(w)+1 (j, j + 2i−ρ(w)+1 − 1)(j + 1, j + 2i−ρ(w)+1 − 2) · · · (j +

2i−ρ(w) − 1, j + 2i−ρ(w)), which implies that |Q| ≤ 2K+1−i+ρ(w). Therefore
ρ(w) = i − K proves that |Q| ≤ 2. The case |Q| = 1 can only occur if yju, y

j
t

and yjv are collinear for all j ≤ p, an event that occurs with probability 0. �

Prop. 5.4 is useful in order to show that certain configurations of nodes within
T can only occur with probability 0.

5.5 Example
Consider a subtree T ′ of T like the one in Fig. 6 embedded in R2, and suppose
that all nodes at level u,w, t are marked �, and further that only one node
within α1, α2 is feasible, only one node within α3, α4 is feasible, only one node
within α7, α8 is feasible, and α5, α6 are both infeasible. This must be due to a
distance du′v with u′ ≤ u. Consider now a circle C completely determined by
its center at y1u′ = x(α1)u and its radius du′v; if C also contains the points at
the nodes α1, α4, α8 or the points at the nodes α2, α3, α7 then we must have
u′ = u, in which case also one of α5, α6 will be feasible (against the hypothesis).
And the probability that C should contain the points at the nodes α1, α3, α8 or
α2, α4, α7 is zero. Hence T ′ can only occur with probability 0.

We now generalize Prop. 5.4 to vertices u, v ∈ V with arbitrary rank differ-
ence.

5.6 Corollary
Consider a subtree T ′ of T consisting of K + h+ 1 consecutive levels i −K −
h, . . . , i (where i ≥ 2K + h and h ≥ 1), rooted at a single node η and such
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that all nodes at all levels are marked �. Let p = 2K+h and consider the set
Y ′ = {yj | j ≤ p} of partial realizations of G at the leaf nodes of T ′. Let
u = ρ−1(i − K − h) and v = ρ−1(i). Then with probability 1 there is a set
Huv = {rj | j ≤ 2h} of 2h distinct positive reals such that ‖yju − yjv‖ ∈ Huv for
all j ≤ p.

Proof. The proof of Prop. 5.4 can be generalized to span an arbitrary number
of levels by induction on q. Two distances rj1 , rj2 ∈ Huv can only be equal by
collinearity of some subsets of points, an event occurring with probability 0. �

The next results shows that, if {u, v} is an edge of E with rank difference
greater than K, the distance duv must belong to a certain finite set of values
whenever the instance is a YES one.

5.7 Corollary
Let y ∈ X and v ∈ V �V0 such that Υ(y, v) holds. If {u,w} ∈ E with u < v < w
and ρ(w) − ρ(u) > K then duw ∈ Huw with probability 1.

Proof. Since Υ(y, v) holds, then the KDMDGP instance is YES and there must
exist at least two feasible nodes at level ρ(w) in T . If duw �∈ Huw the probability
for a given sphere to contain two arbitrary points in RK is zero. Since the
instance is a YES one, however, the BP algorithm does not prune all feasible
nodes due to duw. By Cor. 5.6 the only remaining possibility (which therefore
occurs with probability 1) is that duw ∈ Huw. �

Next, reflecting single points on realizations yields points that lie on the
partial reflection of the whole realization.

5.8 Corollary
Let y ∈ X and v ∈ V � V0 such that Υ(y, v) holds. If u ∈ V with u > v then
Rvyu belongs to a valid extension of y[Uv].

Proof. If there is no edge {w, u} ∈ E with ρ(u)− ρ(w) > K the result follows
by Cor. 5.1. Otherwise, by Cor. 5.7, dwu ∈ Hwu. As in the proof of Prop. 5.4,
all pairs of points that are feasible with respect to dwu are reflections of each
other with respect to Rv. �

Finally, we state the main result of the section: if a KDMDGP instance has
a valid realization y and v is a vertex where a “valid branching” (in the sense
of the Υ(y, v) assumption) takes place in the BP algorithm, then the partial
reflection of y with respect to v is also a valid realization. This is surprising
as the Υ(y, v) assumption only states that one of the branches at v leads to y,
whilst the other might end up at any other valid realization; Thm. 5.9 actually
shows that the partial reflection of y with respect to v is valid.

5.9 Theorem
Let y ∈ X and v ∈ V � V0 such that Υ(y, v) holds. Then R̃vy ∈ X with
probability 1.
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Proof. We have to show that R̃vy is a valid realization for G. Partition E into
three subsets E1, E2, E3, where E1 = {{t, u} ∈ E | t, u < v}, E2 = {{t, u} ∈
E | t, u ≥ v} and E3 = {{t, u} ∈ E | t < v ∧ u ≥ v}. For E1, by definition
‖(R̃vy)t − (R̃vy)u)‖ = ‖Iyt − Iyu‖ = ‖yt − yu‖ = dtu as claimed. For E2,
‖(R̃vy)t − (R̃vy)u)‖ = ‖Rvyt − Rvyu‖ = ‖yt − yu‖ = dtu because Rv is an
isometry. For E3, we aim to show that ‖Iyt − Rvyu‖ = dtu. Since y ∈ X ,
by Lemma 4.5 there is a feasible leaf node α with x(α) = y. Because Υ(y, v),
∃η ∈ Vρ(v)−1 such that x(η) = y[γ(v)] and µ(β) = � for all β ∈ N+(η).
Let p(α) ∩ Vρ(v) = {β} for some β ∈ N+(η). Again by Υ(y, v), there is at
least one feasible leaf node α′ such that p(α′) ∩ Vρ(v) = {β′} for some β′ ∈
N+(η) � {β}. Let {ω} = p(α) ∩ Vρ(u) and {ω′} = p(α′) ∩ Vρ(u). Because ω′

is feasible, ‖x(ω′)t − x(ω′)u‖ = dtu; because η is an ancestor of both α and α′

at level ρ(v) − 1 and t < v, p(α′) ∩ Vρ(t) = p(α) ∩ Vρ(t), which implies that
x(ω′)t = x(ω)t = yt. Thus, ‖yt − yu‖ = dtu = ‖yt − x(ω′)u‖. Furthermore,
because β′ ∈ p(ω′) ∩ Vρ(v), x(ω′) extends x(β′). By Alg. 1, Steps 25 and 27,
λ(β) = 1 − λ(β′). Because α is feasible, at every vertex u′ ∈ V such that
ρ(v) ≤ ρ(u′) < ρ(u) the node θ ∈ p(α)∩Vρ(u′) has f ∈ {1, 2} feasible subnodes;
by Prop. 4.6, the node θ′ ∈ p(α′)∩Vρ(u′) also has f feasible subnodes. If f = 2,
by Cor. 5.8 and Lemma 5.3 it is possible to choose α′ so that λ(θ′) = 1 − λ(θ)
with probability 1; if f = 1 then by Alg. 1, Steps 31 and 33, all feasible nodes
inherit the same λ value as their parents, so λ(θ′) = 1 − λ(θ). By Lemma 5.3,
x(ω′)u = Rvyu with probability 1. Hence ‖yt −Rvyu‖ = dtu as claimed. �

6. Symmetry and number of solutions

Our strategy for proving that YES instances of the KDMDGP have power
of two solutions with probability 1 is as follows. We map realizations y ∈ X to
binary sequences χ ∈ {0, 1}n describing the “branching path” in the tree T . We
define a symmetry operation on χ by flipping its tail from a given component i
(this operation is akin to branching at level i, i.e. to a partial reflection applied to
realizations). We show that the cardinality of the group of all such symmetries
is a power of two by bijection with a set of binary sequences. Finally we prove
that the cardinality of the symmetry group is the same as |X |.

For all leaf nodes α ∈ V with µ(α) = � let χ(α) = (λ(β) | β ∈ p(α)); since
realizations in X are also in correspondence with leaf �-nodes of T by Alg. 1,
Step 8, χ defines a relation on X × {0, 1}n.

6.1 Lemma
With probability 1, the relation χ is a function.

Proof. For χ to fail to be well-defined, there must exist a realization x which is
in relation with two distinct binary sequences χ′, χ′′, which corresponds to the
discriminant of the quadratic equation in the proof of Lemma 4.1 taking value
zero at some rank > K, which happens with probability 0. �

Let Ξ = {χ(y) | y ∈ X}. For y ∈ X let yi be its subsequence (x1, . . . , xi).
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We extend χ to be defined on all such subsequences by simply setting χi =
(χ(y)1, . . . , χ(y)i); χ(y) is valid if y is a valid realization.

Let N = {1, . . . , n} and g be the n × n binary matrix such that gij = 1
if i ≤ j and 0 otherwise (the upper triangular n × n all-1 matrix); let gi be
its i-th row vector and Γ = {gi | i ∈ N}. Consider the elementwise modulo-2
addition in the set Fn2 (denoted ⊕): this endows Fn2 with an additive group
structure with identity e = (0, . . . , 0) where each element is idempotent. Thus,
G = (Fn2 ,⊕) ∼= Cn2 . This group naturally acts on itself (and subsets thereof)
using the same ⊕ operation. It is not difficult to prove that Γ is a set of group
generators for G and a linearly independent set of the vector space V given by
G with scalar multiplication over F2. For all S ⊆ N , let

gS =
⊕
i∈S

gi,

and define a mapping φ : P(N)→ G given by φ(S) = gS.

6.2 Lemma
φ is injective.

Proof. We show that for all S, T ⊆ N , if gS = gT then S = T .

gS = gT

⇒
⊕
i∈S

gi =
⊕
i∈T

gi

⇒
⊕
i∈S

gi ⊕
⊕
i∈T

g−1
i = e

idempotency ⇒
⊕
i∈S

gi ⊕
⊕
i∈T

gi = e

gi ⊕ gi = g2i ⇒
⊕

i∈S�T
gi ⊕

⊕
i∈S∩T

g2i = e

idempotency ⇒
⊕

i∈S�T
gi = e

linear independence ⇒ S�T = ∅
⇒ S = T.

This concludes the proof. �

The following result shows essentially that groups of partial reflections have
power of two cardinality.

6.3 Lemma
For all H ⊆ Γ, |〈H〉| = 2|H|.

Proof. The restriction of function φ to P(H) is injective by Lemma 6.2. Fur-
thermore, each element g of 〈H〉 can be written as

⊕
i∈S

gi for some S ⊆ H because

H is a spanning set for the vector space H over Fn2 , which is setwise equal to
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the group 〈H〉. Thus φ is surjective too. Hence φ is a bijection between P(H)
and 〈H〉, which yields the result. �

Let I be the set of levels of T for which from all nodes with two feasible
subnodes there is a path going to a feasible leaf through both. Let L = {gi ∈
Γ | i ∈ I} and Λ = 〈L〉 be the subgroup of G of “allowed partial reflections”
generated by L. In the following (the main result of this section) we relate partial
reflections to χ representations of valid realizations. We show that any valid
realization, in its χ representation, generates the whole set of valid realizations
by means of the action of the group of allowed partial reflections.

6.4 Theorem
If Ξ �= ∅, for all ξ ∈ Ξ we have ξ ⊕ Λ = Ξ with probability 1.

Proof. (⇒) We show that ξ ⊕ Λ ⊆ Ξ with probability 1; because 〈L〉 = Λ it
suffices to show that ξ ⊕ gi ∈ Ξ for an arbitrary gi ∈ L, i.e. that there exists a
valid realization w ∈ X such that χ(w) = ξ⊕ gi. Let y ∈ χ−1(ξ) and v = ρ−1(i)
such that Υ(y, v), and define w = R̃vy; by Thm. 5.9, w ∈ X . Let α′ be the leaf
node of T such that x(α′) = y; by Lemma 4.5, there is a leaf node β′ such that
x(β′) = w. We have to show that for all � ≥ i the node β ∈ p(β′) ∩ V� is such
that λ(β) = 1−λ(α), where α is the node in p(α′)∩V�. We proceed by induction
on �. For � = i this holds by Lemma 4.3. For � > i, the induction hypothesis
allows us to apply Lemma 5.3 and conclude that the event λ(α) = 1 − λ(β)
occurs with probability 1.

(⇐) Now we show that Ξ ⊆ ξ⊕Λ with probability 1, i.e. for any η ∈ Ξ there
is g ∈ Λ with ξ ⊕ g = η. We proceed by induction on n, which starts when
n = K+1: if K+1 �∈ I then |Ξ| = 1, L = ∅ and the theorem holds; if K+1 ∈ I
then |Ξ| = 2, L = {gK+1} and the theorem holds. Now let n > K + 1; for all
j ∈ {K+1, . . . , n−1} define Ξj = {ξj | ξ ∈ Ξ} and Lj = {g� ∈ Γ | � ∈ I∧� ≤ j}.
By the induction hypothesis, for all ξ′ ∈ Ξj (ξ′ ⊕ 〈Lj〉 = Ξj). Now, either n �∈ I
or n ∈ I; by Prop. 4.6, with probability 1 if n �∈ I then nodes in Vn−1 can
only have zero or one feasible subnode (let Bn1 be the set of all such feasible
subnodes), and if n ∈ I then nodes in Vn−1 can only have zero or two feasible
subnodes β (let Bn2 be the set of all such feasible subnodes). In the former
case we let Ξn = {ξ(x(β)) | β ∈ Bn1 } and Ln = Ln−1; in the latter we let
Ξn = {ξ(x(β)) | β ∈ Bn2 } and Ln = Ln−1∪{gn}. In both cases it is easy to verify
that the theorem holds for Ξn, Ln: in the former case it follows by the induction
hypothesis, and in the latter case it follows because gn = (0, . . . , 0, 1), namely,
if η ∈ Ξ and n ∈ I then take ξ = η ⊕ gn (the result follows by idempotency of
gn). �

The main result of the paper is now simply a corollary of Thm. 6.4.

6.5 Corollary
If a KDMDGP instance is YES, |X | is a power of two with probability 1.
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Proof. By Lemma 6.1 χ is a function with probability 1. Let x, x′ ∈ X be
distinct; then by Alg. 1, Steps 25, 27, 31, and 33, the map χ : X → Ξ is
injective. By definition of Ξ it is also surjective, hence |X | = |Ξ|. By Thm. 6.4
|Ξ| = |χ⊕Λ| for all χ ∈ Ξ with probability 1. It is easy to show that |χ⊕Λ| = |Λ|,
so by Lemma 6.3 |X | is a power of two with probability 1. �

7. Counterexamples

7.1. Disproving the “power of two” conjecture

We first discuss a class of counterexamples to the conjecture that all KDMDGP
instances have a number of solutions which is a power of two (also see Lemma
5.1 in [21]). All these counterexamples are hand-crafted and have the property
that two distinct realizations x, x′ have at least a level i where xi = x′i, which
is an event which happens with probability 0. For any K ≥ 1, let n = K + 3,
V = {1, . . . , n}, E = {{i, j} | 0 < i − j ≤ K} ∪ {{1, n}} and dij = 1 for all
{i, j} ∈ E. The first n− 2 = K + 1 vertices can be realized as the vertices of a
regular simplex in dimension K; then either xn−1 = x1 or xn−1 is the symmet-
ric position from x1 with respect to the hyperplane through {x2, . . . , xn−2}. In
the first case, the two positions for xn are valid, in the second only xn = x2 is
possible (see Fig. 7 for the 2-dimensional case), yielding a YES instance where
|X | = 6.

x1 = x
(0)
4 x2 = x

(01)
5 = x

(11)
5

x3 x
(1)
4x

(00)
5

x
(10)
5

(a) Positions of the points on the plane.

x1

x2

x3

x
(0)
4 x

(1)
4

x
(00)
5 x

(01)
5 x

(10)
5 x

(11)
5

symmetric

(b) BP tree.

Figure 7: The counterexample in the case K = 2. Realizations x
(00)
5 , x

(01)
5 , and x

(11)
5 are

valid, while x
(10)
5 is not.

7.2. Necessity of immediate predecessors

Lastly, Fig. 8 shows an example where the (ii) ⇒ (i) implication of Lemma
5.3 fails for instances in DDGP�KDMDGP. This shows that any generalization
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of our result to the DDGP must be nontrivial. Let V = {1, . . . , 6} (the graph
drawing is the same as the realization in R2). The points 5′, 6′ linked with
dashed lines show alternative placements for the corresponding vertices. Let
U5 = {3, 4} and U6 = {1, 2}. The line through the points 3, 4 does not provide
a valid reflection mapping 6 to 6′. This happens because U6 does not consist of
the two immediate predecessors of vertex 6.

1

2

3

4

5

5′

6

6′

Rv

U5

U6

Figure 8: A counterexample to Lemma 5.3 applied to DDGP� KDMDGP.

8. Application of the theory to protein conformation

The “intervalBP algorithm” (iBP) is the adaptation of the BP algorithm to
a more realistic setting for protein backbones [23]. For v ∈ V , we shall denote
the vertex of rank ρ(v) − h (for some h < ρ(v)) by v − h (in other words, we
identify the vertex labels with their own ranks in the order). We note that
throughout this section K is fixed to 3; we still use the symbolic notation K to
emphasize results that hold for whatever value of K.

As mentioned in the introduction, covalent bonds and angles are known
reasonably precisely. These allow us to consider the distances dv−2,v and dv−1,v

as precise for any v with rank greater than K. The data provided by NMR
actually consists of a frequency measurement for a triplet (a, b, δ) where a, b are
atom types (e.g. H, C, O and so on) and δ is a distance value [15]. In other
words, NMR gives experimental evidence that the distance δ is to be expected
between atoms of type a, b with a certain probability. NMR specialists then
solve an assignment problem so that they can decide which pair(s) of atoms of
type a, b should be assigned the distance δ. This procedure gives rise to errors,
due to which all distances are actually reported as intervals rather than precise
values. We emphasize two important observations:

1. By default, NMR experiments are rigged up to find the distances between
pairs of hydrogen atoms only [43]. Distances between pairs of atoms of
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different types are possible but they require more work, and are prone to
more errors.

2. The NMR machinery has a resolution limit of around about one decimal
digit (in Å units); if the distance interval is on a similar scale, only a finite
number of values belonging to the intervals can actually be measured [39].

We initially exploited Observation 1 by defining certain vertex orders that only
include hydrogens [27]; following a similar methodology, we later defined another
vertex order (called the iBP order) which also takes into account Observation
2 [23]. More precisely, for each v ∈ V of rank greater than 3, this order is such
that:

• dv−2,v, dv−1,v are single values in R+;

• dv−3,v is either a single value, or a finite set {d1uv, . . . , dquv} (with q > 1)
of values in R+,

• duv is either a single value, or an interval [dLuv, d
U
uv] for all ρ(u) < ρ(v)− 3.

Essentially, this order is such that all interval distances are only used for pruning
purposes, whilst the discretization of the search space occurs differently because
dv−3,v could be a finite set of values.

8.1. Discretization with a finite set of values

In this section we go through the previous results and adapt them to the iBP
setting insofar as dv−3,v might be a set instead of a single value. We still consider
precise distances for pruning rather than intervals (this further extension will
be tackled in Sect. 8.2). Before going into the details, the intuitive explanation
as to why most results still hold (albeit with some modifications) is that one
can see the iBP search tree as the union of qk different BP trees, where k is the
number of vertices v ∈ V such that dv−3,v is a set. Thus the iBP tree inherits
many of the properties of all the BP trees that compose it.

8.1.1. Changes to Sect. 4

Assume v ∈ V is such that dv−3,v is a set of q values and every other distance
is precise. Then Lemma 4.1 changes as follows.

8.1 Lemma
If |N(v) ∩ γ(v)| = 3 then there are at most 2q distinct extensions of x that are
valid for Gv. If one valid extension exists, then with probability 1 there are
exactly 2q distinct valid extensions.

Proof. We shall only point out the differences with the proof of Lemma 4.1.
We choose the vertex w ∈ Uv such that w − 3; then Eq. (5) becomes ∀u ∈
Uv � {w} (‖z − xu‖ = duv) ∧ (‖z − xw‖ ∈ dwv), so that the second line
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in Eq. (6) becomes ‖z‖2 − 2xw · z + ‖xw‖2 ∈ d2wv, where d2wv denotes the set
{(djwv)2 | j ≤ q}. We rewrite this as q different quadratic equations

‖z‖2 − 2xw · z + ‖xw‖2 = djwv (10)

for each j ≤ q. From each of these, by Lemma 4.1 we obtain two distinct values
for z with probability 1, which concludes the proof. �

Lemma 4.2 involves adjacent but not immediate predecessors. The statement
is unchanged, but the proof is slightly different.

8.2 Lemma
If |N(v)∩ γ(v)| > 3 then, with probability 1, there is at most 1 extension of x.

Proof. Since Uv ⊆ N(v) ∩ γ(v), only considering vertices in Uv we are in the
situation of Lemma 8.1 and we have 2q possible extensions of x. Now consider an
adjacent predecessor u of v which is not in Uv: with probability 1, the distances
‖xu − z1j‖, ‖xu − z1j‖ are all distinct (for all j ≤ q). Hence, at most one can
be equal to duv. �

Lemma 4.3 can be adapted in the following way.

8.3 Lemma
Let x̄ be any valid realization of G[Uv] and {z1j, z2j | j ≤ q} ⊆ R3 be the 2q
positions for vertex v given by Lemma 8.1, with z1j, z2j arising from the Eq. 10
indexed by j. Then z2j is a reflection of z1j with respect to the hyperplane
through the 3 points of x̄.

The proof is the same as that of Lemma 4.3, for each j ≤ q.
The change to these Lemmata impacts Alg. 1 in several respects. The most

important change is that whenever dv−3,v is a set and v has exactly 3 adjacent
predecessors, the BP tree node α at level v − 1 has exacty 2q subnodes αij (for
i ∈ {1, 2} and j ≤ q) at level v. Accordingly, for all i ∈ {1, 2} and j ≤ q, λ(αij)
is defined as follows:

λ(αij) =

{
−j if a�v z

ij ≤ av0
j if a�v z

ij > av0
(11)

The set Z in Step 17 of Alg. 1 is {zij | i ∈ {1, 2} ∧ j ≤ q}. The test at Step
23 is |Z| = 2q. The body of the corresponding if changes in the following
way:

for j ≤ q do
if a�v z

1j ≤ av0 then
Let α1j = (z1j,−j,�), α2j = (z2j, j,�)

else
Let α1j = (z1j, j,�), α2j = (z2j ,−j,�)

end if
end for
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It is easy to show that the full iBP search tree is no longer a binary one:
every time dv−3,v is a set, level each node at level v − 1 has 2q subnodes. The
total number of iBP nodes depends on the incidence of set distances within the
KDMDGP vertex order.

Lemma 4.5 does not change. Prop. 4.6 changes as follows.

8.4 Proposition
With probability 1, there is no level i ≤ n having two distinct feasible nodes
β, θ ∈ Vi such that |{α ∈ N+(β) | µ(α) = �}| = 1 and |{α ∈ N+(θ) | µ(α) =
�}| = 2q.

The proof is trivially adapted from that of Prop. 4.6.

8.1.2. Changes to Sect. 5

The statement of Cor. 5.1 changes as follows.

8.5 Corollary
Let α ∈ Vi−1 for some i > 1, v = ρ−1(i) and N+(α) = {ηij | i ∈ {1, 2} ∧ j ≤ q}
with µ(ηij) = � for all i ∈ {1, 2}, j ≤ q. Then x(η1j)v = Rvx(η2j)v.

Only Condition (ii) changes in Lemma 5.3:

(ii) ∀ i ≤ j ≤ � if duw is a single value, then Condition (ii) in Lemma
5.3 holds; if duw is a set, λ(η′′) = −λ(β′′).

The proof is an easy adaptation of that of Lemma 5.3: every time λ is mentioned,
it suffices to verify whether the corresponding distance duw is a value or a set,
and use the correct definition (either Eq. (9) or Eq. (11)). Prop. 5.4 changes its
statement as follows.

8.6 Proposition
Consider a subtree T ′ of T consisting of K+2 consecutive levels i−K−1, . . . , i
(where i ≥ 2K + 1), rooted at a single node η and such that all nodes at all
levels are marked �. Let u = ρ−1(i −K − 1), w = ρ−1(i −K), t = ρ−1(i − 1)
and v = ρ−1(i). If p is the number of leaf nodes of T ′, let Y ′ = {yj | j ≤ p} be
the set of partial realizations of G at the such leaf nodes.

1. If dut and dwv are single values, Lemma 5.4 holds.

2. If dut is a set of q values and dwv is a single value or vice versa, let
p = 2K+1q; with probability 1 there is a set Huv ⊆ R+ with |Huv| = 2q
such that ‖yju − yjv‖ ∈ Huv for each j ≤ p.

3. If both dut, dwv are sets of q values, let p = 2K+1q2; with probability 1
there is a set Huv ⊆ R+ with |Huv| = 2q2 such that ‖yju − yjv‖ ∈ Huv for
each j ≤ p.



8 APPLICATION TO PROTEIN CONFORMATION 29

��
��
��
��

�� ��
��
��
��

�
�
�
�

��
��
��
�� �

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

�
�
�
�

�
�
�
�

�
�
�
�

��

����

����
��
��
��
��

��
��
��
��

�
�
�
�

����

�
�
�
�

������

��

����

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

Rt
Rt

Rw
Rv

RvRv

Rv

u

w

t

v

r11

r12

r21

r22

d1ut

d2ut

Figure 9: Proof of Prop. 5.4 adapted to the iBP setting in R2, with dut having cardinality 2
and dwv being a single value. The arcs of circles rjh (j ≤ 2, h ∈ {1, 2}) centered at u mark
the four possible distances between the position of u and that of v.

Proof. The situation in R2 is shown in Fig. 9 for the case where dut is a set of 2
values and dwv is a single value. Only two edges, namely {u, t} and {w, v}, can
be weighted by sets of distance values in the subtree T ′. If {u, t} is weighted
by a set but {w, v} is not, then at level t we have 2q as many nodes as in the
previous level; if {w, v} is weighted by a set but {u, t} is not, then at level v we
have 2q as many nodes as in level t; if both are weighted by sets, then at both
levels the increase in the number of nodes is 2q-fold. At any level s ∈ {t, v}
where there is an increase of 2q nodes w.r.t. the previous level, each pair of nodes
α1j , α2j with λ(α1j) = −λ(α2j) (for j ≤ p) is such that x(α1j)s and x(α

2j)s are
reflections through Rw by the adaptation of Lemma 5.3 (above). Hence each
such pair yields a subtree of T ′ which, by Prop. 5.4, with probability 1 allows
‖yju − yjv‖ to only take values in a set S ⊆ R+ such that |S| = 2. Observe that
any pair of such sets S will have non-empty intersection with probability 0. The
result follows. �

Cor. 5.6 can be extended to the iBP setting by remarking that the set Huv

(appearing in its statement) has cardinality 2hqk, where k is the number of
vertices t between u and v such that dt−3,t is a set. Cor. 5.7-5.8 are unchanged.

The statement of Thm. 5.9 is unchanged, but the proof needs to be adapted.
The statement λ(β) = 1 − λ(β′) must be changed to λ(β) = −λ(β′) by the
adaptation of Alg. 1 to the iBP given above in this section. The statement
f ∈ {1, 2} must be changed to “f ∈ {1, 2} if du′−3,u′ is a single value, and
f ∈ {1, 2q} if du′−3,u′ is a set”. The motivation for θ′ to also have f subnodes
is by Prop. 4.6 if du′−3,u′ is a single value, and by Prop. 8.4 if du′−3,u′ is a set.
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Between the cases f = 2 and f = 1, the case f = 2q must be added, with the
comment that it is possible to choose α′ so that λ(θ′) = −λ(θ) with probability
1 (by Lemma 5.3 adapted to the iBP setting). The case f = 1 must be changed
so that if du′−3,u′ is a set, then λ(θ′) = −λ(θ).

8.1.3. Number of solutions

Since the iBP branches over 2q possibilities at some levels, in general the
number of possible realization is no longer a power of two, but rather a number
2�qk for some integers �, k. Because of this fundamental difference, we shall not
attempt to adapt each result in Sect. 6 to the iBP setting, but rather propose
a somewhat different development.

For all v ∈ V , let ψv = {0} whenever v ≤ K, ψv = {0, 1} whenever dv−3,v is
a single value, and ψv = {0, . . . , 2q − 1} whenever dv−3,v is a set. Accordingly,
we define χ to map realizations in X to sequences indexed by V , in such a way
that χv ∈ ψv for all v ∈ V . More precisely, if α is an iBP tree node such
that x(α)v = yv and dv−3,v is a set, then χv = λ(α) − 1 whenever λ(α) > 0,
and χv = q − λ(α) − 1 whenever λ(α) < 0. With this definition, the set
Ξ = {χ(y) | y ∈ X} can, with probability 1, be endowed with an Abelian group
structure: χ1 ⊕ χ2 = (χ1

v ⊕ χ2
v | v ∈ V ), where ⊕ denotes addition modulo

|ψv|. We remark that the group G = 〈Ξ,⊕〉 is a subgroup of Ḡ =
∏
v∈V C|ψv |.

Furthermore, since the underlying set of G is Ξ, G acts on itself: this yields a
regular action, which is transitive by definition. Thus, for any χ ∈ Ξ, we have
χ⊕ Ξ = Ξ.

For all v ∈ V such that ρ(v) > 3, if dv−3,v is a single value, let ιv = 1; if
dv−3,v is a set, let ιv = q. Consider the set Λ̄ of the following elements of Ḡ:

• πv = (0, . . . , 0, ιv, . . . , ιn) for all v such that ρ(v) > 3;

• σv = (0, . . . , 0, 1v, 0, . . . , 0), where the 1 is in the ρ(v)-th position, for all
v such that dv−3,v is a set.

It is easy to show that Λ̄ generates the whole of Ḡ. Now, similarly to Sect. 6,
we find a subset Λ of Λ̄ which generates G. More precisely:

• if v ∈ V is such that ρ(v) > 3, dv−3,v is a single value, and for all iBP
nodes at level v with two feasible subnodes, both subnodes are on paths
continuing to leaf nodes, then πv ∈ Λ;

• if v ∈ V is such that ρ(v) > 3, dv−3,v is a set and for all iBP nodes at
level v with 2q feasible subnodes, both subnodes are on paths continuing
to leaf nodes, then πv, σv ∈ Λ.

We are now in a position to prove a theorem whose significance is similar to
that of Thm. 6.4.

8.7 Theorem
With probability 1, 〈Λ,⊕〉 = G.
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Proof. That 〈Λ,⊕〉 ⊆ G follows by definition: πv encodes a valid branching,
and the elements πv ⊕ (σv ⊕ · · ·σv) represent the 2q branches in the case of set
distances. The other direction is similar to the (⇐) direction of the proof of
Thm. 6.4. Replace “zero or two feasible subnodes” by “zero, two or 2q feasible
subnodes”, and {gn} by {πn} if there are two feasible subnodes at level n, or
by {(πn)k ⊕ (σv)

h | k ∈ {0, 1} ∧ 0 ≤ h ≤ q − 1} otherwise, where αf =
∑
s<f α

for any integer f and α ∈ G. �

Thm. 8.7, like Thm. 6.4, can be used to compute the whole of X having just
one x ∈ X and the partial reflection operators in G.

Let M be the number of vertices v with ρ(v) > 3 such that dv−3,v is a set.
It is easy to see that the cardinality of 〈Λ,⊕〉 is 2�qk for some � ≤ n − 3 and
k ≤M , since it is a subgroup of Ḡ. By Thm. 8.7, with probability 1, that is the
same cardinality of G, and therefore of Ξ.

8.2. Pruning by intervals

If z ∈ RK is a candidate position for vertex v, and u is a non-immediate
adjacent predecessor of v (i.e., such that ρ(u) < ρ(v) − 3), then duv may be
the interval [dLuv, d

U
uv], and the test on Line 19 of Alg. 1 becomes ‖x(β)u − z‖ �∈

[dLuv, d
U
uv].

It was shown in Prop. 5.4, Cor. 5.6, Prop. 8.6, and the adaptation of Cor. 5.6
to distance sets in Sect. 8.1.2 that with probability 1, for u, v ∈ V with ρ(v) −
ρ(u) > K, there are are sets Huv ⊆ R+ of an even number of possible distance
values that ‖yu − yv‖ can take for any y ∈ X . Furthermore, with probability
1, for any distance value r ∈ Huv and partial realization (y1, . . . , yu) there are
two possible extensions y, y′ to a partial realization on G[γ(v) ∪ {v}] such that
‖yu − yv‖ = r; moreover, it turns out that we have yw = Ru+1y′w for all w ∈ V
such that ρ(u) < ρ(w) ≤ ρ(v). By the results of Sect. 5, a single value duv = r
weighting an edge {u, v} ∈ E prunes all possible realizations for v apart from
those two for which ‖yu−yv‖ = r. Now, if duv is an interval, then it can contain
any number of consecutive values in Huv, and as such it can prune any even
number of possible realizations for v (including zero), as shown graphically in
Fig. 10.

It is therefore difficult to envisage an aprioristic calculation of the number
of solutions |X | of a given instance in this case. For YES instances, it is clear
that the result obtained in Sect. 8.1.3 provides a lower bound to this number;
and evidently the cardinality of Ḡ provides an upper bound. Thus, there exist
� ≤ n − 3 and k ≤ M (which depend on vertices v adjacent to edges {u, v}
where u < v − 3) such that:

2�qk ≤ |X | ≤ 2n−3qM . (12)

8.3. Distance sets of different cardinalities

Although we assumed that, for all v ∈ V such that ρ(v) > 3 and dv−3,v is a
set of values, the cardinality of |dv−3,v| is always q, this may fail to be the case;
we shall let qv = |dv−3,v| for all such v (for the other v ∈ V , we define qv = 1).
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Figure 10: The interval distance duv makes 3 out of 4 possible values from Huv feasible,
namely r11, r

2
1, r

2
2 (and hence 12 out of 16 possible positions for vertex v).

Furthermore, we let ε ∈ {0, 1}n such that εv = 0 for all ρ(v) ≤ 3 and all ρ(v)
such that dv−3,v is a single value. The other components of v will depend on
whether v has K or more than K adjacent predecessors. It is not difficult to
adapt the results of Sect. 8.1 in order to show that Eq. 12 becomes:

2�
∏
v∈V

qεvv ≤ |X | ≤ 2n−3
∏
v∈V

qv. (13)

Both lower and upper bounds are modifications of Eq. (12), where qk has been
replaced by the product of the values qv when v ranges over the relevant vertices
of V .

9. Conclusion

This paper presents a mathematical theory of non-unique rigidity in con-
nection to symmetry of certain graphs arising in protein conformation problems
from NMR data. Further work will focus on a computational application of
these results, where we shall exploit Thm. 6.4 in order to compute the set of all
incongruent realizations of a given KDMDGP graph using just one realization
thereof.

References

[1] Barvinok, A., 1995. Problems of distance geometry and convex properties
of quadratic maps. Discrete and Computational Geometry 13, 189–202.



REFERENCES 33

[2] Berger, B., Kleinberg, J., Leighton, T., 1999. Reconstructing a three-
dimensional model with arbitrary errors. Journal of the ACM 46 (2), 212–
235.

[3] Biswas, P., Lian, T., Wang, T., Ye, Y., 2006. Semidefinite programming
based algorithms for sensor network localization. ACM Transactions in Sen-
sor Networks 2, 188–220.

[4] Blumenthal, L., 1953. Theory and Applications of Distance Geometry. Ox-
ford University Press, Oxford.

[5] Brady, T., Watt, C., 2006. On products of Euclidean reflections. American
Mathematical Monthly 113, 826–829.

[6] Connelly, R., 2005. Generic global rigidity. Discrete Computational Geom-
etry 33, 549–563.

[7] Coope, I., 2000. Reliable computation of the points of intersection of n
spheres in Rn. Australian and New Zealand Industrial and Applied Math-
ematics Journal 42, C461–C477.

[8] Cremona, L., 1872. Le figure reciproche nella statica grafica. G. Bernardoni,
Milano.

[9] Crippen, G., Havel, T., 1988. Distance Geometry and Molecular Confor-
mation. Wiley, New York.

[10] Dattorro, J., 2005. Convex Optimization and Euclidean Distance Geome-
try.Mεβoo, Palo Alto.

[11] Dong, Q., Wu, Z., 2003. A geometric build-up algorithm for solving the
molecular distance geometry problem with sparse distance data. Journal of
Global Optimization 26, 321–333.

[12] Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A., Anderson, B.,
Belhumeur, P., 2004. Rigidity, computation, and randomization in network
localization. IEEE Infocom Proceedings, 2673–2684.

[13] Graver, J., 1991. Rigidity matroids. SIAM Journal on Discrete Mathematics
4, 355–368.

[14] Graver, J., Servatius, B., Servatius, H., 1993. Combinatorial Rigidity.
American Mathematical Society.

[15] Gunther, H., 1995. NMR Spectroscopy: Basic Principles, Concepts, and
Applications in Chemistry. Wiley, New York.

[16] Hendrickson, B., 1992. Conditions for unique graph realizations. SIAM
Journal on Computing 21 (1), 65–84.



REFERENCES 34

[17] Henneberg, L., 1911. Die Graphische Statik der starren Systeme. Teubner,
Leipzig.

[18] John, A. L.-S., 2008. Geometric constraint systems with applications in cad
and biology. Ph.D. thesis, University of Massachusetts at Amherst.

[19] Kang, R., Müller, T., 2011. Sphere and dot product representations of
graphs. In: Proceedings of SCG11. ACM, pp. 308–314.

[20] Lavor, C., Lee, J., John, A. L.-S., Liberti, L., Mucherino, A., Sviridenko,
M., 2012. Discretization orders for distance geometry problems. Optimiza-
tion Letters 6, 783–796.

[21] Lavor, C., Liberti, L., Maculan, N., 2006. The discretizable molecular dis-
tance geometry problem. Tech. Rep. q-bio/0608012, arXiv.

[22] Lavor, C., Liberti, L., Maculan, N., Mucherino, A., 2012. The discretizable
molecular distance geometry problem. Computational Optimization and
Applications 52, 115–146.

[23] Lavor, C., Liberti, L., Mucherino, A., DOI:10.1007/s10898-011-9799-6. The
interval Branch-and-Prune algorithm for the discretizable molecular dis-
tance geometry problem with inexact distances. Journal of Global Opti-
mization.

[24] Lavor, C., Mucherino, A., Liberti, L., Maculan, N., 2009. An artificial
backbone of hydrogens for finding the conformation of protein molecules.
In: Proceedings of the Computational Structural Bioinformatics Workshop.
IEEE, Washington D.C., USA, pp. 152–155.

[25] Lavor, C., Mucherino, A., Liberti, L., Maculan, N., 2009. Computing arti-
ficial backbones of hydrogen atoms in order to discover protein backbones.
In: Proceedings of the International Multiconference on Computer Science
and Information Technology. IEEE, Mragowo, Poland, pp. 751–756.

[26] Lavor, C., Mucherino, A., Liberti, L., Maculan, N., 2010. Discrete ap-
proaches for solving molecular distance geometry problems using NMR
data. International Journal of Computational Biosciences 1, 88–94.

[27] Lavor, C., Mucherino, A., Liberti, L., Maculan, N., 2011. On the com-
putation of protein backbones by using artificial backbones of hydrogens.
Journal of Global Optimization 50, 329–344.

[28] Liberti, L., Lavor, C., Maculan, N., 2008. A branch-and-prune algorithm
for the molecular distance geometry problem. International Transactions in
Operational Research 15, 1–17.

[29] Liberti, L., Lavor, C., Mucherino, A., Maculan, N., 2010. Molecular dis-
tance geometry methods: from continuous to discrete. International Trans-
actions in Operational Research 18, 33–51.



REFERENCES 35

[30] Liberti, L., Masson, B., Lee, J., Lavor, C., Mucherino, A., 2011. On the
number of solutions of the discretizable molecular distance geometry prob-
lem. In: Combinatorial Optimization, Constraints and Applications (CO-
COA11). Vol. 6831 of LNCS. Springer, New York, pp. 322–342.

[31] Menger, K., 1928. Untersuchungen über allgemeine Metrik. Mathematische
Annalen 100, 75–163.

[32] Mucherino, A., Lavor, C., 2009. The branch and prune algorithm for the
molecular distance geometry problem with inexact distances. In: Proceed-
ings of the International Conference on Computational Biology. Vol. 58.
World Academy of Science, Engineering and Technology, pp. 349–353.

[33] Mucherino, A., Lavor, C., Liberti, L., 2012. Exploiting symmetry proper-
ties of the discretizable molecular distance geometry problem. Journal of
Bioinformatics and Computational Biology 10, 1242009(1–15).

[34] Mucherino, A., Lavor, C., Liberti, L., DOI:10.1007/s11590-011-0358-3. The
discretizable distance geometry problem. Optimization Letters.

[35] Mucherino, A., Lavor, C., Liberti, L., Maculan, N., 2009. On the definition
of artificial backbones for the discretizable molecular distance geometry
problem. Mathematica Balkanica 23, 289–302.

[36] Mucherino, A., Lavor, C., Liberti, L., Talbi, E.-G., 2010. On suitable paral-
lel implementations of the branch & prune algorithm for distance geometry.
In: Proceedings of the Grid5000 Spring School. Lille, France.

[37] Mucherino, A., Lavor, C., Liberti, L., Talbi, E.-G., 2010. A parallel ver-
sion of the branch & prune algorithm for the molecular distance geometry
problem. In: ACS/IEEE International Conference on Computer Systems
and Applications (AICCSA10). IEEE, Hammamet, Tunisia, pp. 1–6.

[38] Mucherino, A., Liberti, L., Lavor, C., 2010. MD-jeep: an implementation of
a branch-and-prune algorithm for distance geometry problems. In: Fukuda,
K., van der Hoeven, J., Joswig, M., Takayama, N. (Eds.), Mathematical
Software. Vol. 6327 of LNCS. Springer, New York, pp. 186–197.

[39] Nilges, M., Macias, M., O’Donoghue, S., Oschkinat, H., 1997. Auto-
mated NOESY interpretation with ambiguous distance restraints: The
refined NMR solution structure of the Pleckstrin homology domain from
β-spectrin. Journal of Molecular Biology 269, 408–422.

[40] Saviotti, C., 1885. Nouvelles méthodes pour le calcul des travures
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