
Second International Symposium on Engineering Systems
MIT, Cambridge, Massachusetts, June 15-17, 2009

A General Framework for Combined Module- and Scale-based Product
Platform Design1

Fabrizio Marinelli
DIIGA, Universit̀a Politecnica delle Marche, Ancona, Italy.

marinelli@lix.polytechnique.fr

Olivier de Weck
Dept. of Aeronautics and Astronautics and Engineering Systems Division, MIT, Cambridge,

Massachusetts, 02139.deweck@mit.edu

Daniel Krob, Leo Liberti, Antonio Mucherino
LIX, École Polytechnique, F-91128 Palaiseau, France.

{dk,liberti,mucherino}@lix.polytechnique.fr

Copyright c©2009 by the authors. Published and used by MIT ESD and CESUN with permission.

Abstract

The modelling framework for platform design proposed herein concurrently caters to both
module-based and scale-based platforming. The model is based on a set of variables and
constraints which describe both component selection and attribute value commonality and
which can be used in conjunction with various objective functions, dependingon the market
model employed. The key innovations presented in the paper are the jointuse of functional
and physical product decompositions as well as the introduction of abstract functions to en-
force cross-level attribute propagation and compatibility. An example of a simple electro-
mechanical product is interwoven with the mathematical formulation.
Keywords: engineering systems, product platform design, mathematical programming.

1 Introduction

We propose a modelling framework that consists of decision variables and constraints expressed
as a mathematical programming formulation. This model achieves a top-down platform approach
(proactive platforming[12]), integrates module-based and scale-based platform design, and carries
out commonality optimization with respect to both continuous and discrete component attributes
and product functionalities. The total set of physical components represents the bill of materials
(BOM). The output of the model consists in a selection of common components that should be
part of the platform and an assignment of values to the attributes of selected components. We also
show how several meaningful objective functions and platform evaluation metrics addressed in the
literature can be expressed by means of the model variables.

Each variant of the product family is described by two interlinked hierarchical structures, the
functional breakdown structure(FBS), and thephysical breakdown structure(PBS) as in Fig. 1.

1Supported bŷIle-de-France Postdoctoral Allocations Fund, Thales Group, ANR grant 07-JCJC-0151 and Digiteo
RMNCCO Chair.

In our modelling framework, we are interested in matching the elementary functions to compo-
nents and in determining attribute values, see Fig. 3. We distinguish several categories of product
attributes.Physical componentsare non-decomposable parts with a separate identity as typically
indicated by a part number [3]. These are characterized by their physical attributessuch as e.g.
size, color, etc.

Figure 1: Function and physical breakdown structure of
product family architecture and product variants.

For example, the FBS of an electri-
cal tootbrush can be described by the root
functional module “teeth cleaning”, fur-
ther decomposable into “manipulating”,
“operating”, etc. The PBS’s root node
would be the toothbrush itself, composed
of the housing, motor, etc. Theproduct
family architectureis given by the merg-
ing of the constituent architectures of the
individual variants.

Module characteristics, such as the
price, are described byfunctional at-
tributes. Customer attributes, such as the
endurance, impose requirements on the
functional attributes by market segment.
Attributes can either belong to one or more
amongst physical, functional or customer
domain (e.g. the weight can be a customer,
functional or physical attribute). In this
case, the same attribute name will be used in different contexts. The key feature of the proposed
modeling framework is the propagation of different attributes from customer through function to
physical domain. This is implemented by means of dependencyrelations between the different
types of attributes and levels of decomposition. For example, the values of the physical attributes
“weight” of each physical component associated to a certainfunctional module are added up to
define the functional attribute “weight” of the module; thisvalue must then satisfy the require-
ments imposed on the corresponding customer attribute “weight”. Such relations can be linear or
nonlinear analytic expressions as well as black box functions. Weight provides an example of a
linear relation, Euclidean dimensions that of a nonlinear relation; the relation between the physical
attribute “motorpower”, the functional attribute “brushing rate” and the customer attribute “price”
is possibly best modeled as a black box.

We assume we know (i) the functional and physical product family architecture, together with
the sets of physical, functional and customer attributes, (ii) the number of product variants belong-
ing to the product family, and (iii) thecustomer requirementsi.e. the ranges of customer attributes
for each market segment. We remark that we are mainly concerned with product platform for-
mation rather than details of manufacturing, however the proposed framework ensures physical
component compatibility.

In general a product architecture describes: (i) the hierarchical arrangement of functionalities
and components into modules and submodules, (ii) the allocation of physical components to ele-
mentary functions, (iii) the functional interfaces among modules and (iv) the physical interfaces
among components. Depending on the degree of coupling of functional and physical interfaces
systems range from having a totallymodular product architecture (independent attributes) to a

2

totally integral product architecture (complex and coupled attribute interfaces).

Although virtually no product architecture is entirely modular or integral, most of the references
in the literature only deal with either module combination optimization (module-based platform
design) or module attribute optimization (scale-based platform design). In the former approach,
e.g. see [11, 13], the values of component attributes are fixed before optimization and product
variants are instantiated by adding and/or removing one or more components from a set of common
ones, i.e., from the platform. In the latter approach, e.g. see [1, 6, 9], commonality is achieved
by scaling one or more component attributes; the platform isthe set of attributes having common
values across all the variants of the family.

Fujita [4] proposes a unified framework based on the identification of three different types of
components:unique, similar andcommon. In a unique component, each physical attribute always
takes distinct values for each product variant of the family. In similar components there a subset
of physical attributes taking common values across a subsetof variants. In a common component,
all the physical attributes take common values across all members of the product family. On the
basis of this classification, both attribute and component commonality is achieved in our model by
considering equality (orε-difference for continuous attributes) of component typesand component
attributes. Satisfaction of customer requirements is obtained by mapping physical attribute values
of components to functional attribute values of modules through the product architecture tree up to
the root node which represents the final product. At each treenode, we enforce the node functional
attributes on the propagated functional attribute values and we require the satisfaction of customer
requirements.

Our approach mainly contributes to (a) define a descriptive rather than prescriptive reasoning
baseline; (b) provide a unified view of physical and functional architecture; (c) make the cross-level
attribute propagation problem independent by means of abstract functions whose implementation
depends on the particular problem structure.

2 The modelling framework

In this section we discuss the proposed modeling framework in detail. The concepts and math-
ematical notation are supported by a simple example concerning the battery powered toothbrush
illustrated in Fig. 2 (left). A physical and functional decomposition of the product is represented
in Fig. 2 (right) by means of an object-process diagram, seewww.objectprocess.org.

2.A Assumptions

The model rests on the following assumptions.

- The number of variants in the family is fixed: each product corresponds to a market niche
which is part of a given market segmentation grid [10].

- A given set of customer attributes identifies those productcharacteristics that cause different
degrees of satisfaction among customers and influence theirchoice, and a range of feasible
values (the customer requirements) is given for each customer attribute of each product in
the family. We consider customer attributes in a broad sense: other than merely physical

3

Nomenclature

Sets
P product family, i.e., a set of product variants
Q bill of materials (BOM) — set of physical components
V set of functional modules
W set of functional modules and physical components, i.e.,

W = V ∪Q
Fs set of continuous customer attributes
Fd set of discrete customer attributes
F set of customer attributes;F = Fs ∪ Fd

F (v) set of customer attributes relevant to modulev, v ∈ V

As set of continuous functional or physical attributes
Ad set of discrete functional or physical attributes
A set of functional or physical attributes;A = As ∪Ad

A(u) set of functional or physical attributes relevant to
module or componentu, u ∈W

Architecture tree
G = (V,E)tree graph modelling the product family

architecture
v0 root node ofG; v0 ∈ V

N(v) set of neighbors ofv; for all v ∈ V,N(v) = {u ∈ V |
(v, u) ∈ E}

L set of the leaf nodes ofG; L = {u ∈ V | N(u) = ∅}
I(v) subset of physical components that can be used to

implement the leaf functional modulev ∈ L;
I(v) ⊆ Q

Parameters
λi

vh
requirements for theh-th customer attribute of module
v in product varianti, i ∈ P, v ∈ V, h ∈ F (v)
(λi

vh
is a subset of a given domainΛi

vh
)

ϑ
q
k

design bounds for thek-th physical attribute of theq-th
physical component,q ∈ Q, k ∈ A(q)

M large enough constant (used for modelling disjunctive
constraints)

Variables
yi

uk
continuous: value of the attributek of module or physical
componentu in product varianti

w
ij
qk

binary:1 if product variantsi andj use same component
q with same value for attributek

xi
v binary:1 if modulev is used in product varianti
pq binary:1 if q is a common component (i.e. used in

more than one variant with the same attribute values)
zi
vq binary:1 if physical componentq implements elementary

modulev in product varianti
ri
q binary:1 if componentq is used at least once in producti

Functions
ψi

vh
requirement functions:
ψi

vh
: R

|A| → Λi
vh

, for all i ∈ P, v ∈ V, h ∈ F (v)
δvk composition functions:

δvk : R
|N(v)| → R, for all v ∈ V \ L, k ∈ A(v)

ϕv module interface functions:
ϕv : R

|A|(|V |−1) → {0, 1}, for all v ∈ V

χq component interface functions:
χq : R

|A|(|L|−1) → {0, 1}, for all q ∈ Q

We emphasize notation by always usingi, j for product variants inP , u, v for functional modules inV , h for customer attributes in

F , k for functional/physical attributes inA andq for physical components inQ.

Figure 2:The battery-powered toothbrush product (left) and its object-processdiagram — functions=ovals,
objects=rectangles (right).

properties of a product, such as the weight or the color, a customer attribute could also be a
functional characteristic, e.g. the ability to uniquely identify a toothbrush.

- A given set of functional/physical attributes describes the functional module/physical com-
ponent characteristics, and a range of feasible values, calleddesign bounds, is given for each
attribute of each physical component which can be allocatedto some product variant of the
family.

- The product family is described by means of aproduct family architecturewhich is anex-
tendedFBS/PBS. Each product variant is thought of as a subgraph of theproduct family
architecture describing both the set of functional modulesthat the product must provide (and
therefore the set of functionalities), and the set of physical components allocated to such

4

functional modules (see Fig. 1 and Fig. 3). In the following we only focus on the FBS
part of the product family architecture; details of manufacturing are addressed by means of
component interface functions, see Section 2.E. Commonality is achieved either by using
common components (see componentsA andC in Fig. 3) or by sharing attribute values (see
attribute 3 of componentE in Fig. 3).

2.B Sets

Figure 3:Product family architecture.

LetP be the set of variants in a prod-
uct family andQ the set of physical
components (which could be hard-
ware or software) used to assemble
the product variants inP .

Customer preferences are de-
scribed by a setF of customer at-
tributes, whereas module and com-
ponent characteristics are described
by a setA of functional/physical
attributes. Customer and func-
tional/physical attributes can be ei-
ther continuous values, e.g. the
weight or the endurance, or discrete
values, e.g. the color or the bat-
tery type. Therefore we assume that
F = Fs ∪ Fd andA = As ∪ Ad
whereFs (As) andFd (Ad) are re-
spectively the set of scalar and dis-
crete customer (functional/physical) attributes.

Example 2.1 The market segmentation grid of the toothbrush of Fig. 2 is asfollows.

women and children men
(small mouth) (large mouth)

Frequent brushers (2-3 times daily) N1 L1
Normal brushers (once daily) N2 L2

Travelers N3 L3

The product familyP consists of 6 variants{L1, L2, L3, N1, N2, N3}. Fig. 2 also shows the physical parts constituting the toothbrush. They fall
in two categories: those manufactured by changing the design parameters of a base component (scale-based design), and those selected among
different models (module-based design). Shaft and cover, for example, belong to the former category since different shafts can be obtained by
varying the length of the mould. The head, instead, is chosenbetween the linear and the circular module and therefore falls in the latter type of
part. Clearly, a more complex situation in which both model selection and parameter setting are performed can be considered. In our example, the
set of available physical components areQ = {ring, housing, cover, switch,batteryA, batteryB , motor, tip, shaft,headA, headB , recharger}.
From the customer perspective, the toothbrush is mainly described by the set of attributesF = {price, weight, endurance, efficacy, uniqueness,
fitness}. Uniqueness, i.e., the property of being recognized among other toothbrushes, is a boolean attribute depending on the color of the ring;
fitness, which depends on the size and the shape of the tip and the head, is a discrete attribute taking values in the set{average, comfortable,
fitting}. ThereforeFs = {price, weight, endurance, efficacy, uniqueness}, andFd = {fitness}. Notice that boolean attributes are treated as
continuous one, see Section 2.D. The main functional/physical attributes areAs = {length, weight, motorpower, price, rechargeable}, and
Ad = {battery type, color, headtype}. We remark that discrete attributes such ascolor could be instantiated by either a single element, e.g., the
color of ring, or by a subset of the relevant domain, e.g., thedifferent colors of housing, ring, tip, etc.

5

2.C Product family architecture

Several solutions have been proposed in the literature to describe product family architectures.
The best known are (i) the Generic Bill-of-Material (GBoM), introduced by Hegge and Wort-
mann [5], which allows all variants of a product family to be specified only once, and (ii) graph
rewriting systems [2], based on graph grammar techniques and used for formal representation of
product families and automatic generation of variants. However, both GBoM and graph rewriting
systems, although needed in the design and engineering of manufacturing products, suffer of in-
herent limitations when employed in an optimization framework since they are mainly conceived
as representation tools rather than decision making optimization tools.

0. teeth

cleaning

F. battery
B

1. Manipulating

3. Recharging5. Holding

E. battery
A

2. Operating

6. Inserting 8. Rotating7. Powering

B. housing

C. cover G. motorD. switch J. shaftA. ring H. tip

K. headA

M. recharger

4. Choosing

15. Shaft10. Cover 12. Battery
17. Batt.

Recharging
13. Motor9. Housing 11. Switch 14. Tip 16. Head

L. headB

Figure 4:Extended FBS of the toothbrush.

Let G = (V,E) be the FBS part of a
product family architecture whereV is the
union set of all the functional modules of
the product family, andE is the set of arcs
representing the functional breakdown re-
lationship. G describes the arrangement
of product functionalities into functional
modules; in general it is a direct acyclic
graph, see the example below, but it of-
ten takes the shape of a tree. We indi-
cate with v0 ∈ V the root node ofG,
with N(v) the set of neighbors ofv, for
eachv ∈ V , and withL the set of the
leaf nodes ofG. Node v0 corresponds
to the functional module implementing all
the required functionalities, i.e., to the end-
customer product variants inP . The set
N(v) consists of the functional submod-
ules obtained by decomposing modulev. Notice that in a product family architecture not all the
submodules ofv must (or can) be part ofv since the implementation of variants and options. Fi-
nally,L is the set of theelementaryfunctional modules, i.e., those modules actually implemented
by physical components inQ. In the following, for eachv ∈ L, I(v) ⊆ Q indicates the subset of
physical components that can be used to implement the elementary functional modulev. Notice
that in general, the setsI(v) define a cover ofQ, i.e., a component can be allocated to more than
one elementary module of each product.

Example 2.2 (continued)In the following we map index setsP, F andA to sets of natural numbers of the same cardinality in order to
keep index notation clear. Elements ofQ andV are referred to by letters and numbers as reported in Fig. 4. Figure 4 describes the FBS part of the
toothbrush product family architecture. Teeth cleaning, represented by nodev0, is the overall functionality of the toothbrush. It can be decomposed
intomanipulating, operating andrecharging functions, soN(v0) = {v1, v2, v3}. ModuleRecharging is optional, i.e., it can be included
or not in the FBS of variants. Nodesv4 andv9, . . . , v17 correspond to elementary functions. Their interrelated arrangement highlights the degree
of coupling of functional interfaces in this example. The component allocation toBattery andHead modules consists in selecting a suitable
component in a set of available alternatives, i.e.,I(v12) = {E,F} andI(v16) = {K,L}. All other elementary modules are implemented by a
single physical component, i.e., component allocation is performed by attribute scaling.

2.D Numerical parameters

For each product varianti and functional modulev of the architecture tree, letλivh be the require-
ments of theh-th customer attribute, i.e., the feasible values that theh-th customer attribute can

6

take. The setλivh is an interval[λivh, λ̄
i
vh] ∈ R for scalar attributes and a discrete feasible set for

discrete attributes, and is a subset of a given domainΛi
vh.

Moreover, for each physical componentq, let ϑqk be the design bounds for thek-th physical
attribute, i.e., the feasible values that thek-th physical attribute ofq can take. As above, the setϑqk
is an interval[ϑqk, ϑ̄

q
k] ∈ R for scalar attributes and a discrete feasible set otherwise.

In this paper we consider scalar and discrete customer and functional/physical attributes. Notice
that a boolean attributeh can be easily expressed as a scalar one:h = 1 (respectivelyh = 0) means
that the customer attribute is (respectively, not) required, whereas0 ≤ h ≤ 1 indicates that the
attributeh is optional. Similar considerations can be made for functional/physical attributes.

We assume without loss of generality that the discrete setsϑ
q
k and λivh are sets of positive

integers, and that discrete attributes always take scalar values. Indeed, the value taken by a discrete
attributeh could in general describe a subset of the requirements (or the design bounds) forh.
This subset, however, can in general be modeled as a binary vector dh whose components set
to one correspond to the requirements (or the setting) forh. The inclusion relationships between
attribute sets can then be easily formulated as integer linear constraints on the above binary vectors.

Example 2.3 (continued)Some customer requirements are: (i) children who frequently brush teeth (market nicheN2) prefer an
effective and identifiable toothbrush:λ5

04 ≥ 60%, andλ5
05 = 1; and (ii) male travelers (market nicheL3) opt for a light and durable toothbrush

without taking care of uniqueness:λ3
02 ≤ 50 gr, λ3

03 ≥ 50 hrs, andλ3
05 ∈ [0, 1]. Some design bounds are: (i) the length (and the weight) of the

shaft must range in a given interval due to manufacturing technological constraints:ϑJ
1 ∈ [80, 120] mm, andϑJ

2 ∈ [14, 20] gr; and (ii) rings are
available in three colours, i.e.,ϑA

7 ∈ {red, blue, white}, whereas all tips and housings are white, i.e.,ϑB
7 = ϑH

7 = {white}; (iii) batteries
are available in two models: common household carbon-zinc or alkaline (batteryA) and li-polymer (batteryB). The former is cheaper but non
rechargeable, i.e.,ϑE

4 ∈ [0.4, 0.7] $, ϑE
5 = 0, andϑE

6 ∈ {alkaline, carbon zinc}, whereas the latter is more expensive but rechargeable, i.e.,
ϑF

4 ∈ [20, 40] $, ϑF
5 = 1, andϑF

6 = {polymer}. Notice that some attributes, such asrechargeable andmotor power, are relevant only for
a subset of modules and/or components.

2.E Abstract Functions

The product family architecture graph only partially provides the information needed to describe
how the variants of the product family can be correctly assembled. Usually in design, customer
requirements, functional attributes and design bounds fall in distinct domains so that they are
defined independently and are not necessarily compatible with each other. Hence, a full family
description also requires some knowledge (i) on requirement translation, i.e., on how functional
characteristics of a product result in customer preferences, (ii) onmodule composition, i.e., on how
submodule attributes settle module attributes, and (iii) on module and component interfaces, i.e.,
on what are the compatibilities among the values taken by attributes, between functional modules
and between physical components. All the above features areimplemented in our framework by
sets of abstract functions. In particular:

- for all i ∈ P, v ∈ V, h ∈ F (v), therequirement functionψivh : R
|A| → Λi

vh maps the values
of the functional module attributes ofv into the value of theh-th customer attribute. Notice
that the requirement functions can be defined not only forv0 but also for submodules, since
customer requirements in fact can relate on characteristics of submodules.

- for all v ∈ V \ L, k ∈ A(v), thecomposition functionδvk : R
|N(v)| → R maps the attributes

of the submodules ofv to the attributes ofv; naturally,δ will be defined in such a way that
the argument corresponding tou ∈ N(v) will be ignored ifk 6∈ A(u), i.e. an attribute which
is irrelevant on a submodule will not influence the value ofδ.

7

- for all q ∈ Q, thecomponent interface functionχq : R
|A|(|L|−1) → {0, 1} decides whether

the current assignment of attribute values of the selected physical componentq is compatible
with the attribute values of other selected components.

- for all v ∈ V , themodule interface functionϕv : R
|A|(|V |−1) → {0, 1} decides whether the

current assignment of attribute values of modulev is compatible with the attribute values of
other modules.

The module interface functions, and similarly the component interface functions, are used to model
compatibility and restrictions relating to subsets of modules. They are conceived as boolean func-
tions: their arguments are the attribute values of the selected modules and they return 1 if both
the current selection of modules and the assignment of values to attributes are compatible, and 0
otherwise. A special case of such functions are the AND/OR conditions employed in the Generic
Bill-of-Material (GBoM) [5] since they do not depend on the values taken by the module attributes.
Indeed, an AND condition simply describes a module composition, i.e., that all the submodules of
v must be used to implementv whatever are the values of their attributes, whereas an OR condi-
tion simply describes options through which one can derive product variants, i.e., exactly one of
the submodules ofv can be used to implementv.

The above definitions are very general; as such, they do not explicitly describe the actual form
of theψ, δ, ϕ, χ functions. The time and space complexity for finding a feasible solution for the
model mainly depends on the form of such functions. For example, composition functions may
range from easily linearizable (e.g. a summation of attributes) to functions that cannot be expressed
in closed algebraic form (e.g.δvk could be the result of an auxiliary optimization or simulation
problem).

Example 2.4 (continued)Since Price and Weight attributes are both customer and functional, simple requirement functions working
on homogenous dimensions are sufficient to model the translation between customer and functional domains. On the other hand, non trivial
requirement functions must be defined for Endurance, efficacy, uniqueness and fitness customer attributes. The endurance of a variant, for example,
can be computed byψi

03 in terms of employed battery type. Analogously, requirement functionψi
04 can return the efficacy of a variant in terms

of head type and brushing rate (the latter depending on the motor power functional attribute), andψi
05 can link the uniqueness to the color of the

ring. Finally the fitness can be computed byψi
06 in terms of length of the shaft and type of the head. Observe that, functionψi

06 depends from
the market niche since fitness is a subjective customer attribute. The overall structure of the toothbrush must be consistent. Since the extended
FBS describes the product family, i.e., each variant in general consists of a subset of modules, module interface functions implementing AND/OR
conditions must be defined. For example, functionϕ0 enforces modulev0 to be composed by both modulesv1 andv2, and, optionally, by modulev3.
Additional interface constraints can occur. For example, the condition that a recharger is required if and only if a rechargeable battery is adopted
can be implemented by functionϕ7. The values of functional attributes must be set throughoutthe extended FBS according to the allocation of
components. In our example, the overall weight and price of the toothbrush are given by functionsδ02 andδ04 respectively, that simply add up
weights and prices of submodules. Composition functionδ01 associated to length attribute is a little bit different since the overall toothbrush length
depends on only housing, tip and head component lengths. Finally, δ07 determines the color of the toothbrush as the union of ring, housing and tip
colors.

3 Mathematical programming formulation

The model framework described in Section 2 can be formalizedin terms of mathematical modelling
by means of the following sets of variables, constraints andobjective functions.

3.A Decision variables

There are three kinds of variables in the model: the real variablesy that describe the values taken by
functional/physical attributes, the binary variablesx, z andr that model the selection of functional

8

modules and physical components, and finally the binary variablesp andw that count component
and attribute commonality. More formally:

- For all i ∈ P, u ∈ W, k ∈ A(u), letyiuk be the value associated with the attributek of module
or physical componentu in product varianti.

- For all i ∈ P, v ∈ V , let xiv = 1 if module v is used in product varianti, and letxiv = 0
otherwise;

- For all i ∈ P, v ∈ L, q ∈ Q, let zivq = 1 if componentq implements elementary modulev in
product varianti, and letzivq = 0 otherwise;

- For all i ∈ P, q ∈ Q, let riq = 1 if componentq is used at least once in producti, and let
riq = 0 otherwise;

- For all q ∈ Q, let pq = 1 if componentq is common, and letpq = 0 otherwise;

- For all i < j ∈ P, q ∈ Q, k ∈ A(q), let wijqk = 1 if i, j use same componentq with same

value for attributek, and letwijqk = 0 otherwise.

We can consider ordered subsets of variables by contractingthe relevant indices, e.g.yiv =
(yiv1, . . . , y

i
v|A(v)|) for all i ∈ P, v ∈ V and so on.

3.B Constraints

The model constraints mainly relate to (i) module composition (ii) interface implementation and
(iii) evaluation of commonality.

3.B.1 Module composition

For each varianti of the product family, a set of physical components must be selected and set
up in such a way that all the customer requirements ofi are satisfied and all the design bounds of
the chosen components are fulfilled. To this aim, we introduce a set of constraints implementing a
propagation device that translates, through the levels of the product architecture, component design
bounds into customer requirements. In particular, for eachproduct varianti the propagation device
must guarantee that:

- the attribute values of each functional module are feasible with respect to the requirements
of the corresponding customer attributes;

- the attributes of a moduleu are consistently obtained from the attributes of the modules
constitutingu;

- the attribute values of a selected elementary module are feasible with respect to the design
bounds of the component which has been selected to implementit.

9

The first step is implemented by constraints (1) and (2): for each customer attributeh, the scalar
(discrete) value yielded by the requirement functionψivh must belong to the interval (the set) of the
relevant requirement.

∀i ∈ P, v ∈ V, h ∈ Fs(v) λivh ≤ ψivh(y
i
v) ≤ λ̄ivh (1)

∀i ∈ P, v ∈ V, h ∈ Fd(v) ψivh(y
i
v) ∈ λivh. (2)

The second step can be modeled by resorting to the composition functionsδvk. The attribute values
of a module depend on the attribute values of its selected submodules, see constraints (3), whereas
the attribute values of an elementary module must correspond to those of the physical component
used to implement it, see constraints (4).

∀i ∈ P, v ∈ V \ L, k ∈ A yivk = δvk(y
i
k ⊙ x

i) (3)

∀i ∈ P, v ∈ L, k ∈ A(v) yivk =
∑

q∈I(v)

zivqy
i
qk (4)

Noticey
i
k ⊙ x

i = (yiku1
xiu1

, . . . , yikuα
xiuα

) whereα = |N(v)|, and that each argumentyikux
i
u of δvk

takes the valueyiku if submoduleu is currently selected, and 0 otherwise.

The third step is implemented by constraints (5) and (6) which guarantee that the scalar and
discrete attribute values of a chosen physical component belong to the relevant design bounds.

∀i ∈ P, q ∈ Q, k ∈ As(v) ϑ
q
k ≤ yiqk ≤ ϑ̄

q
k (5)

∀i ∈ P, q ∈ Q, k ∈ Ad(v) yiqk ∈ ϑ
q
k. (6)

Finally, each selected elementary module must be implemented by exactly one physical compo-
nent:

∀i ∈ P, v ∈ L xiv =
∑

q∈I(v)

zivq. (7)

3.B.2 Interface implementation

The functional and physical interfaces mainly concern the compatibility between selected modules
and components. Due the definition of interface functions (see§2.E), such compatibility can be
simply modeled by logical implications: the functional module v (physical componentq) cannot
be selected, i.e.,xiv = 0 (zivq = 0), if the current module (component) selection and functional
(physical) attribute setting are not compatible, i.e.,ϕv(y

i
x
i) = 0 (χq(yixi) = 0).

∀i ∈ P, v ∈ V xiv ≤ ϕv(y
i ⊙ x

i) (8)

∀i ∈ P, v ∈ L, q ∈ I(v) zivq ≤ χq(y
i ⊙ x

i) (9)

whereyi ⊙ x
i = (yiv1k1x

i
v1
, yiv1k2x

i
v1
, . . . , yiv2k1x

i
v2
, . . .), with v 6∈ {v1, v2, . . .}.

3.B.3 Commonality evaluation

In our framework we consider both component and attribute commonalities. A component is
common if it is always allocated with the same attribute configuration across the variants of the
product family, whereas a component attribute is common fora pair of variants allocating the

10

relevant component if it takes the same value. Component and attribute commonalities are modeled
by the following constraints.

∀i ∈ P, v ∈ L, q ∈ I(v) zivq ≤ riq (10)

∀i < j ∈ P, q ∈ Q, k ∈ A(q) |yiqk − y
j
qk| ≤M(1 − w

ij
qk) (11)

∀i < j ∈ P, q ∈ Q, k ∈ A(q) w
ij
qk ≤ riq (12)

∀i < j ∈ P, q ∈ Q, k ∈ A(q) w
ij
qk ≤ rjq (13)

∀q ∈ Q |A(q)|





|P |
∑

i=1

riq − 1



−

|P |−1
∑

i=1

∑

k∈A(q)

w
i,i+1
qk

≤M(1 − pq) (14)

Constraints (10)-(14) model implications. Constraints (10)are needed since the setsI(v), v ∈ L,
in general define a cover ofQ, i.e., for each product a component can be allocated to more than
one module. The allocation of componentq to both the productsi andj, and a different value
assignment of attributek implywijqk = 0, see constraints (11)-(13). In constraints (14) the termα =
∑|P |−1

i=1

∑

k∈A(q)w
i,i+1
qk counts, for each relevant attribute of componentk, the number of variants

across the product family which share the same value. Such number cannot be greater than|A(q)|

times the number of variants that allocate componentk, i.e., the termβ = |A(q)|
(

∑|P |
i=1 r

i
q − 1

)

.

Clearly,β − α > 0 impliespq = 0. We remark that the non-linear terms in (11) can be linearized
exactly [7].

3.C Objective functions

Several objective functions and platform evaluation metrics have been proposed in the literature.
Aspects as customer needs, engineering performances, product robustness, component common-
alization and production cost are the most addressed topics, each of them concerning the problem
from a different perspective. Actually the most important and ultimate objective is product family
net present value (NPV) [14]. We show here the flexibility andgenerality of the proposed frame-
work by expressing some meaningful objective functions andevaluation metrics in terms of the
decision variables of the model.

From the market domain perspective, where the expectationsof market segments and the behav-
ior of customers are taken into account, the main focus is on the customer satisfaction. A suitable
measure is how well the customer needs are met by the platform[8].

The following maximizes conformance to customer needs.

max
1

|P |

∑

i∈P

∑

h∈F

νih(ψ
i
v0h

(yi0))

|F |
, (15)

whereνih : λih → R+ (for i ∈ P, h ∈ F) is a market specific value-generating functions which
translate the value of theh-th functionality of the producti into an absolute scalar quantity called
“value” and usually expressed in monetary units.

From the engineering domain perspective, robustness and product/process commonality are the
most important platforming objectives. The former allows flexibility and make easier the adapta-
tion to changes. The latter pursues economies of scale: setsof common features, components and

11

subassemblies in general lead to lowering production costs. The robustness of a product architec-
ture can be controlled by limiting the use of extreme values for component attributes, since they
could be difficult to meet and could cause poor performance. This is implemented in the following
objective function.

max
∑

i∈P

∑

q∈Q

∑

k∈A(q)

riq

√

(yiqk − ϑ
q
k)(ϑ̄

q
k − yiqk)

ϑ̄
q
k − ϑ

q
k

. (16)

Product commonality can be quantified by directly resortingto the variablesw and p. The
following objective maximizes attribute commonality:

max

|P |−1
∑

i=1

|P |
∑

j=i+1

∑

q∈Q

∑

k∈A(q)

w
ij
qk, (17)

and the following maximizes component commonality:

max
∑

q∈Q

pq. (18)

Although the objectives (17) and (18) give a measure of commonality, they do not take into
account the production cost savings due to the economy of scale. To this aim and similarly to [4],
we can introduce a multiperiod production cost function which models production horizon and
learning effect due to the production volumes.

min
∑

τ∈T

∑

q∈Q

∑

i∈P

riq(1 − pq)Cqζ(ni) +
∑

τ∈T

∑

q∈Q

pqCqζ

(

∑

i∈P

riqni

)

, (19)

where:

- T is the number of periods in the production planning horizon;

- ni is the overall production volume (i.e. number of parts) of the i-th variant;

- Cq is the unit production cost of physical componentq;

- ζ : R → R is a function representing learning effect:

ζ(n) =
n

T

(

e
T
nτ − 1

)

.

Finally, we observe that a meaningful and more suitable objective function can be obtained by
considering a weighted sum of two or more of the previous objective functions, with a view of
balancing a trade-off between market and engineering needs.

4 Conclusion

In this paper we introduced a mathematical programming based modelling framework for inte-
grated module-based and scale-based platforming. Future research will focus on applications of
this framework to real-life problems.

12

References

[1] B. D’Souza and T.W. Simpson. A genetic algorithm based method for product family design
optimization.Engineering Optimization, 35(1):1–18, 2003.

[2] X. Du, J. Jiao, and M.M. Tseng. Product family modeling and design support: an approach
based on graph rewriting systems.AIEDAM, 16(2):103–119, 2002.

[3] D. Frey, J. Palladino, J. Sullivan, and M. Atherton. Partcount and design of robust systems.
Systems Engineering, 10(3):203–219, 2007.

[4] K. Fujita and H. Yoshida. Product variety optimization:simultaneous optimization of module
combination and module attributes. In2001 ASME Design Engineering Technical Confer-
ences, 2001. Paper number DETC2001/DAC-21058.

[5] H.M.H. Hegge and J.C. Wortmann. Generic bill-of-material: a new product model.Interna-
tional Journal of Production Economics, 23:117–128, 1991.

[6] R. Kumar, V. Allada, and S. Ramakrishan. Ant colony optimization method for product plat-
form formation. InASME Design Engineering Technical Conferences, Advances inDesign
Automation, and Computers and Information in Engineering Conferences, 2004. Salt Lake
City, Utah, September 28 - October 2, Paper number DETC2000/DAC-14264.

[7] L. Liberti. Reformulation techniques in mathematical programming, November 2007. Thèse
d’Habilitation à Diriger des Recherches.

[8] Hölttä-Otto, K. and Otto, K. Platform concept evaluation. In T.W.Simpson, Z. Siddique, and
J.R. Jiao, editors,Product Platform and Product Family Design - Methods and Applications.
Springer, New York, USA, 2006.

[9] A. Messac, M.P. Martinez, and T.W. Simpson. A penalty function for product family design
using physical programming.ASME Journal of Mechanical Design, 124:164–172, 2002.

[10] M. Meyer and A. Lehnerd.The Power of Product Platforms. The Free Press, New York,
USA, 1997.

[11] R. Rai and V. Allada. Modular product family design: Agent-based pareto optimization
and quality loss function-based post-optimal analysis.International Journal Production Re-
search, 41(17):4075–4098, 2003.

[12] T.W. Simpson, Z. Siddique, and J.R. Jiao.Product Platform and Product Family Design -
Methods and Applications. Springer, New York, USA, 2006.

[13] M.A. Slevinsky and P. Gu. Modular platform design usingmechanical bus architectures.
International Journal of Mass Customization, 1(1):65–82, 2005.

[14] E.S. Suh, O.L. de Weck, and D. Chang. Flexible product platforms: framework and case
study.Research in Engineering Design, 18(2):67–89, 2007.

13

