Second International Symposium on Engineering Systems
MIT, Cambridge, Massachusetts, June 15-17, 2009

A General Framework for Combined M odule- and Scale-based Product
Platform Design?

Fabrizio Marinelli
DIIGA, Universit Politecnica delle Marche, Ancona, Italy.
marinelli @i x. pol ytechni que. fr

Olivier de Weck
Dept. of Aeronautics and Astronautics and Engineeringeéd®ystDivision, MIT, Cambridge,
Massachusetts, 02138eweck@ri t . edu

Daniel Krob, Leo Liberti, Antonio Mucherino
LIX, Ecole Polytechnique, F-91128 Palaiseau, France.
{dk, l'i berti, mucherino}@i x. pol ytechni que. fr

Copyright(©2009 by the authors. Published and used by MIT ESD and CESUNp&itmission.

Abstract

The modelling framework for platform design proposed herein conctlyreaters to both
module-based and scale-based platforming. The model is based dno&\smiables and
constraints which describe both component selection and attribute valmenoaality and
which can be used in conjunction with various objective functions, depenodirige market
model employed. The key innovations presented in the paper are theigeif functional
and physical product decompositions as well as the introduction of atisunctions to en-
force cross-level attribute propagation and compatibility. An example dfrgle electro-
mechanical product is interwoven with the mathematical formulation.

Keywor ds. engineering systems, product platform design, mathematical programming.

1 Introduction

We propose a modelling framework that consists of decisamables and constraints expressed
as a mathematical programming formulation. This modeleas a top-down platform approach
(proactive platforming12]), integrates module-based and scale-based platfesigu, and carries
out commonality optimization with respect to both continea@nd discrete component attributes
and product functionalities. The total set of physical comgnts represents the bill of materials
(BOM). The output of the model consists in a selection of commomponents that should be
part of the platform and an assignment of values to the at&tof selected components. We also
show how several meaningful objective functions and ptatfevaluation metrics addressed in the
literature can be expressed by means of the model variables.

Each variant of the product family is described by two int&ed hierarchical structures, the
functional breakdown structur@-BS), and thephysical breakdown structu@BS) as in Fig. 1.

1Supported byle-de-France Postdoctoral Allocations Fund, Thales @réNR grant 07-JCJC-0151 and Digiteo
RMNCCO Chair.

In our modelling framework, we are interested in matching ¢élementary functions to compo-
nents and in determining attribute values, see Fig. 3. Wendisish several categories of product
attributes.Physical component@re non-decomposable parts with a separate identity asatiypi
indicated by a part number [3]. These are characterized diy physical attributesuch as e.g.
size, color, etc.

For example, the FBS of an electri-
cal tootbrush can be described by the root
functional module “teeth cleaning”, fur- pmducmanﬁfimmmme
ther decomposable into “manipulating”, o beaon 88
“operating”, etc. The PBS's root node e

entary functions e @& % B ¢ 8

would be the toothbrush itself, composed ™.

) Phyisical Components A i o L D L2 AL - Variant #4
of the housing, motor, etc. Theroduct N

family architectureis given by the merg- \
ing of the constituent architectures of the Mf[m 1
individual variants. Rorid. LA

Module characteristics, such as the Variant £3 W

price, are described byunctional at- TH D

tributes Customer attributessuch as the Variant 1
endurance, impose requirements on the
functional attributes by market segment.

Attributes can either belong to one or momgigure 1: Function and physical breakdown structure of
amongst physical, functional or customejroduct family architecture and product variants.
domain (e.g. the weight can be a customer,

functional or physical attribute). In this

case, the same attribute name will be used in different gtd he key feature of the proposed
modeling framework is the propagation of different atttésifrom customer through function to
physical domain. This is implemented by means of dependegiayions between the different
types of attributes and levels of decomposition. For exaintple values of the physical attributes
“weight” of each physical component associated to a ceftaastional module are added up to
define the functional attribute “weight” of the module; thiglue must then satisfy the require-
ments imposed on the corresponding customer attributeghwi Such relations can be linear or
nonlinear analytic expressions as well as black box funstioMeight provides an example of a
linear relation, Euclidean dimensions that of a nonline&ation; the relation between the physical
attribute “motorpower”, the functional attribute “brushing rate” and thestmmer attribute “price”
is possibly best modeled as a black box.

product variants

We assume we know (i) the functional and physical producilfeanchitecture, together with
the sets of physical, functional and customer attributgghé number of product variants belong-
ing to the product family, and (iii) theustomer requirementse. the ranges of customer attributes
for each market segment. We remark that we are mainly coadewnith product platform for-
mation rather than details of manufacturing, however tltoppsed framework ensures physical
component compatibility.

In general a product architecture describes: (i) the hibreal arrangement of functionalities
and components into modules and submodules, (i) the aitocaf physical components to ele-
mentary functions, (iii) the functional interfaces amongdules and (iv) the physical interfaces
among components. Depending on the degree of coupling ctitural and physical interfaces
systems range from having a totalyodular product architecture (independent attributes) to a

2

totally integral product architecture (complex and coupled attribute fates).

Although virtually no product architecture is entirely muakr or integral, most of the references
in the literature only deal with either module combinatigstimization (module-based platform
design) or module attribute optimization (scale-basetfqria design). In the former approach,
e.g. see [11, 13], the values of component attributes ard fefore optimization and product
variants are instantiated by adding and/or removing oneosemomponents from a set of common
ones, i.e., from the platform. In the latter approach, eae [4, 6, 9], commonality is achieved
by scaling one or more component attributes; the platforthasset of attributes having common
values across all the variants of the family.

Fujita [4] proposes a unified framework based on the ideatifio of three different types of
componentsunique similar andcommon In a unique component, each physical attribute always
takes distinct values for each product variant of the fanlitysimilar components there a subset
of physical attributes taking common values across a sufsetriants. In a common component,
all the physical attributes take common values across athlpees of the product family. On the
basis of this classification, both attribute and componentraonality is achieved in our model by
considering equality (ar-difference for continuous attributes) of component tyged component
attributes. Satisfaction of customer requirements isinbthby mapping physical attribute values
of components to functional attribute values of modulesulgh the product architecture tree up to
the root node which represents the final product. At eachiinele, we enforce the node functional
attributes on the propagated functional attribute valuekvee require the satisfaction of customer
requirements.

Our approach mainly contributes to (a) define a descriptaiieer than prescriptive reasoning
baseline; (b) provide a unified view of physical and funcéilarchitecture; (c) make the cross-level
attribute propagation problem independent by means ofadidtinctions whose implementation
depends on the particular problem structure.

2 Themodelling framework

In this section we discuss the proposed modeling framewodetail. The concepts and math-
ematical notation are supported by a simple example comgethe battery powered toothbrush
illustrated in Fig. 2 (left). A physical and functional deuposition of the product is represented
in Fig. 2 (right) by means of an object-process diagramyse® obj ect pr ocess. or g.

2.A Assumptions

The model rests on the following assumptions.

- The number of variants in the family is fixed: each produatesponds to a market niche
which is part of a given market segmentation grid [10].

- A given set of customer attributes identifies those prodbatacteristics that cause different
degrees of satisfaction among customers and influencedheice, and a range of feasible
values (the customer requirements) is given for each cuestattribute of each product in
the family. We consider customer attributes in a broad seadeer than merely physical

3

Nomenclature

Sets
P

Q
1%

G =

product family, i.e., a set of product variants

bill of materials (BOM) — set of physical component|
set of functional modules

set of functional modules and physical components,
W=VvVuQ

set of continuous customer attributes

set of discrete customer attributes

set of customer attributeg; = Fs U Fy

set of customer attributes relevant to module € V/
set of continuous functional or physical attributes
set of discrete functional or physical attributes

set of functional or physical attributed; = A; U Ay
set of functional or physical attributes relevant to
module or component, v € W

Architecture tree

(V, E)tree graph modelling the product family
architecture
root node ofGG; vg € V
set of neighbors of; forallv € V,N(v) = {u € V|
(v,u) € E}
set of the leaf nodes @¥; L = {u € V | N(u) = 0}
subset of physical components that can be used to
implement the leaf functional modulee L;

Iv) € Q

192}

Parameters

)\j)h requirements for thé-th customer attribute of module
v in product variant, ¢ € P,v € V, h € F(v)
(A, is a subset of a given domaixf ,)

192 design bounds for the-th physical attribute of the-th

e, physical componeny € Q, k € A(q)

M large enough constant (used for modelling disjunctive
constraints)

Variables

y¢, continuous: value of the attributeof module or physica
component: in product variant

wfljk binary: 1 if product variants and; use same component
q with same value for attribute

x? binary: 1 if modulew is used in product variarit

Dq binary: 1 if g is a common component (i.e. used in
more than one variant with the same attribute values)

z}'jq binary: 1 if physical componeng implements elementany
modulev in product variang

'rfl binary: 1 if componenty is used at least once in produgt

Functions

v, requirement functions:
Yl RIAL AL foralli € P,ve V,h € F(v)
dykx ~ composition functions:
Sor : RINWI L R forallv € V\ L, k € A(v)
p» module interface functions:
oy RIAIIVI=D) 40,1}, forallv € V
Xq component interface functions:

Xq : RIAILI=D) £0, 1}, forallqg € Q

We emphasize notation by always using for product variants inP, u, v for functional modules i/, h for customer attributes in

F, k for functional/physical attributes id andgq for physical components i@.

battery-recha

Figure 2:The battery-powered toothbrush product (left) and its object-pratiagsam — functions=ovals,
objects=

properties of a product, such as the weight or the color, Bomey attribute could also be a

switch

housin:
rger 9 cover

motor

rectangles (right).

nnnnnnnn
Fresh Water totules
M th R ultee '"F‘""E"‘S Module 1
oul
A" ctee WasleWaher A
Teeth Houslng
[Tooth P B"uSh'ng Lh,Dh,th | Desi variables
Cover
/A ea:h :umpunem
| |Brushing Battery by i design va Sabies
Rate [cmzlmln] Motor
SW|tch L
| Fitin Mouth Module 3
Powering <\\
/= Batt.-recharger
Endurance R N ‘\ Module 2
[hrs] ecl argmg
Shaﬂ \A
Weight :hysiczl Product
Rotatlng ecomposition
[gF]
Unique ID Tlp
—| [yesfno]
G :;n:"mﬂ,.;msn :

functional characteristic, e.g. the ability to uniqueleidify a toothbrush.

- A given set of functional/physical attributes describtes tunctional module/physical com-
ponent characteristics, and a range of feasible valudedaisign boundds given for each
attribute of each physical component which can be allocatetdme product variant of the

family.

- The product family is described by means gbraduct family architecturevhich is anex-
tendedFBS/PBS. Each product variant is thought of as a subgraph gbritduct family
architecture describing both the set of functional modthasthe product must provide (and
therefore the set of functionalities), and the set of prglstomponents allocated to such

4

functional modules (see Fig. 1 and Fig. 3). In the following wnly focus on the FBS
part of the product family architecture; details of mantifieiag are addressed by means of
component interface functions, see Section 2.E. Commegnalichieved either by using
common components (see componehndC' in Fig. 3) or by sharing attribute values (see
attribute 3 of componenf in Fig. 3).

2B Sets

Let P be the set of variants in a prod-

uct family and@ the set of physical Product Family Architecture

components (which could be hard- (1), G=0.5

ware or software) used to assemble FBS

the product variants i#. @ % (D) memeney mcions

Customer preferences are de- o~{[a]E][c]o] [GI[H]} rsen componc

K4 5 16 o

scribed by a sef’ of customer at-
tributes, whereas module and com- S— oot o 2 Dot i

ponent characteristics are described & O e
by a setA of functional/physical ¥ ki) G
attributes. Customer and func- §

tional/physical attributes can be ei- . Componert

ther continuous values, e.g. the = é) G % [e]0x]
weight or the endurance, or discrete £ sr=1 = e E;;
values, e.g. the color or the bat- = ; oen=- iy

Attributes Y=k

tery type. Therefore we assume that

F=FUF,andA = A, U Ay Figure 3:Product family architecture.
where F, (A,) and F; (A;) are re-

spectively the set of scalar and dis-

crete customer (functional/physical) attributes.

Exam ple 2.1 The market segmentation grid of the toothbrush of Fig. 2 ifobsws.

women and children| men
(small mouth) (large mouth)
Frequent brushers (2-3 times daily) Ny 1
Normal brushers (once daily) Na Lo
Travelers N3 Ls

The product familyP consists of 6 variant§ L1, L2, L3, N1, N2, N3 }. Fig. 2 also shows the physical parts constituting the tbaish. They fall

in two categories: those manufactured by changing the desagameters of a base component (scale-based design)hasd selected among
different models (module-based design). Shaft and cawegxample, belong to the former category since differeaftsican be obtained by
varying the length of the mould. The head, instead, is chbsémeen the linear and the circular module and thereforts fial the latter type of
part. Clearly, a more complex situation in which both mod#éstion and parameter setting are performed can be coresitlén our example, the
set of available physical components &e= {ring, housing, cover, switclbattery 4, battery g, motor, tip, shafthead 4, head g, recharges.
From the customer perspective, the toothbrush is mainlgrideed by the set of attributeB = {price, weight, endurance, efficacy, uniqueness,
fitnesg. Uniqueness, i.e., the property of being recognized among other toatkbes, is a boolean attribute depending on the color of the; ri
fitness, which depends on the size and the shape of the tip and the iseadliscrete attribute taking values in the getverage, comfortable,
fitting}. ThereforeFs, = {price, weight, endurance, efficacy, uniquerjesnd F; = {fitnesg. Notice that boolean attributes are treated as
continuous one, see Section 2.D. The main functional/phlysttributes areA; = {length, weight, motapower, price, rechargeable and

Aq = {batterytype, color, headype}. We remark that discrete attributes suchaagor could be instantiated by either a single element, e.g., the
color of ring, or by a subset of the relevant domain, e.g. different colors of housing, ring, tip, etc.

5

2.C Product family architecture

Several solutions have been proposed in the literature gorithe product family architectures.
The best known are:) the Generic Bill-of-Material (GBoM), introduced by Heggedawort-
mann [5], which allows all variants of a product family to heesified only once, andi) graph
rewriting systems [2], based on graph grammar techniquésiaed for formal representation of
product families and automatic generation of variants. eley, both GBoM and graph rewriting
systems, although needed in the design and engineeringraffacduring products, suffer of in-
herent limitations when employed in an optimization frarogwsince they are mainly conceived
as representation tools rather than decision making ogsithoin tools.

Let G = (V, E) be the FBS part of a
product family architecture whefé is the
union set of all the functional modules of
the product family, and’ is the set of arcs
representing the functional breakdown re-
lationship. G describes the arrangement
of product functionalities into functional
modules; in general it is a direct acyclic
graph, see the example below, but it of-
ten takes the shape of a tree. We indi-
cate withvy, € V the root node ofG,
with N(v) the set of neighbors of, for
eachv € V, and with L the set of the
leaf nodes of(G. Node vy corresponds
to the functional module implementing all
the required functionalities, i.e., to the end-
customer product variants iR. The set
N(v) consists of the functional submod-
ules obtained by decomposing moduleNotice that in a product family architecture not all the
submodules ofs must (or can) be part af since the implementation of variants and options. Fi-
nally, L is the set of theelementaryunctional modules, i.e., those modules actually implei@eén
by physical components i. In the following, for eachy € L, I(v) C @ indicates the subset of
physical components that can be used to implement the etamgeminctional module.. Notice
that in general, the sefgv) define a cover of), i.e., a component can be allocated to more than
one elementary module of each product.

[Aring| | [Cocover | [Doswiten] /N [Gomoror | [wisip | [vshan | /

Figure 4.Extended FBS of the toothbrush.

Exam pI e2.2 (contlnued)n the following we map index sefs F' and A to sets of natural numbers of the same cardinality in order to
keep index notation clear. Elementsi@fnd V" are referred to by letters and numbers as reported in Fig.igufe 4 describes the FBS part of the
toothbrush product family architecture. Teeth cleanirgpresented by node), is the overall functionality of the toothbrush. It can bedmposed
into manipulating, operating andrecharging functions, saV (vg) = {v1, v2, v3}. Module Recharging is optional, i.e., it can be included
or not in the FBS of variants. Nodeg andwg, .. ., v17 correspond to elementary functions. Their interrelatechagement highlights the degree
of coupling of functional interfaces in this example. Thenponent allocation tdBattery and Head modules consists in selecting a suitable
component in a set of available alternatives, iEy12) = {E, F} andI(vig) = {K, L}. All other elementary modules are implemented by a
single physical component, i.e., component allocatiorei$ggmed by attribute scaling.

2.D Numerical parameters

For each product variartand functional module of the architecture tree, let, be the require-
ments of theh-th customer attribute, i.e., the feasible values that/ttle customer attribute can

6

take. The sed’, is an interval\!,, \i,] € R for scalar attributes and a discrete feasible set for
discrete attributes, and is a subset of a given domgjn

Moreover, for each physical componeptlet 97 be the design bounds for theth physical
attribute, i.e., the feasible values that théh physical attribute of can take. As above, the s#}
is an intervaly}, 9¥]] € R for scalar attributes and a discrete feasible set otherwise

In this paper we consider scalar and discrete customer atidnal/physical attributes. Notice
that a boolean attributecan be easily expressed as a scalar éne:1 (respectively, = 0) means
that the customer attribute is (respectively, not) reqlirgherea$) < h < 1 indicates that the
attributeh is optional. Similar considerations can be made for fumetigphysical attributes.

We assume without loss of generality that the discrete #gtand X\, are sets of positive
integers, and that discrete attributes always take scalaes. Indeed, the value taken by a discrete
attribute h could in general describe a subset of the requirements éoddisign bounds) fok.
This subset, however, can in general be modeled as a binatgr\, whose components set
to one correspond to the requirements (or the setting) fafhe inclusion relationships between
attribute sets can then be easily formulated as integaticenstraints on the above binary vectors.

Example 2.3 (COﬂtInued)Some customer requirements are: (i) children who freqyemtlish teeth (market nicha’s) prefer an
effective and identifiable toothbru:shg4 > 60%, and /\85 = 1; and (ii) male travelers (market nichks) opt for a light and durable toothbrush
without taking care of uniquenessg2 <5090,)\33 > 50 hrs, and)\g5 € [0, 1]. Some design bounds are: (i) the length (and the weight)eof th
shaft must range in a given interval due to manufacturingetogical constraintsﬁ‘{ € [80,120] mm, andz9‘27 € [14, 20] gr; and (ii) rings are
available in three colours, i.e? € {red, blue, white}, whereas all tips and housings are white, i#5 = 9 = {white}; (iii) batteries
are available in two models: common household carbon-zirall@line (battery) and li-polymer batteryp). The former is cheaper but non
rechargeable, i.e9¥ € [0.4,0.7] $, 9F = 0, and¥¥ € {alkaline, carbon_zinc}, whereas the latter is more expensive but rechargeable, i.e
9F € [20,40] $ 9F = 1, and9¥f = {polymer}. Notice that some attributes, such@s-hargeable andmotor_power, are relevant only for

a subset of modules and/or components.

2.E Abstract Functions

The product family architecture graph only partially prae$ the information needed to describe
how the variants of the product family can be correctly agdech Usually in design, customer
requirements, functional attributes and design boundsrfadistinct domains so that they are
defined independently and are not necessarily compatitite egich other. Hence, a full family
description also requires some knowledgeof requirement translationi.e., on how functional
characteristics of a product result in customer prefergn@ onmodule compositign.e., on how
submodule attributes settle module attributes, @iyl @n module and component interface®.,

on what are the compatibilities among the values taken biypates, between functional modules
and between physical components. All the above featuresrgrlemented in our framework by
sets of abstract functions. In particular:

- foralli € P,v € V,h € F(v), therequirement function?, : R4 — Ai, maps the values
of the functional module attributes ofinto the value of thé-th customer attribute. Notice
that the requirement functions can be defined not onlyddiut also for submodules, since
customer requirements in fact can relate on charactezigtisubmodules.

- forallv € V'\ L,k € A(v), thecomposition functioi,; : RV ®I — R maps the attributes
of the submodules af to the attributes of; naturally,é will be defined in such a way that
the argument correspondingdos N (v) will be ignored ifk ¢ A(u), i.e. an attribute which
is irrelevant on a submodule will not influence the valué.of

7

- for all ¢ € Q, thecomponent interface functiog, : R4IIZ=1) — {0, 1} decides whether
the current assignment of attribute values of the seledtgdipal componentis compatible
with the attribute values of other selected components.

- for all v € V, themodule interface functiop, : RI4I(VI=1) — 0,1} decides whether the
current assignment of attribute values of moduls compatible with the attribute values of
other modules.

The module interface functions, and similarly the compangerface functions, are used to model
compatibility and restrictions relating to subsets of mleduThey are conceived as boolean func-
tions: their arguments are the attribute values of the ssdemodules and they return 1 if both
the current selection of modules and the assignment of satuattributes are compatible, and 0
otherwise. A special case of such functions are the AND/ORIitimns employed in the Generic
Bill-of-Material (GBoM) [5] since they do not depend on thewes taken by the module attributes.
Indeed, an AND condition simply describes a module comosit.e., that all the submodules of
v must be used to implementwhatever are the values of their attributes, whereas an @Ri-co
tion simply describes options through which one can derreglpct variants, i.e., exactly one of
the submodules af can be used to implement

The above definitions are very general; as such, they do pditily describe the actual form
of the, 0, p, x functions. The time and space complexity for finding a feas#olution for the
model mainly depends on the form of such functions. For examgomposition functions may
range from easily linearizable (e.g. a summation of attebyto functions that cannot be expressed
in closed algebraic form (e.@,, could be the result of an auxiliary optimization or simubati
problem).

Example 2.4 (continued)since Price and Weight attributes are both customer andtiomal, simple requirement functions working
on homogenous dimensions are sufficient to model the trigmslaetween customer and functional domains. On the othedhnon ftrivial
requirement functions must be defined for Endurance, efficeiqueness and fithess customer attributes. The endricdrecvariant, for example,
can be computed byaf)s in terms of employed battery type. Analogously, requiretrfmctionw34 can return the efficacy of a variant in terms
of head type and brushing rate (the latter depending on theermower functional attribute), ang 5 can link the uniqueness to the color of the
ring. Finally the fitness can be computed § in terms of length of the shaft and type of the head. Obsema# filnctiony; depends from
the market niche since fitness is a subjective customebattri The overall structure of the toothbrush must be ctersis Since the extended
FBS describes the product family, i.e., each variant in galneonsists of a subset of modules, module interface fonstimplementing AND/OR
conditions must be defined. For example, funciigrenforces moduley to be composed by both modulgsandv2, and, optionally, by modules.
Additional interface constraints can occur. For examphe tondition that a recharger is required if and only if a racheable battery is adopted
can be implemented by functigry. The values of functional attributes must be set througlioeiextended FBS according to the allocation of
components. In our example, the overall weight and pricéneftbothbrush are given by functiodg, and dp4 respectively, that simply add up
weights and prices of submodules. Composition fund@ijgrassociated to length attribute is a little bit differenteinthe overall toothbrush length
depends on only housing, tip and head component lengthall\gisiy7 determines the color of the toothbrush as the union of riegising and tip
colors.

3 Mathematical programming formulation

The model framework described in Section 2 can be formalizégtms of mathematical modelling
by means of the following sets of variables, constraints@jdctive functions.

3.A Decision variables

There are three kinds of variables in the model: the reahbadesy that describe the values taken by
functional/physical attributes, the binary variableg andr that model the selection of functional

8

modules and physical components, and finally the binaralséasp andw that count component
and attribute commonality. More formally:

- Foralli € P,u € W,k € A(u), lety’, be the value associated with the attribktef module
or physical component in product variant.

- Foralli € P,v € V, letz! = 1if modulev is used in product variant and letz! = 0
otherwise;

- Foralli e Pve L,qgeQ,let zf,q = 1 if componenty implements elementary modulan
product variant, and letz}, = 0 otherwise;

- Foralli € P,q € Q, let rf] = 1 if componenty is used at least once in productand let
re = 0 otherwise;

- Forallg € Q, letp, = 1 if componenty is common, and Igt, = 0 otherwise;

- Foralli < j € P,q € Q,k € A(qg), letw’, = 1if i, j use same componentwith same
value for attribute:, and letw}, = 0 otherwise.

We can consider ordered subsets of variables by contratiilmgelevant indices, e.g:, =
(Yp1s -+ Yppaq) for alli € P,v € Vand so on.

3.B Constraints

The model constraints mainly relate #© thodule compositionif) interface implementation and
(7i7) evaluation of commonality.

3.B.1 Modulecomposition

For each variant of the product family, a set of physical components must bectesd and set
up in such a way that all the customer requirementsare satisfied and all the design bounds of
the chosen components are fulfilled. To this aim, we intreduset of constraints implementing a
propagation device that translates, through the levelssgbtoduct architecture, component design
bounds into customer requirements. In particular, for gaoduct variant the propagation device
must guarantee that:

- the attribute values of each functional module are feasibth respect to the requirements
of the corresponding customer attributes;

- the attributes of a module are consistently obtained from the attributes of the malule
constitutingu;

- the attribute values of a selected elementary module alfie with respect to the design
bounds of the component which has been selected to implament

9

The first step is implemented by constraints (1) and (2): &mhecustomer attribute, the scalar
(discrete) value yielded by the requirement functigp must belong to the interval (the set) of the
relevant requirement.

Vie PveV heFy(v) Ao S Uun(yi) < A 1)
Vie Pv eV he Fy(v) on(Y) € Ao (2)

The second step can be modeled by resorting to the compokitictions), .. The attribute values
of a module depend on the attribute values of its selecteshadbles, see constraints (3), whereas
the attribute values of an elementary module must corresfmthose of the physical component
used to implement it, see constraints (4).

Vie PveV\LkeA Y = Su(yh © x7) 3)
Vie Pve L ke A) Yok = Z ZaqYah (4)
q€l(v)
Noticey}, © x’ = (Y}, %, - - - Yhu, Th.) Wherea = [N (v)|, and that each argume, =, of 6,

takes the valug; , if submoduleu is currently selected, and O otherwise.

The third step is implemented by constraints (5) and (6) Wigigarantee that the scalar and
discrete attribute values of a chosen physical compondohgeo the relevant design bounds.

Vie PgeQ, ke Ay (v) Oh <y <0} ()
Vie Pge Q, ke Ay(v) ?Jék € vV} (6)

Finally, each selected elementary module must be implezddmy exactly one physical compo-
nent:
Vie Pve L xf):z,zi. (7)

3.B.2 Interface implementation

The functional and physical interfaces mainly concern timagatibility between selected modules
and components. Due the definition of interface functioeg §2.E), such compatibility can be
simply modeled by logical implications: the functional nubelv (physical componenj) cannot
be selected, i.ez) = 0 (z}, = 0), if the current module (component) selection and funetion
(physical) attribute setting are not compatible, ig.(y'x’) = 0 (x,(y'x’) = 0).

Vie PveV rl < oyt O x") (8)
Vie Pve L ,ge I(v) Zhg < XY ©X) 9)
wherey' © x' = (y! . @b Y% @b oo Y2k, With o & {vg, v, ..]

3.B.3 Commonality evaluation

In our framework we consider both component and attribut@roonalities. A component is
common if it is always allocated with the same attribute quntation across the variants of the
product family, whereas a component attribute is commonrafpair of variants allocating the

10

relevant component if it takes the same value. Componenttartaliée commonalities are modeled
by the following constraints.

Vie PveLgel(v) =z, <rl (10)
Vi<jePqeQkeAlq) |yu—uhl <MA-wy) (11)
Vi<jePqeQkeAlq) wi<rh (12)
Vi<jePqeQkeAlq) wi<r) (13)

1P| |P|-1
VeeQ AWl | Dom-1) =D Z wo”
i=1 i=1 keA(q
< M(1-p,) (14)

Constraints (10)-(14) model implications. Constraints @@) needed since the sé{3), v € L,
in general define a cover @}, i.e., for each product a component can be allocated to nhare t
one module. The allocation of componento both the products and j, and a different value
assignment of attributeimply w” = 0, see constraints (11)-(13). In constraints (14) the term

S S e Wit counts, for each relevant attribute of componknthe number of variants
across the product family which share the same value. Sutib@ucannot be greater thaAI()|

times the number of variants that allocate comporigne., the terms = | A(q)| (le‘l Ty —

Clearly, 3 — a > 0 impliesp, = 0. We remark that the non-linear terms in (11) can be Ilnedrlze
exactly [7].

3.C Objective functions

Several objective functions and platform evaluation nosthiave been proposed in the literature.
Aspects as customer needs, engineering performancesjghmatbustness, component common-
alization and production cost are the most addressed tagach of them concerning the problem
from a different perspective. Actually the most importamt alltimate objective is product family
net present value (NPV) [14]. We show here the flexibility gieaierality of the proposed frame-
work by expressing some meaningful objective functions ewaduation metrics in terms of the
decision variables of the model.

From the market domain perspective, where the expectatianarket segments and the behav-
ior of customers are taken into account, the main focus ifiercuistomer satisfaction. A suitable
measure is how well the customer needs are met by the plaf&rm

The following maximizes conformance to customer needs.

max — Z Z a1 r;_],])) (15)

zEP heF

wherev; : \i — R, (fori € P,h € F) is a market specific value-generating functions which
translate the value of thieth functionality of the product into an absolute scalar quantity called
“value” and usually expressed in monetary units.

From the engineering domain perspective, robustness addig'process commonality are the
most important platforming objectives. The former allovexibility and make easier the adapta-
tion to changes. The latter pursues economies of scaleosetsnmon features, components and

11

subassemblies in general lead to lowering production cd$ts robustness of a product architec-
ture can be controlled by limiting the use of extreme valwescbmponent attributes, since they
could be difficult to meet and could cause poor performanbés i§ implemented in the following
objective function.

Qk) (19 ?qu)

Y
maxzz Z Ty \/ : — (16)

ieP qeQ keA(q)

Product commonality can be quantified by directly resortimghe variablesv andp. The
following objective maximizes attribute commonality:

[Pl-1 |P|

max 3 Y Y wil, (17)

i=1 j=i+l qeQ kcA(q)
and the following maximizes component commonality:

max qu. (18)

q€eqQ

Although the objectives (17) and (18) give a measure of conatity, they do not take into
account the production cost savings due to the economy td.sBathis aim and similarly to [4],
we can introduce a multiperiod production cost function ahhimodels production horizon and
learning effect due to the production volumes.

min » Y Y w1 —pg)Cy () +22qu’C<Zrnz>, (19)

TET q€Q i€EP T€T qeQ ieP

where:

T is the number of periods in the production planning horizon;

n; is the overall production volume (i.e. number of parts) @ #th variant;

C, is the unit production cost of physical componegnt

- (: R — Ris a function representing learning effect:

T

((n)z%(eﬁ—1>.

Finally, we observe that a meaningful and more suitableabivge function can be obtained by
considering a weighted sum of two or more of the previous alve functions, with a view of
balancing a trade-off between market and engineering needs

4 Conclusion

In this paper we introduced a mathematical programmingdasadelling framework for inte-
grated module-based and scale-based platforming. Fugsearch will focus on applications of
this framework to real-life problems.

12

References

[1] B. D’'Souza and T.W. Simpson. A genetic algorithm basedhoétfor product family design
optimization.Engineering Optimizatior35(1):1-18, 2003.

[2] X. Du, J. Jiao, and M.M. Tseng. Product family modelinglatesign support: an approach
based on graph rewriting system/’dEDAM, 16(2):103-119, 2002.

[3] D. Frey, J. Palladino, J. Sullivan, and M. Atherton. Rartint and design of robust systems.
Systems Engineerin@0(3):203-219, 2007.

[4] K. Fujita and H. Yoshida. Product variety optimizatigimultaneous optimization of module
combination and module attributes. 2001 ASME Design Engineering Technical Confer-
ences2001. Paper number DETC2001/DAC-21058.

[5] H.M.H. Hegge and J.C. Wortmann. Generic bill-of-matkréanew product modellnterna-
tional Journal of Production Economic23:117-128, 1991.

[6] R. Kumar, V. Allada, and S. Ramakrishan. Ant colony optiatian method for product plat-
form formation. INASME Design Engineering Technical Conferences, AdvancBssign
Automation, and Computers and Information in Engineeringf€@amces2004. Salt Lake
City, Utah, September 28 - October 2, Paper number DETC2000/D4A264.

[7] L. Liberti. Reformulation techniques in mathematicabgramming, November 2007. €ke
d’Habilitation a Diriger des Recherches.

[8] Holtta-Otto, K. and Otto, K. Platform concept evaluation. In TSMnpson, Z. Siddique, and
J.R. Jiao, editor®2roduct Platform and Product Family Design - Methods and liggpions
Springer, New York, USA, 2006.

[9] A. Messac, M.P. Martinez, and T.W. Simpson. A penaltydiion for product family design
using physical programmingASME Journal of Mechanical Desigh24:164-172, 2002.

[10] M. Meyer and A. Lehnerd.The Power of Product PlatformsThe Free Press, New York,
USA, 1997.

[11] R. Rai and V. Allada. Modular product family design: Agdraised pareto optimization
and quality loss function-based post-optimal analykiternational Journal Production Re-
search 41(17):4075-4098, 2003.

[12] T.W. Simpson, Z. Siddique, and J.R. Jia@roduct Platform and Product Family Design -
Methods and ApplicationsSpringer, New York, USA, 2006.

[13] M.A. Slevinsky and P. Gu. Modular platform design usimgchanical bus architectures.
International Journal of Mass Customizatidh(1):65-82, 2005.

[14] E.S. Suh, O.L. de Weck, and D. Chang. Flexible productfgias: framework and case
study. Research in Engineering Desigh8(2):67-89, 2007.

13

