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Abstract Given a weighted, undirected simple graph G = (V, E, d) (where d : E →

R+), the Distance Geometry Problem (DGP) is to determine an embedding x : V →
R

K such that ∀{i, j} ∈ E ‖xi − xj‖ = dij . Although, in general, the DGP is solved

using continuous methods, under certain conditions the search is reduced to a discrete

set of points. We give one such condition as a particular order on V . We formalize the

decision problem of determining whether such an order exists for a given graph and

show that this problem is NP-complete in general and polynomial for fixed dimension

K. We present results of computational experiments on a set of protein backbones

whose natural atomic order does not satisfy the order requirements and compare our

approach with some available continuous space searches.

Keywords: molecular distance geometry, proteins, sensor network localization, graph

drawing.

1 Introduction

In this paper, we discuss a problem that is auxiliary to solving the following problem

by means of a discrete search method.

Distance Geometry Problem (DGP). Given a weighted, undirected, simple

graph G = (V, E, d), where d : E → R+, and given a positive integer K,
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establish whether there exists an embedding x : V → R
K such that:

∀{u, v} ∈ E ‖xu − xv‖ = duv . (1)

We denote explicit dependence of the DGP on K by DGPK . The DGP has three main

applications.

– Embedding molecules in space. In the Molecular Distance Geometry Problem (MDGP),

G is a molecule graph, where the E is the set of pairs of atoms with known inter-

atomic distances, and K = 3. Because the behavior of a molecule depends strongly

on its spatial configuration, finding an embedding of V in R
3 is of practical inter-

est (see [22,14,16]). A distinguishing property is that, because of the experimental

techniques involved, most distances are bounded above by 6Å. Related problems

in molecular conformation involve the minimization of an energy function (see [31,

8,10]).

– Localizing wireless sensors. The Sensor Network Localization Problem (SNLP) aims

to embed a wireless sensor network in R
2 (so K = 2). Pairs of sensors can estimate

the distance between them by measuring the power used for a two-way communi-

cation. Because sensor networks often include a wired backbone (allowing the link

between the sensor network and the external world), and the position of the wired

backbone components is usually known, the distinguishing property of the SNLP

is that a partial embedding x′ : U → R
2 may be given, where U ⊆ V is the set of

wired backbone components, called anchors in the SNLP literature (see [6,33]).

– Drawing graphs. Graph Drawing is a discipline studying algorithms for drawing

graphs. The embedding might be defined for any K ≥ 1, but of course only projec-

tions in 2D and 3D are actually represented visually. See www.graphdrawing.org

for more information.

Even when the DGP input is all integer, the solution might still be irrational (e.g. take

the equilateral triangle graph ({u, v, w}, {{u, v}, {v, w}, {u, w}, duv = dvw = duw = 1)

with K = 2), so it is not clear that the is in NP. The DGP has a strong connection with

the Euclidean Distance Matrix Completion Problem (EDMCP), which is essentially the

same problem with the difference being that K is part of the output: the EDMCP asks

to find a minimum K such that there exists an embedding x : V → R
K satisfying (1)

(see [11]).

Although the DGP implicitly requires a search in continuous Euclidean space (see

[24,30]), if an appropriate order on the vertices is given, we can show that the feasible

space becomes discrete. The main intuitive idea behind this discretization is that, in

general, the intersection of K spheres in R
K determines at most two points (assuming

the distances in d obey strict simplex inequalities). As long as an order on V is given

that ensures that each vertex i > K has at least K adjacent predecessors, it is easy

to derive a binary tree search where there are at most two alternatives for placing the

next vertex in the sequence (see [16,22]). Search methods based on this principle were

proposed in [21,35,3]. The same vertex order for the problem restricted to K = 3 was

discussed within the context of the Discretizable Molecular Distance Geometry

Problem (DMDGP), see [15], and an application to real proteins discussed in [27,19].

The object of this paper is that of describing the auxiliary problem of deciding

whether, given a weighted undirected simple graph G = (V, E, d) (with d obeying

strict simplex inequalities), there exists a vertex order with the desired properties.

The significance of this auxiliary problem is paramount: the atomic order found in the

Protein Data Bank (PDB) (see [1]) does not guarantee the ability to use the discrete



3

approach described above. Currently, methods based on continuous searches are slower

than discrete search methods and may produce approximate solutions that are far from

satisfying all the distance constraints. Our computational results show the efficiency

and solution quality differences obtained on protein embeddings with and without the

auxiliary problem discussed in this paper.

The rest of this paper is organized as follows. In Sect. 2 we define the Discretizable

Distance Geometry Problem (DDGP), which rests on a certain vertex order guaran-

teeing a discrete search; in Sect. 3 we discuss the Discretizable Vertex Order Problem

(DVOP), the solution of which provides the order needed by the DDGP. The compu-

tational results, given in Sect. 4, are obtained on graphs arising from proteins whose

natural order does not satisfy the DDGP order requirements. Thus, we illustrate the

necessity of the DVOP as a precondition for solving protein conformation problems

with this discrete search technique.

1.1 Notation

Let |V | = n and |E| = m. For all v ∈ V , let δ(v) = {u ∈ V | {u, v} ∈ E} be

the star of vertices around v (also called the adjacents of v); for an order < on V ,

let γ(<, v) = {u ∈ V | u < v} be the set of predecessors of v in the order < and

ρ(<, v) = |γ(v)| + 1 the rank of v in < (the order is total because V is finite). If <

is clear from the context, we write γ(<, v) (resp. ρ(<, v)) as γ(v) (resp. ρ(v)). For

V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′. We call an embedding

x of G valid if (1) holds for G. For a positive integer K and U ⊆ R
K , we let aff U be

the affine closure of U (the smallest affine space containing all vectors in U) and conv U
be the convex hull of U (the smallest convex set containing all vectors in U). If U is an

affine subspace of R
K , we let dim U be its dimension. If x : V → R

K is an embedding,

U ⊆ V and x′ : U → R
K is a partial embedding, then x is an extension of x′.

2 The Discretizable Distance Geometry Problem

By “discretizable,” we mean the existence of an order on V whereby vertices can be

placed one at a time, following the order, in finitely many positions in space, exploiting

the positions of the vertices that are already placed.

The DMDGP is discretizable in this same sense, but fails to be completely abstract

in two practical regards: (i) it is restricted to three dimensions, and (ii) in order to place

the vertex of rank i it requires distances to the three immediate adjacent predecessors.

The first restriction evidently comes from proteins being naturally embedded in real

physical space; the second restriction yields intersections of spheres having radii of

similar orders of magnitude, thereby reducing numerical errors (this restriction can

also be exploited to derive interesting symmetry properties (see [23])). We remove

these restrictions by defining an abstract discretizable DGP.

We consider the basic (sub)problem of placing a vertex v ∈ V in R
K (for a positive

integer K) when the position of all vertices in a certain subset Uv ⊆ V r {v} is known,

and Uv is such that, for all u ∈ Uv , we have {u, v} ∈ E. In this case the quadratic

system (1) reduces to:

∀u ∈ Uv ‖xu − xv‖ = duv. (2)
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Assuming |Uv | > 1 and choosing a specific vertex w ∈ Uv we can, as in [5,34,3],

subtract the w-th equation from the others in (2) in order to obtain the following

(equivalent) system:

∀u ∈ Uv r {w} 2(xu − xw) · xv = (‖xu‖
2 − d

2
uv) − (‖xw‖2 − d

2
wv) (3)

‖xv‖
2 − 2xw · xv + ‖xw‖2 = d

2
wv. (4)

We remark that (3) is a linear system in the indeterminate vector xv whereas (4) is

a single quadratic equation in xv. Let r be the rank of the linear system (3), which

we write 2Axv = b with the u-th rows of A and b being respectively xu − xw and

(‖xu‖
2 − d2

uv) − (‖xw‖2 − d2
wv).

Lemma 1 If r = K, then (2) has at most one solution.

Proof If r = K, then (3) is equivalent to a system 2Axv = b where A is a square

invertible K ×K matrix; thus x∗
v = A−1 b

2
is the only solution of (3). If x∗

v satisfies (4),

then (2) has x∗
v as unique solution; otherwise (2) has no solution. ⊓⊔

For a vector x ∈ R
K , let xK−1 denote the (K − 1)-vector consisting of the first K − 1

components of x.

Lemma 2 If r = K − 1, then (2) has at most two solutions.

Proof If r = K − 1, then (3) is equivalent to a system 2Axv = b, where A is a

rectangular (K − 1) × K matrix of rank K − 1. We can therefore choose any column

of A (choose, say, the K-th column of A and call it N , a (K − 1) × 1 matrix) as

nonbasic, and rewrite 2Axv = b as BxK−1
v + NxvK = b

2
, with B a basis of A, whence

xK−1
v = B−1( b

2
−NxvK). We can therefore replace xK−1

v in (4) with B−1( b
2
−NxvK)

to obtain a quadratic equation:

αx
2
vK − βxvK + η = 0 (5)

in xvK only, where:

α = ‖B−1
N‖2 + 1 (6)

β = B
−1

N · (B−1 b

2
− 2x

K−1
w ) (7)

η = ‖B−1 b

2
‖2 + x

2
wK − d

2
wv. (8)

If β2 −4αη < 0, then (5) has no real solutions, which implies that (2) has no solutions.

Assuming β2 −4αη ≥ 0, let x+

vK , x−
vK be the two solutions of (5), and x+

v = (B−1( b
2
−

Nx+

vK
), x+

vK
) and x−

v = (B−1( b
2
− Nx−

vK
), x−

vK
) the corresponding vectors. Either

x+
v = x−

v , and (2) has exactly one solution, or x+
v 6= x−

v , and (2) has exactly two

solutions. ⊓⊔

If the rank is smaller than K − 1, then there may be infinitely many placements for v,

which means that Uv does not allow an appropriate order to be defined on V .

Lemma 3 If r < K − 1 and (2) has a solution, then it has infinitely many solutions.
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Proof If r < K−1, then, as in the proof of Lemma 2, we can choose a partition B, N of

the column indices of A and express the components of xv indexed by B as a function

of the components indexed by N . We then obtain a quadratic equation as a function

of all components indexed by N , which either has no solutions or has infinitely many

solutions as r < K − 1 implies |N | > 1. ⊓⊔

By Lemmata 1-3, we need only consider v such that the set of adjacent predecessors

includes a set Uv whose linear system (3) rank is either K or K − 1. The condition

|Uv | ≥ K is necessary, but not sufficient: let Uv = {xu | u ∈ Uv}; if |Uv | = K + 1, then

the rank of (3) is exactly K only if dim aff Uv = K, i.e. if conv Uv has nonzero volume

in R
K . Because |Uv | = K + 1, conv Uv is a K-simplex. The volume of a K-simplex in

R
K is given by the Cayley-Menger formula:

∆K(Uv) =

√

√

√

√

√

√

√

√

√

√

√

(−1)K+1

2K (K!)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 . . . 1

1 0 d2
12 . . . d2

1,K+1

1 d2
12 0 . . . d2

2,K+1

...
...

...
. . .

...

1 d2
1,K+1 d2

2,K+1 . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (9)

(see [2], for example). The inequalities ∆K(Uv) > 0 are called strict simplex inequalities

(see [13]). We have thus established the following.

Lemma 4 If |Uv | = K + 1 and ∆K(Uv) > 0, then r = K.

If |Uv | = K, then the rank of (3) is at most K−1; it is exactly K−1 if dim aff Uv =

K − 1. In other words, we require the (K − 1)-dimensional volume of conv Uv to be

nonzero. Because |Uv | = K, conv Uv is a K − 1 simplex in R
K . As above, we use the

Cayley-Menger formula for the volume.

Lemma 5 If |Uv | = K and ∆K−1(Uv) > 0, then r = K − 1.

Proof We compute distances duw for all u, w ∈ Uv by using the coordinates in Uv .

Because |Uv | = K, dim aff Uv ≤ K−1. The Cayley-Menger determinant is well defined

because xu ∈ aff Uv for all u ∈ Uv and duw = ‖xu − xw‖; therefore, the projection

of duw on aff Uv is duw itself. Because ∆K−1(Uv) > 0, then dim aff Uv ≥ K − 1,

concluding the proof. ⊓⊔

Putting together all the Lemmata in this section, we obtain a proof of the following.

Theorem 1 Let v ∈ V . If |Uv | ≥ K and ∃U ′ ⊆ Uv with |U ′| = K such that U ′

defines a (K − 1)-simplex where strict simplex inequalities hold, then (2) has at most

two solutions.

Theorem 1 allows us to properly define the class of DGP instances that can be

discretized. We remark that, by (9), ∆K(Uv) only depends on the distances d, which

must be known for every pair of vertices in Uv: this means that G[Uv ] must be the

K-clique KK . Under this hypothesis, we slightly abuse notation by writing ∆K(Uv)

to mean ∆K(Uv).
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Discretizable Distance Geometry Problem (DDGP). Given a simple undi-

rected graph G = (V, E), an edge weight function d : E → R+, an integer

K > 0, a total order < on V such that:

∀v ∈ V (ρ(v) > K → |δ(v) ∩ γ(v)| ≥ K) (10)

∀v ∈ V ∃Uv ⊆ δ(v) ∩ γ(v) (G[Uv ] = KK ∧ ∆K−1(Uv) > 0), (11)

and a partial embedding x̄ : V0 = {v ∈ V | ρ(v) ≤ K} → R
K valid on G[V0],

decide whether there is a valid extension x : V → R
K of x̄.

Because the DDGP contains the DMDGP (see [26] for the definition of the DDGP in

3D and for a comparison between DDGP and DMDGP), the proof of NP-hardness of

the DMDGP given in [15,17] also holds for the DDGP.

The DMDGP and DDGP can both be solved (approximately for a given ε > 0)

using a recursive binary exploration following the order < on V : at each rank i, use

the already known positions of the adjacent predecessors in Uv to find at most two

positions for the i-th vertex, and recurse the search over each of them. Such an algo-

rithm, called Branch-and-Prune (BP), was described in [21], further discussed in [17],

and used in several papers [27,19,18,28,29,25,20] to solve different DMDGP variants.

Similar algorithms were proposed in [35,3]. Discrete search algorithms such as BP solve

DDGP instances much faster than continuous (and SDP-based) searches (see [22,17]);

most importantly, and uniquely among other distance geometry methods, they can be

configured to find all incongruent solutions to a given instance.

An important remark about the restriction G[Uv ] = KK in (11) is in order. Be-

cause the BP is iterative in nature, it places vertex v in R
K after having placed its

predecessors. Thus, even though G[Uv ] might not be the entire K-clique, at the time of

placing v the whole of Uv is known, and the strict simplex inequalities can be verified

for Uv . In other words, from a practical point of view, we can replace the condition

G[Uv ] = KK by the much less restrictive |Uv | = K. Formally, this would not work,

as the decision problem would be ill-defined: given a set of data, we would only be

able to decide whether it is a valid DDGP instance or not by attempting to solve it.

Because the DDGP is NP-hard, this would be impossible to do in polynomial time

unless P=NP. An alternative way to get around this issue is to notice that the set of

DDGP instances not satisfying the strict simplex inequalities have Lebesgue measure

zero in the set of all DDGP instances: any given DDGP instance would therefore sat-

isfy (11) in practice with probability 1. Essentially, this would allow one to ignore (11)

altogether.

3 The Discretization Vertex Order Problem

This paper mainly discusses the following decision problem.

Discretization Vertex Order Problem (DVOP). Given a simple undi-

rected graph G = (V, E) and a positive integer K, establish whether there is

an order < on V such that: (a) {v ∈ V | ρ(v) ≤ K} is a K-clique in G, and (b)

for each v ∈ V with rank ρ(v) > K, we have |δ(v) ∩ γ(v)| ≥ K.

We note that the DVOP does not verify whether the order satisfies the strict simplex

inequalities mentioned in the DDGP. This is because, as mentioned above, the set of

distance matrices yielding Cayley-Menger determinant having value exactly zero has
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measure zero within the set of all possible (real) distance matrices. NP-completeness of

the DVOP follows trivially from NP-completeness of the K-clique problem, for finding

a DVOP order implies finding K vertices forming a clique in G.

Graphs corresponding to YES instances of DVOP are identified with (K − 1)-

trilateration graphs (see [6]), introduced in the sensor network community. We observe

the close relation of the DVOP in dimension K to Henneberg graphs (see [9]) from

classical rigidity theory with the following definition.

Definition 1 Given an integer K > 0, a simple, undirected graph G = (V, E) is

a Henneberg I(K) graph if (1) G is the complete graph on K vertices or (2) G is

constructed from a Henneberg I(K) graph H with |V | − 1 vertices by adding a new

vertex adjacent to exactly K vertices of H .

It is clear that the DVOP is YES if and only if the graph contains a spanning Hen-

neberg I(K) subgraph. In particular, induction on |V | trivially proves that the DVOP is

YES on all Henneberg I(K) graphs. The converse does not necessarily hold because the

Henneberg graph definition requires new vertices being adjacent to exactly K existing

vertices. Thus, Henneberg I(K) graphs are somehow the minimal graphs whose associ-

ated DVOP problem is YES. For our purposes, however, the larger the sets δ(v)∩γ(v)

(for v of rank exceeding K), the faster BP will perform: |δ(v)∩γ(v)| = K ensures that

the search tree is at most binary, but more edges to v might make the current position

for v infeasible, thereby pruning the current branch and speeding up the search. We

therefore also consider the optimization version of the DVOP:

Optimal Discretization Vertex Ordering Problem (ODVOP). Given a

simple undirected graph G = (V, E) and a positive integer K, find an order <

on V such that: (a) {v ∈ V | ρ(v) ≤ K} is a K-clique in G and (b) for each

v ∈ V of rank greater than K, the number of adjacent predecessors of v is

maximum and is ≥ K.

The ODVOP is a multi-objective maximization problem, whose objective function

vector is (|δ(v)∩γ(v)| : v ∈ V (ρ(v) > K)). For all v ∈ V , let Γ (v) be the set of edges

in G[δ(v) ∩ γ(v)].

Lemma 6
⋃

v∈V

Γ (v) = E.

Proof Let {u, v} ∈ E and assume without loss of generality that u < v. Then u ∈
δ(v) ∩ γ(v), which implies {u, v} ∈ Γ (v). ⊓⊔

Lemma 7 ∀u 6= v ∈ V (Γ (u) ∩ Γ (v) = ∅).

Proof Suppose {w, w′} ∈ Γ (u) ∩ Γ (v); then ((w ∈ δ(u) ∧ w′ = u) ∨ (w′ ∈ δ(u) ∧ w =

u)) ∧ ((w ∈ δ(v) ∧ w′ = v) ∨ (w′ ∈ δ(v) ∧ w = v)). Because u 6= v, we can assume

without loss of generality that (w ∈ δ(u)∧w′ = u)∧ (w′ ∈ δ(v)∧w = v), which implies

u ∈ δ(v) ∧ v ∈ δ(u). Furthermore, because G is simple, {w, w′} = {u, v}. Because the

order relation < is not symmetric, if u ∈ γ(v), then v 6∈ γ(u) and vice versa; hence,

{u, v} is either in Γ (u) or in Γ (v), but not in both. Thus {w, w′} 6∈ Γ (u) ∩ Γ (v). ⊓⊔

Proposition 1
∑

v∈V

|δ(v) ∩ γ(v)| = |E|.
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Proof We have:

∑

v∈V

|δ(v) ∩ γ(v)| =
∑

v∈V

|Γ (v)| =

∣

∣

∣

∣

∣

∣

⋃

v∈V

Γ (v)

∣

∣

∣

∣

∣

∣

+ |S| = |E| + |S|,

where the last equality follows by Lemma 6 and S is a set formed by unions and set

differences of intersections of the sets Γ (v). By Lemma 7, all these intersections are

empty, therefore S = ∅ and the result follows. ⊓⊔

Theorem 2 For a given simple weighted undirected graph G = (V, E, d), all DVOP-

feasible solutions are in the Pareto set of the ODVOP.

Proof Let <, <′ be solutions of the DVOP instance G. Let < be in the Pareto set and

suppose < strictly dominates <′. Then:

∀v ∈ V |δ(v) ∩ γ(<′
, v)| ≤ |δ(v) ∩ γ(<, v)| (12)

∃u ∈ V |δ(u) ∩ γ(<′
, u)| < |δ(u) ∩ γ(<, u)|. (13)

By Prop. 1 we have:
∑

v∈V

|δ(v) ∩ γ(<′
, v)| =

∑

v∈V

|δ(v) ∩ γ(<, v)| = |E|. (14)

We remark that (13)-(14) imply ∃w ∈ V (|δ(v) ∩ γ(<′, v)| > |δ(v) ∩ γ(<, v)|), contra-

dicting (12). ⊓⊔

Thm. 2 shows that the ODVOP and the DVOP are in some sense equivalent. The

significance of the ODVOP is mostly algorithmic: because our proposed search method

is based on a binary tree, it pays to keep the tree breadth limited, specially at the early

nodes. We therefore use the ODVOP maximality requirements to influence the choice

of the next vertex in the order in case of a draw. In other words, if there exist two or

more candidate next vertices whose set of adjacent predecessors is greater than K, we

choose one among the vertices yielding the largest such set.

3.1 Mathematical programming formulation

Different mathematical programming formulations for the DVOP can be conceived,

based on two sets of decision variables: precedence variables x : V ×V → {0, 1} (for all

u, v ∈ V we let xuv = 1 only if u < v) and rank variables y : V ×{1, . . . , |V |} → {0, 1}
(for v ∈ V and k ∈ {1, . . . , |V |} we let yvk = 1 only if ρ(v) = k). We tested a few

of these formulations, using AMPL [7] and CPLEX [12], on a small set of randomly

generated DVOP instances. We only present here the formulation that performed best.

Our largest tested instance was a random graph with 50 vertices and 0.5 edge creation

probability solved at the root node in 29.94s by CPLEX 11 running on a 1.4GHz

CPU with 3GB RAM (no other tested formulation could even solve this instance to

optimality, let alone at the root node).

– Sets.

1. G = (V, E): the graph;

2. R = {1, . . . , |V |}: the set of rank values.
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– Parameters: K ∈ N.

– Decision variables:

∀v ∈ V, k ∈ R yvk =

{

1 if v is k-th in the order

0 otherwise.
(15)

– Objective function: none.

– Constraints:

1. each rank k has a unique vertex assigned to it:

∀k ∈ R
∑

v∈V

yvk = 1; (16)

2. each vertex has a unique rank assigned to it:

∀v ∈ V
∑

k∈R

yvk = 1; (17)

3. each vertex with rank > K has at least K adjacent predecessors:

∀v ∈ V, k ∈ R r {1, . . . , K}
∑

u∈V

{u,v}∈E

∑

i∈R

i<k

yui ≥ Kyvk . (18)

By (16)-(17), the rank is well defined. By (18), if ρ(v) = k then at least K vertices

adjacent to v have smaller rank. Thus the formulation above correctly models the

DVOP.

3.2 The DVOP in fixed dimension

If K is fixed, the problem becomes polynomially solvable. For completeness, we provide

an extension of the proof from [6] for trilateration graphs.

Proposition 2 DVOP with fixed K is in P.

Proof Finding all K-cliques in G can be carried out by simply testing all subsets of V

of cardinality K: this requires O(
(n
K

)

K2) = O(nK ) steps. For each K-clique, we build

vertex orders on the remaining n −K vertices by a greedy algorithm that chooses the

vertex with highest number of adjacent predecessors as next in the order. The choice

of each next vertex can be carried out trivially in O(n2) time, yielding a worst-case

O(nK+3) polynomial algorithm. The instance is a NO if no clique yields a subsequent

order where at least one vertex has fewer than K adjacent predecessors, and YES

if there is a clique that yields an order where all vertices have at least K adjacent

predecessors. ⊓⊔

The interest of the algorithm in the above proof is that usually K is much smaller than

n (typically K ∈ {2, 3}), so that the DVOP is definitely a “fixed-K” type of problem.

Finding all 2-cliques simply amounts to listing all edges, and finding all 3-cliques to

listing all triangles [32]. For a given clique C, we can improve on the greedy part to

complete C to a valid DVOP order on V (or certify such an order does not exist)

in O(n2) as shown in Alg. 1. A further (practical) improvement can be obtained by

keeping V r B ordered by descending α; because the α update at Step 11 is minor, one

can use insertion sort as a practically fast re-sorting algorithm [4].
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Algorithm 1 DVOP order completion.

Require: A clique C ⊆ V with |C| = K
Ensure: Whether ∃ DVOP order from C
1: for v ∈ V with ρ(v) > K do

2: α(v)← |δ(v) ∩ C|
3: end for

4: Initialize B ← C
5: while |B| < n do

6: Let v = argmax{α(u) | u ∈ V r B}
7: if α(v) < K then

8: Stop: no extension of C can result in a DVOP order
9: end if

10: for u ∈ δ(v) r B do

11: α(u)← α(u) + 1
12: end for

13: B ← B ∪ {v}
14: end while

The exactness of Alg. 1 follows by contradiction. Supposing it reaches Line 8 when

C could in fact be extended to a DVOP order <, then there must be a rank where the

vertex v chosen by the algorithm at Line 6 was not the one with the highest number of

adjacent predecessors (for < would provide at least K of them), against the maximal

choice in Line 6.

4 Computational results

We performed computational experiments on a GNU C 4.1.2 implementation of Alg. 1

(compiled with -O3 flag) running on an Intel Core2 2.13GHz CPU with 4GB RAM

running Linux.

We consider instances generated from proteins having known conformations in the

PDB [1]. Each PDB record consists in a set of atomic coordinates for a given protein: we

generate instances by computing the distances between all the possible pairs of hydro-

gens in the molecule, and by keeping only the ones smaller than a predefined threshold

δ. This procedure simulates data obtained from experiments of Nuclear Magnetic Res-

onance (NMR), because all the distances are between hydrogens, and only short-range

distances are considered. The threshold δ usually ranges between 5Å and 6Å: we set

δ = 5.5Å because with this value the discretization assumptions (10)-(11) do not hold

if the hydrogen atoms are ordered as in the PDB files: in other words, solving a DVOP

becomes a necessary precondition.

For each protein, we record in Table 1 the number n of hydrogens it contains, the

number |E| of available distances, and the seconds of user CPU time taken to solve the

DVOP. Two columns of Table 1 refer to the BP algorithm [21] applied to the reordered

proteins. We report the solution quality in terms of Largest Distance Error (LDE):

LDE({x1, x2, . . . , xn}) =
1

|E|

∑

{i,j}

| ||xi − xj || − dij |

dij
,

and the user CPU time. In all the experiments, the tolerance ε used when comparing

known and computed distances is set to 0.001. The last two columns refer to DGSOL

[24], a software for distance geometry based on a continuous formulation of the problem.



11

Alg. 1 BP algorithm DGSOL
Instance n |E| time LDE time LDE time
1brv 90 729 0.00 3.36e-11 0.01 4.14e-01 1.90
1a11 144 1192 0.00 2.43e-12 0.01 1.07e-05 5.27
1erp 209 1969 0.00 3.63e-11 0.05 3.95e-01 7.21
1aqr 214 1690 0.00 3.45e-11 0.02 6.19e-01 8.34
1bbl 221 1690 0.00 2.19e-08 0.05 9.29e-01 9.81
1ed7 261 2591 0.00 3.91e-11 0.05 8.34e-01 8.04
1h1j 261 2489 0.00 3.16e-11 0.03 3.41e-01 13.08
1ahl 268 2508 0.00 4.33e-11 0.02 6.46e-01 15.03
1dv0 275 2669 0.00 4.08e-10 0.05 9.20e-01 14.47
1k1v 277 2600 0.00 4.25e-11 0.06 7.42e-01 12.66
1ccq 389 3888 0.00 5.97e-11 0.10 7.47e-01 20.46
1a2s 480 4723 0.00 5.71e-08 0.77 7.72e-01 24.75
1acz 589 6067 0.01 5.36e-08 1.97 7.42e-01 44.15
2hsy 620 5935 0.01 8.23e-11 0.66 8.10e-01 32.66
1b4c 1152 11044 0.05 7.62e-08 1.81 9.22e-01 117.51
1a23 1157 11628 0.05 9.08e-11 2.38 8.79e-01 110.00
2ron 1501 15101 0.08 1.09e-06 4.15 8.47e-01 148.61
1ezo 2259 21049 0.17 4.89e-07 7.91 9.09e-01 308.90

Table 1 Performances of Alg. 1 and BP.

Because DGSOL accepts a set of lower and upper bounds on the available distances as

input (and therefore solves a different problem than ours), the comparison is not wholly

fair. Notwithstanding, DGSOL is the only well-known continuous optimization-based

algorithm with publicly available code that we could use as a reference to compare

against. We provided DGSOL with the set of intervals [d−ε, d+ε], where d is the generic

distance given to BP. The obtained values for the LDE function and the user CPU time

show that Alg. 1 and BP together are faster (by around 2 orders of magnitude) and

able to find better-quality (by around 10 orders of magnitude) solutions. Moreover, we

point out that obtaining a good order by Alg. 1 only takes a fraction of the CPU time

taken to solve the instance by BP.
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