
Orbital independence in symmetric
mathematical programs

Gustavo Dias and Leo Liberti

CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France
{dias,liberti}@lix.polytechnique.fr

Abstract. It is well known that symmetric mathematical programs are
harder to solve to global optimality using Branch-and-Bound type algo-
rithms, since the solution symmetry is reflected in the size of the Branch-
and-Bound tree. It is also well known that some of the solution symme-
tries are usually evident in the formulation, making it possible to attempt
to deal with symmetries as a preprocessing step. One of the easiest ap-
proaches is to “break” symmetries by adjoining some symmetry-breaking
constraints to the formulation, thereby removing some symmetric global
optima, then solve the reformulation with a generic solver. Sets of such
constraints can be generated from each orbit of the action of the symme-
tries on the variable index set. It is unclear, however, whether and how it
is possible to choose two or more separate orbits to generate symmetry-
breaking constraints which are compatible with each other (in the sense
that they do not make all global optima infeasible). In this paper we
discuss a new concept of orbit independence which clarifies this issue.

1 Introduction

In this paper we address an important issue which arises when breaking symme-
tries of Mathematical Programs (MP) in view of solving them using Branch-and-
Bound (BB) type algorithms. Symmetry-breaking devices are usually derived
from orbits of the action of the formulation group on the decision variables.
However, one cannot simply use such devices for all orbits: some orbits depend
on each other, in a very precise mathematical sense, and hence it may be im-
possible to use more than one orbit for symmetry-breaking purposes. Below, we
discuss a notion of orbit independence which permits to break symmetries from
different orbits concurrently.

2 Previous work and notation

2.1 Mathematical Programming

An MP is a formulation which formally describes an optimization problem in
terms of known parameters (input), decision variables (output), an objective

2

function, and some constraints. We consider MPs of the following general form:

minx f(x)
∀i ≤ m gi(x) ≤ 0

x ∈ D.

 (1)

In Eq. (1), f, gi : Rn → R are functions for which we have closed form expres-
sions f, gi for each i ≤ m. The expressions are written in terms of a formal
language L based on an alphabet A consisting of a finite number of operators
(e.g. sum, difference, product, fractions, powers, square roots, basic transcenden-
tal functions such as logarithm and exponentials, and possibly more complicated
operators depending on the application at hand), a countable supply of variable
symbols x1, . . . , xn representing the decision variables x1, . . . , xn, and the ratio-
nal numbers. The set D might contain non-functional constraints such as ranges
[xL, xU] for the decision variables, and/or integrality constraints, encoded as an
index set Z ⊆ X = {1, . . . , n} such that xj ∈ Z for each j ∈ Z. This modelling
paradigm contains Linear Programming (LP), Nonlinear Programming (NLP),
Mixed-Integer Linear Programming (MILP), Mixed-Integer Nonlinear Program-
ming (MINLP) and Semidefinite Programming (SDP) if x1, . . . , xn are matrices.

2.2 Symmetry detection

We emphasize that Eq. (1) subsumes the description of two mathematical enti-
ties: the MP itself, denoted by P , and its formal description P in the language
L, which we obtain when replacing x, f, g by their representing symbols x, f, g.
It is well known that P can be parsed into a Directed Acyclic Graph (DAG)
data structure T (an elementary graph contraction of the well-known parsing
tree) using a fairly simple context-free grammar [2]. The leaf nodes of T are
labelled by constants or decision variable symbols, whereas the other nodes of
T are labelled by operator symbols. The incidence structure of T encodes the
parent-child relationships between operators, variables and constants. In prac-
tice, we can write P using a modelling language such as AMPL [3] and use an
unpublished but effective AMPL API to derive T [4]. Since T is a labelled graph,
we know how to compute the group G of its label-invariant isomorphisms (which
must also respect a few other properties, such as non-commutativity of certain
operators) [15, 16]. In practice, we can use the software codes Nauty or Traces
[16] to obtain G and the set Θ of the orbits of its action on the nodes V (T) of
the DAG.

2.3 Formulation and solution groups

It was shown in [8] that: (a) the action of G can be projected to the leaf nodes
of V (T), which represent decision variables; (b) this projection induces a group
homomorphism φ mapping G to a certain group image GP ; (c) GP is a group of
permutations of the indices of the variable symbols x1, . . . , xn; (d) GP is precisely
the group of variable permutations of P which keeps f(x) and {gi(x) | i ≤ m}

3

invariant. In other words, [8] provides a practical methodology for computing the
formulation group of a MP given as in Eq. (1). Since it is not hard to show that
GP is a subgroup of the solution group of P , meant as the group of permutations
which keeps the set G (P) of global optima of P invariant, this methodology can
be used to extract symmetries from P prior to solving it.

2.4 Symmetry Breaking Constraints

So much for detecting (some) symmetries. Once these are known, their most
efficient exploitation appears to be their usage within the BB algorithm itself
[12, 13, 18, 17]. Such approaches are, unfortunately, difficult to implement, as
each solver code must be addressed separately. Their simplest exploitation is
static symmetry breaking [14, §8.2] which, simply put, consists in adjoining some
Symmetry-Breaking Constraints (SBCs) to the original formulation Eq. (1) in
the hope of making all but one of the symmetric global optima infeasible. Fol-
lowing the usual trade-off between efficiency and generality, approaches which
offer provable guarantees of removing symmetric optima are limited to special
structures [6], whereas approaches which hold for any MP in the large class
Eq. (1) are mostly common-sense constraints designed to work in general [9].
The consensus seems to be that sets of SBCs are derived from each orbit of the
action of GP on X (though this is not the only possibility: SBCs can also be
derived from cyclic subgroups of GP or single permutations).

2.5 Orbits

We recall that an orbit is an equivalence class of the quotient set X/∼, where
i ∼ j if there is g ∈ GP such that g(i) = j. This way, GP partitions X into
a set ΩGP

of orbits ω1, . . . , ωp, each of which can be used to generate SBCs.
The projection homomorphism φ defined above for G and the leaf nodes of the
parsing tree can be restricted to act on GP and generalized to project its action
to any subset Y ⊆ X as follows: for each π ∈ GP let φ(π) be the product of the
cycles of π having all components in Y . We denote by φY this generalized action
projection homomorphism. The image of φY , when Y is some orbit ω ∈ ΩGP

, is
a group GP [ω] called the transitive constituent of ω (a group action is transitive
on a set S if s ∼ t for each s, t ∈ S).

2.6 Strong and weak SBCs

We borrow the square bracket notation to localize vectors: if x∗ ∈ G (P) is a
global optimum of P , then x∗[ω] is a projection of x∗ on the coordinates indexed
by ω. If GP [ω] is the full symmetric group Sym(ω) on the orbit, it means that
G (P) contains vectors which, when projected onto ω, yield every possible order
of x∗[ω]. This implies that we can arbitrarily choose one order, e.g.:

∀` < |ω| xω(`) ≤ xω(`+1), (2)

4

where ω(`) is the `-th element of ω (stored as a list), enforce this order by
means of SBCs, and still be sure that at least one global optimum remains
feasible. The SBCs in Eq. (2) are called strong SBCs. If GP [ω] has any other
structure, we observe that, by transitivity of the transitive constituents, at least
one permutation in GP [ω] will map the component having minimum value in
x∗[ω] to the first component (the choice if minimum value and first components
are arbitrary — alternative SBC sets can occur by choosing maximum and/or
any other component). This yields the weak SBCs:

∀` ∈ ω r {ω(1)} xω(1) ≤ xω(`). (3)

Strong SBCs select one order out of |ω|! many, and hence are able to break all
symmetries in GP [ω]. Weak SBCs are unlikely to be able to achieve that. We let
g(x[B]) ≤ 0 denote SBCs involving only variables xj with j in a given set B.

2.7 Stabilizers

Let Y ⊆ X. We recall that the pointwise stabilizer of Y w.r.t. GP (or any
group G) is defined as the subgroup of elements of GP fixing each element
of Y , i.e., GY = {g ∈ GP | ∀y ∈ Y (gy = y)}. The setwise stabilizer of Y
w.r.t. GP is the subgroup of those elements of GP under which Y is invariant,
i.e., stab(Y,GP) = {g ∈ GP | ∀y ∈ Y (gy ∈ Y)}. By definition, if Y is an orbit
of GP , then GY is the kernel of φY and stab(Y,GP) = GP .

3 Orbital Independence Notions

In this section we introduce our main results regarding orbit independence (OI).
First we illustrate how SBCs built from different orbits may cut global optima
from a MP; then we recall the conditions of OI originally introduced in [8], and
finally we present a new concept of OI based on pointwise stabilizers.

3.1 Incompatible SBCs

In general, one may only adjoin to P the SBCs from one orbit. Adjoining SBCs
from two or more orbits chosen arbitrarily may result in all global optima being
infeasible, as Example 1 shows.

Example 1. Let P be the following MILP:

min
x∈{0,1}4

x1 + x2 + 2x3 + 2x4
1 1 0 0
0 0 1 1
−1 0 −1 0
0 −1 0 −1



x1
x2
x3
x4

 ≤


1
1
−1
−1

 .

5

It has formulation groupGP = 〈(1 2)(3 4)〉, optima G(P) = {(0, 1, 1, 0), (1, 0, 0, 1)}
and orbits ΩGP

= {ω1, ω2} = {{1, 2}, {3, 4}}. Valid SBCs for ω1 (resp. ω2) are
x1 ≤ x2 (resp. x3 ≤ x4). Whereas adjoining either of the two SBCs yields a valid
narrowing, adjoining both simultaneously leads to an infeasible problem.

Yet, breaking symmetries from only one orbit does not generally make a
strong computational impact in MPs of the form Eq. (1). In what follows, we
explore the concept of “orbital independence” meant as sufficient conditions to
guarantee that SBCs from many orbits preserve at least one global optimum of
P feasible.

3.2 Some existing OI conditions

In order to concurrently combine sets of SBCs generated by two orbits ω, θ ∈
ΩGP

into a valid narrowing (i.e. a reformulation guaranteed to keep at least one
global optimum [7]) of a MINLP, two sufficient conditions were provided in [8]:

– there is a subgroup H ≤ GP [ω ∪ θ] such that H[ω] ∼= C|ω| and H[θ] ∼= C|θ|;
– gcd(|ω|, |θ|) = 1.

Two orbits with these properties are called coprime. Coprime orbits occur rela-
tively rarely in practice [8].

Another set of conditions for OI was hinted at in [11], by means of the
following iterative procedure. Initially, one sets G ← GP and picks an orbit
ω ∈ ΩGP

; then adjoins SBCs for ω to P , and then replaces G by Gω. Termination
occurs when G is the trivial group. At each iteration, the SBCs from different
orbits can be concurrently adjoined to P . On the other hand, the orbits refer to
the action of different groups: GP initially, then the groups in a normal chain of
pointwise stabilizers. In the following, we expand on this idea.

3.3 New conditions for OI

Our goal now is to introduce the concept of independent set of orbits and provide
conditions that will help us to identify such sets. These new necessary conditions
for OI will be established based on pointwise stabilizers.

First, let ω, θ ∈ ΩGP
. We look at what happens to θ when ω is pointwise

stabilized: either Gω fixes θ, or a subset of θ, or it does not fix any element of θ
at all. So three cases follow:

(a) for any subset σ ⊆ θ, σ 6∈ ΩGω ;
(b) there is a subset σ (θ such that σ ∈ ΩGω ;
(c) θ ∈ ΩGω .

We can thus state the following binary dependence relations on the set ΩGP
.

Definition 1. The orbit θ is dependent of ω, denoted by θ → ω, if θ is stabilized
when ω is stabilized (case (a) above).

6

Definition 2. The orbit θ is semi-dependent of ω, denoted by θ ω, if θ splits
when ω is stabilized (case (b) above).

Definition 3. The orbit θ is independent of ω, denoted by θ

�

ω, if θ is not
stabilized when ω is stabilized (case (c) above).

Next, let Γω be the set of permutations of GP which move elements of the
orbit ω nontrivially. By definition, Γω does not contain the identity permutation
e of GP and thus it is not itself a group. Moreover, the following properties hold:
Gω ∩ Γω = ∅, stab(ω,GP) = Gω ∪ Γω = GP and φω(Γω) = GP [ω] r e.

Theorem 1 establishes the dependence relation between two orbits ω, θ ∈ ΩGP

by comparing the sets Γω and Γ θ.

Theorem 1. The following statements are true:

(1) If Γ θ = Γω then θ → ω and ω → θ;
(2) If Γ θ ⊂ Γω then θ → ω and either ω

�

θ or ω θ;
(3) If Γ θ ∩ Γω 6= ∅ then (θ

�

ω or θ ω) and (ω

�

θ or ω θ);
(4) If Γ θ ∩ Γω = ∅ then θ

�

ω and ω

�

θ.

Proof. (1) Assume Γ θ = Γω and consider ω. Then Gω = GP rΓω ⇒ Gω ∩Γ θ =
∅ ⇒ θ /∈ ΩGω and θ → ω. Since the same argument holds if we consider θ, we
also have ω → θ.

(2) Assume Γ θ ⊂ Γω and consider ω. Then Gω = GPrΓω ⇒ Gω∩Γ θ = ∅⇒
θ /∈ ΩGω and θ → ω. Considering θ, we have that Gθ = GPrΓ θ ⇒ Gθ∩Γω 6= ∅.
If the action of Gθ is transitive on ω, we have ω

�
θ. Otherwise, we have ω θ.

(3) Assume Γ θ ∩ Γω 6= ∅ but neither set is wholly contained in the other,
and consider ω. Then Gω = GP r Γω ⇒ Gω ∩ Γ θ 6= ∅. If the action of Gω is
transitive on θ, we have θ

�

ω. Otherwise, we have θ ω. The same argument
holds if we consider θ.

(4) Assume Γ θ ∩ Γω = ∅ and consider ω. Then Gω = GP r Γω ⇒ Gω ⊃
Γ θ ⇒ θ ∈ ΩGω and θ

�

ω. The argument is similar if we consider θ, thus ω

�

θ.
ut

Lemma 1. The premise Γ θ ∩ Γω = ∅ to condition (4) in Theorem 1 never
holds.

Proof. Let ∆ be the set of generators of GP . If there is g ∈ ∆ such that g[ω] and
g[θ] are nontrivial, then g ∈ Γ θ∩Γω. Otherwise, let ∆θ = {g ∈ ∆ | g[ω] = e} and
∆ω = {g ∈ ∆ | g[θ] = e}. Because every element of GP can be expressed as the
combination (under the group operation) of finitely many elements of ∆, there
is g ∈ GP such that g = gωgθ where gω ∈ ∆ω and gθ ∈ ∆θ. Thus g ∈ Γ θ ∩Γω. ut

Based on the above definitions and results, the following lemmata hold.

Lemma 2. The relation → is reflexive and the relations and

�

are irreflex-
ive.

Lemma 3. The relation → is symmetric iff Γ θ = Γω and asymmetric iff Γ θ ⊂
Γω.

7

Lemma 4. The relation → is transitive.

Proof. Let θ, ω, τ ∈ ΩGP
be distinct orbits satisfying θ → ω and ω → τ . From

Theorem 1, θ → ω implies that either Γ θ = Γω or Γ θ ⊂ Γω. Similarly, ω → τ
implies that either Γω = Γ τ or Γω ⊂ Γ τ . Then:
(i) Γ θ = Γω ∧ Γω = Γ τ ⇒ Γ θ = Γ τ ⇒ θ → τ ;
(ii) Γ θ = Γω ∧ Γω ⊂ Γ τ ⇒ Γ θ ⊂ Γ τ ⇒ θ → τ ;
(iii) Γ θ ⊂ Γω ∧ Γω = Γ τ ⇒ Γ θ ⊂ Γ τ ⇒ θ → τ ;
(iv) Γ θ ⊂ Γω ∧ Γω ⊂ Γ τ ⇒ Γ θ ⊂ Γ τ ⇒ θ → τ . ut

Whenever the dependence relations are symmetric, we write ω ↔ θ or ω! θ
or ω

��

θ. Using this notation, we set forth that:

Definition 4. Two orbits ω, θ ∈ ΩGP
are dependent if ω ↔ θ, semi-dependent

if ω! θ and independent if ω

��

θ.

Following, we extend the dependence relations presented above to sets of
orbits. In this sense, consider a set Ω ⊆ ΩGP

and let Ωω = Ωrω for ω ∈ Ω. We
look at what happens to ω when the set Ωω is pointwise stabilized, i.e., when
all of the orbits in Ωω are (simultaneously) pointwise stabilized. Similar cases to
(a)-(c) may occur and suitable definitions can be stated.

Definition 5. The orbit ω is dependent of Ωω, denoted by ω ↪→ Ωω, if ω is
stabilized when all orbits of Ωω are stabilized.

Definition 6. The orbit ω is semi-dependent of Ωω, denoted by ω ; Ωω, if ω
splits when all orbits of Ωω are stabilized.

Definition 7. The orbit ω is independent of Ωω, denoted by ω

"

Ωω, if ω is
not stabilized when all orbits of Ωω are stabilized.

Lemma 5 establishes necessary conditions to have ω "

Ωω. The pointwise
stabilizer of a set Ω of orbits is denoted as GΩ hereafter.

Lemma 5. If ω "

Ωω, then ω

�

θ for all θ ∈ Ωω.

Proof. By definition, ω "

Ωω implies that the action of GΩω on ω is transitive.
Since GΩω is a subgroup of Gθ for every θ ∈ Ωω, Gθ also acts transitively on ω
and thus ω

�

θ. ut

Finally we can define an independent set of orbits. We remark that, although
we do not state them explicitly, corresponding definitions can be laid down
concerning the concepts of dependent and semi-dependent sets of orbits.

Definition 8. A set Ω is said to be independent if ω "

Ωω for all ω ∈ Ω.

Corollary 1 provides necessary conditions so as to a set Ω be independent.

Corollary 1. If the set Ω is independent, then ω

��

θ for all ω, θ ∈ Ω.

Proof. By Definition 8 and Lemma 5. ut

8

3.4 SBCs from independent sets

Let ΩI denote an independent set of orbits. Similarly to the results presented
in [8], the following propositions set appropriate conditions to build weak and
strong SBCs, respectively, from independent sets of orbtis.

Proposition 1. The constraints (3) are SBCs for P and GΩ
ω
I with respect to

ω ∈ ΩI .

Proof. Let y ∈ G (P). Since GΩω
I acts transitively on ω, there exists π ∈ GΩω

I

mapping min y[ω] to yω(1). ut

Proposition 2. Provided that GΩω
I [ω] = Sym(ω), the constraints (2) are SBCs

for P and GΩω
I with respect to ω ∈ ΩI .

Proof. Let y ∈ G (P). Since GΩω
I [ω] = Sym(ω), there exists π ∈ GΩω

I such that
(πy)[ω] is ordered by ≤. Therefore πy is feasible w.r.t. the contraints (2). ut

4 Orbital Independence Algorithm

In this section we describe the methodology used to find an independent set
of orbits of a mathematical program. We present how to model and solve the
problem of finding such a set by means of a classical combinatorial optimization
problem. Moreover, we describe in details the algorithm proposed to build SBCs
from all orbits contained in an independent set.

4.1 Independence graph

Our interest relies in finding the largest ΩI ⊆ ΩGP
. Nevertheless, so far we do

not have theoretical results providing sufficient conditions to find such a set.
Yet we can use the necessary conditions provided by Corollary 1 and search for
the largest set ΩK ⊆ ΩGp whose elements are pairwise independent. Having
obtained ΩK , we can then search for the largest ΩI ⊆ ΩK .

Hence we propose to find ΩK by encoding the independence relation between
orbits of GP as an undirected graph GI = (V,E), as of now called the indepen-
dence graph of P , where V = ΩGP

and E is the set of pairs of independent orbits
in ΩGP

. In this manner we reduce the problem of finding ΩK to the problem of
finding the maximum clique in GI .

4.2 Orbital independence reformulations

We expect that the larger the number of SBCs adjoined to the original for-
mulation, the stronger their computational impact. Particularly, the larger the
number of strong SBCs, the better. We thus propose two different reformulations
based on the concept of OI: the first prioritizing the total number of SBCs gen-
erated and the second prioritizing the total number of strong SBCs generated.

9

In this sense, we look for cliques in GI that either involve large orbits or involve
mostly orbits which may satisfy the conditions to build strong SBCs.

In order to find such cliques, we associate a weight function d : V → W
to GI = (V,E, d) and solve the Maximum Weight Clique problem (MWCP)
for GI using the MP formulation described in [1]. In the first reformulation,
which we call orbital independence narrowing, we have W = {|ω1|, . . . , |ω|V ||}
and d(ωi) = |ωi| for all ωi ∈ V . In the second, which we call strong orbital
independence narrowing, W = {d1, d2}. It is worth pointing out that the strong
orbital independence narrowing prioritizes cliques having mostly orbits which
satisfy GP [ω] = Sym(ω); this is a necessary (but not sufficient) condition to
have GΩω

I [ω] = Sym(ω) since GΩω
I [ω] is a subgroup of GP [ω] for every ω ∈ ΩI .

4.3 Algorithm description

Algorithm 1 Orbital Independence SBC generator
Require: nontrivial GP and reformulation strategy ς
1: Let C = ∅ and ΩI = ∅
2: Let ΩGP = computeOrbits(GP)
3: if |ΩGP | > 1 then
4: for ω ∈ ΩGP do
5: Let Gω = computePointStab(ω)
6: for θ ∈ ΩGP such that pos(θ) > pos(ω) do
7: Let Gθ = computePointStab(θ)
8: if isTransitiveAction(Gω, θ) ∧ isTransitiveAction(Gθ, ω) then
9: Let E = E ∪ {{ω, θ}, {θ, ω}}

10: end if
11: end for
12: end for
13: if |E| ≥ 2 then
14: Let GI = buildGraph(ΩGP , E, ς)
15: Let ΩK = ΩI = solveMWCP(GI)
16: for ω ∈ ΩK do
17: if not isTransitiveAction(GΩ

ω
I , ω) then

18: Let ΩI = ΩI r ω
19: end if
20: end for
21: for ω ∈ ΩI do
22: Let g(x[ω]) ≤ 0 be some SBCs for P and GΩ

ω
I w.r.t. ω

23: Let C = C ∪ {g(x[ω]) ≤ 0}
24: end for
25: end if
26: end if
27: return C

The Algorithm 1 generates a set C containing SBCs derived from the largest
independent set of orbits of P . It takes as inputs a nontrivial formulation group

10

(parameter GP) and a reformulation strategy (parameter ς). Some functions
simplify the pseudocode of Alg. 1: computeOrbits(GP) returns the orbits of the
group GP ; computePointStab(ω) returns the pointwise stabilizer of ω; pos(ω)
returns the position of orbit ω in the list ΩGP

; isTransitiveAction(G,ω) returns
true if the action of the group G is transitive on the orbit ω and false otherwise;
buildGraph(V,E, ς) returns a graph with vertices V , edges E and weights appro-
priate to the strategy ς; solveMWCP(GI) returns a solution of the MWCP for
the graph GI .

If GP has more than one orbit (|ΩGP
| > 1), the algorithm first iteratively

looks for all pairs of independent orbits in order to build the set E. Because
the Condition (3) in Theorem 1 is not sufficient to ascertain whether two orbits
ω, θ ∈ ΩGP

satisfy ω

��

θ, ultimately we must check if the action of the stabilizers
Gω and Gθ is transitive on θ and ω, respectively. Thus the algorithm does not
compare the sets Γω and Γ θ but rather directly checks whether the actions are
transitive. Following the first loop, if at least one pair of independent orbits
is found (|E| ≥ 2), the algorithm builds the independence graph GI according
to the reformulation strategy ς and calls a third party MILP solver to solve
the MWCP for GI . Once ΩK is known, the algorithm converges to a set ΩI
by iteratively removing (from a copy of ΩK stored as ΩI) the orbits that do
not satisfy ω

"

ΩωI . We remark that our approach here is not optimal in the
sense that the resulting ΩI may not be the largest one; evaluating all possible
ΩI ⊆ Ωk would most likely require a large computational effort due to many
stabilizer computations. Then, for each orbit in the set ΩI , the algorithm builds
and adds SBCs to the set C. We remark that if |ΩGP

| = 1 (unique orbit) or
|E| = 0 (no pair of independent orbits in ΩGP

), no reformulation is carried out.

Theorem 2. The constraint set CΩI
= {g(x[ωk]) ≤ 0 | ωk ∈ ΩI} is an SBC

system for P .

Proof. If P is infeasible then adjoining the constraints in CΩI
to P does not

change its infeasibility, so assume P is feasible. Since g(x[ωk]) ≤ 0 are SBCs for
P and GΩ

ωk
I w.r.t. ωk, there exist y ∈ G (P) and πωk

∈ GΩ
ωk
I such that πωk

y
satisfies g((πωk

y)[ωk]) ≤ 0. But πωk
∈ GP for all ωk ∈ ΩI and, due to the closure

of the group operation, there exists π ∈ GP such that π =
∏
πωk

. So πy ∈ G (P).
But π[ωk] = πωk

[ωk] since πωk′ stabilizes ωk pointwise for every k′ 6= k and thus
(πy)[ωk] = (πωk

y)[ωk]. Therefore πy satisfies g((πy)[ωk]) ≤ 0 for all ωk ∈ ΩI . ut

5 Computational experiments

In this section we show the computational impact on the resolution of MILPs
when adjoining SBCs arising from different orbits simultaneously. We describe
the computational environment involved (machinery, solvers, instances) and an-
alyze the results obtained from the conducted experiments.

11

5.1 Environment

Our test set consists of symmetric MPs taken from the library MIPLIB2010.The
reformulations were obtained on a quad-CPU Intel Xeon at 2.66GHz with 24Gb
RAM. Automatic group detection is carried out using the ROSE reformulator
[10] and the Traces software [16]. Other group computations are carried out us-
ing GAP v. 4.7.4 [19]. The MP results were obtained on a 24-CPU Intel Xeon at
2.53GHz with 48Gb RAM. All problems were solved under the AMPL [3] envi-
ronment using CPLEX 12.6 [5]. The execution time was limited to 1800 seconds
of user cpu time. In order to try and provide a fair assessment of our method-
ology, we disabled the symmetry handling methods built into CPLEX. We also
ran CPLEX in single thread mode to impose its sequential (and deterministic)
behaviour and increase the chances of measuring performance differences.

5.2 Results

We first comment the results regarding the reformulation process. Table 1 re-
ports, per instance, the number of variables (n) and orbits (|ΩGP

|) of the orig-
inal formulation, and the total number of variables indexed by the orbits ΩGP

(#svar); for each OI narrowing type, the table reports the size of the maximum
clique (|ΩK |), the size of the largest independent set (|ΩI |), the total number
of variables indexed by all of the orbits in ΩI (#var), and the number of weak
(#wea) and strong (#str) SBCs generated.

We would like to remark that both reformulation strategies yielded the same
narrowings for the most part of the instances. In these cases, we do not present
results regarding the strong orbital independence reformulation. Additionally,
we also point out that the size of the maximum cliques is equal to the size of
the largest independent sets for all instances.

Apart from the structure of the group GP , intuitively, the ratio ν =(#svar/n)
may also indicate how symmetric a formulation P is. Similarly, the ratios ρ =
(|ΩI |/|ΩGP

|) and υ =(#var/#svar) may indicate how extensively we have ex-
ploited the symmetries of P . All together, we expect SBCs to make a strong
computational impact whenever the triplet (ν, ρ, υ) tends to (1, 1, 1). Table 1
shows that the symmetric instances tested so far have, in general, two low ra-
tios, which suggests that the impact of the SBCs may not be too significative.

Table 2 reports the optimization results. Per instance and for each formula-
tion, the table exhibits the best solution found, the user cpu time (in seconds),
the gap (%) and the solver status at termination (opt = optimum found, lim
= time limit reached, inf = infeasible instance). Best values are emphasized
in boldface. Some intances from Table 1 do not appear in Table 2 because no
method performed better than the other.

As expected, we do not observe cases of infeasible narrowings due to the usage
of SBCs derived from different orbits simultaneously. Moreover, we also observe
consistent improvements in favor of the orbital independence narrowings. In 22
out of 48 instances, the SBCs slightly helped to improve the performance of the
solver. On the other hand, in 14 cases the SBCs were harmful and, in 12 other

12

Original Oi-narrowing
Instance n |ΩGP

| #svar |ΩK | |ΩI | #var #wea #str
bab5 21600 1936 3872 4 4 8 0 4

blp-ar98 16017 2 4 2 2 4 0 2
blp-ic97 8445 2 4 2 2 4 0 2

core4872-1529 24605 505 1046 46 46 96 0 50
gmu-35-40 842 40 111 4 4 13 0 9
gmu-35-50 1177 40 111 4 4 13 0 9
gmut-75-50 36164 64 242 6 6 19 0 13
gmut-77-40 13140 70 280 7 7 26 0 19
iis-bupa-cov 345 2 7 2 2 7 0 5

lectsched-4-obj 3513 267 557 17 17 36 0 19
map06 46015 107 245 10 10 20 0 10
map10 46015 107 245 10 10 20 0 10
map14 46015 107 245 10 10 20 0 10
map18 46015 107 245 10 10 20 0 10
map20 46015 107 245 10 10 20 0 10

mcsched 1669 45 90 15 15 30 0 15
mzzv11 10240 155 310 16 16 32 0 16

neos-1311124 1092 52 1092 4 4 84 0 80
neos-1426635 520 52 520 4 4 40 0 36
neos-1426662 832 52 832 4 4 64 0 60
neos-1436709 676 52 676 4 4 52 0 48
neos-1440460 468 52 468 4 4 36 0 32
neos-1442119 728 52 728 4 4 56 0 52
neos-1442657 624 52 624 4 4 48 0 44
neos-911880 888 259 888 7 7 24 0 17
neos-952987 31329 37 81 4 4 8 0 4

neos18 963 53 248 5 5 26 0 21
ns1631475 22696 105 210 11 11 22 0 11
ns2081729 661 300 600 3 3 6 0 3
ns2122603 18052 36 72 18 18 36 0 18

p2m2p1m1p0n100 100 25 92 3 3 12 0 9
protfold 1835 558 1800 2 2 4 0 2

rocII-4-11 3409 2 27 2 2 27 0 25
rococoC10-001000 2566 41 82 4 4 8 0 4

rvb-sub 33765 113 226 12 12 24 0 12
satellites1-25 9013 200 400 20 20 40 0 20

seymour-disj-10 1209 49 106 5 5 12 0 7
seymour 1255 55 156 5 5 41 29 7

swath 6404 21 163 2 2 8 0 6
transportmoment 9099 85 189 17 17 38 0 21

uc-case3 36921 2687 5374 2 2 4 0 2
uct-subprob 2236 136 306 7 7 14 0 7

Original Oi-narrowing Soi-narrowing
Instance n |ΩGP

| #svar |ΩK | |ΩI | #var #wea #str |ΩK | |ΩI | #var #wea #str
core2536-691 15288 88 187 12 12 29 3 14 12 12 27 0 15
macrophage 2260 251 566 18 18 42 5 19 18 18 39 0 21
neos-555424 3815 132 3810 8 8 190 107 75 8 8 145 58 79
neos-826841 5516 156 5436 3 3 200 191 6 4 4 46 0 42
neos-849702 1737 128 1737 2 2 36 34 0 2 2 9 0 7

toll-like 2883 386 1091 26 26 91 44 21 26 26 59 0 33
Table 1. OI narrowings of symmetric instances from MIPLIB2010.

13

instances, they made no difference at all. Although they provided good results,
the few soi-narrowings did not achieve outstanding performances. Interestingly,
the SBCs were harmful to all instances of the family map#. We shall investigate
why this happens in order to get more insights on the impact of SBCs.

Overall, we understand that the results are few and at most reasonable,
but they support our motivation and encourage a more extensive experimental
evaluation against a larger set of instances that exhibit nontrivial symmetries.

Original formulation Oi-narrowing
Instance Best Time (s) Gap (%) St. Best Time (s) Gap (%) St.

bab5 -106412 1800.10 0.16 lim -106412 849.51 0 opt
blp-ar98 6205.21 1293.84 0 opt 6205.6 1800.12 0.12 lim
blp-ic97 4032.94 1800.13 0.69 lim 4025.02 1800.08 0.39 lim

core4872-1529 1479 1800.10 3.07 lim 1472 1800.11 2.56 lim
gmu-35-40 -2406600 52.83 0 opt -2406600 52.51 0 opt
gmut-75-50 -14176700 1800.48 0.03 lim -14178800 1800.41 0.01 lim
gmut-77-40 -14166700 1800.29 0.04 lim -14167400 1800.30 0.03 lim
iis-bupa-cov 36 1800.04 7.90 lim 36 1800.05 7.51 lim

lectsched-4-obj 4 9.05 0 opt 4 8.15 0 opt
map06 -289 683.60 0 opt -289 808.28 0 opt
map10 -495 581.88 0 opt -495 719.42 0 opt
map14 -674 642.28 0 opt -674 678.25 0 opt
map18 -847 271.84 0 opt -847 323.00 0 opt
map20 -922 148.02 0 opt -922 167.72 0 opt

mcsched 211913 320.23 0 opt 211913 361.66 0 opt
mzzv11 -21718 20.43 0 opt -21718 34.13 0 opt

neos-1426635 -176 1800.83 1.14 lim -176 1800.19 0.57 lim
neos-1426662 -44 1800.41 14.74 lim -44 1800.35 13.59 lim
neos-911880 54.76 7.57 0 opt 54.76 7.05 0 opt

neos18 13 25.24 0 opt 13 15.97 0 opt
ns2081729 9 394.59 0 opt 9 812.08 0 opt

protfold -25 1800.02 46.34 lim -27 1800.02 35.14 lim
rocII-4-11 -5.65564 389.22 0 opt -5.65564 397.36 0 opt

rvb-sub 27.51 1800.36 58.90 lim 27.4683 1800.31 58.83 lim
satellites1-25 -5 195.57 0 opt -5 422.41 0 opt

seymour-disj-10 288 1800.04 1.91 lim 288 1800.04 1.85 lim
seymour 307 1800.06 2.00 lim 307 1800.06 2.06 lim

swath 467.408 1800.34 11.95 lim 467.408 1800.53 11.27 lim
transportmoment ∞ 2.69 ∞ inf ∞ 2.52 ∞ inf

uc-case3 6931.73 1800.39 0.12 lim 6931.39 1800.40 0.11 lim
uct-subprob 315 1800.06 4.87 lim 317 1800.09 7.29 lim

Original formulation Oi-narrowing Soi-narrowing
Instance Best Time (s) Gap (%) St. Best Time (s) Gap (%) St. Best Time (s) Gap (%) St.

core2536-691 683 56.47 0 opt 683 64.99 0 opt 683 50.04 0 opt
macrophage 374 755.91 0 opt 374 372.96 0 opt 374 224.31 0 opt
neos-555424 1286800 5.71 0 opt 1286800 6.68 0 opt 1286800 6.52 0 opt
neos-849702 0 717.74 0 opt 0 8.68 0 opt 0 89.52 0 opt

toll-like 617 1800.03 21.81 lim 611 1800.04 20.33 lim 617 1800.04 20.38 lim

Table 2. MIPLIB2010 results obtained with CPLEX 12.6.

6 Conclusions
In this paper we discussed the notion of orbital independence by presenting
theoretical results that establish sufficient conditions to break symmetries from
different orbits of MPs concurrently. These conditions allowed us to design an
algorithm that efficiently generates SBCs to the largest independent set of orbits
of MPs. We evaluated the impact of our methodology by conducting experiments
with symmetric instances taken from MIPLIB2010. The results were at most
reasonable but encouraging; we aim to extend our computational tests to a larger
set of symmetric instances, either taken from public libraries such as MINLPLIB2
or generated so as to contain formulation groups with specific structures.

14

Acknowledgments

The first author (GD) is financially supported by a CNPq Ph.D. thesis award.

References

1. Bomze, I., Budinich, M., Pardalos, P., Pelillo, M.: The maximum clique prob-
lem. In: Du, D.Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization,
Supp. A, vol. supp. A, pp. 1–74. Kluwer Academic Publishers, Dordrecht (1998)

2. Costa, A., Hansen, P., Liberti, L.: Formulation symmetries in circle packing. In:
Mahjoub, R. (ed.) Proceedings of the International Symposium on Combinatorial
Optimization. Electronic Notes in Discrete Mathematics, vol. 36, pp. 1303–1310.
Elsevier, Amsterdam (2010)

3. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)
4. Galli, S.: Parsing AMPL internal format for linear and non-linear expressions

(2004), B.Sc. dissertation, DEI, Politecnico di Milano, Italy
5. IBM: ILOG CPLEX 12.6 User’s Manual. IBM (2014)
6. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Mathematical Pro-

gramming 114(1), 1–36 (2008)
7. Liberti, L.: Reformulations in mathematical programming: Definitions and system-

atics. RAIRO-RO 43(1), 55–86 (2009)
8. Liberti, L.: Reformulations in mathematical programming: Automatic symmetry

detection and exploitation. Mathematical Programming A 131, 273–304 (2012)
9. Liberti, L.: Symmetry in mathematical programming. In: Lee, J., Leyffer, S. (eds.)

Mixed Integer Nonlinear Programming, IMA, vol. 154, pp. 263–286. Springer, New
York (2012)

10. Liberti, L., Cafieri, S., Savourey, D.: Reformulation optimization software engine.
In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) Mathematical
Software. LNCS, vol. 6327, pp. 303–314. Springer, New York (2010)

11. Liberti, L., Ostrowski, J.: Stabilizer-based symmetry breaking constraints for math-
ematical programs. Journal of Global Optimization 60, 183–194 (2014)

12. Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical Program-
ming 94, 71–90 (2002)

13. Margot, F.: Exploiting orbits in symmetric ILP. Mathematical Programming B 98,
3–21 (2003)

14. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., Liebling, T.,
Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L.
(eds.) 50 Years of Integer Programming, pp. 647–681. Springer, Berlin (2010)

15. McKay, B.: Practical graph isomorphism. Congressus Numerantium 30, 45–87
(1981)

16. McKay, B., Piperno, A.: Practical graph isomorphism, II. Journal of Symbolic
Computation 60, 94–112 (2014)

17. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Constraint orbital branching.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO. LNCS, vol. 5035, pp. 225–239.
Springer (2008)

18. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Mathemat-
ical Programming 126, 147–178 (2011)

19. The GAP Group: GAP - Groups, Algorithms and Programming. Version 4.7.4
(2014)

