
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Static analysis by abstract interpretation: a

Mathematical Programming approach 1
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Abstract

Static analysis of a computer program by abstract interpretation helps prove behavioural properties
of the program. Programs are defined by means of a forward collecting semantics function relating
the values of the program variables during the execution of the program. The least fixed point of
the semantics function is a program invariants providing useful information about the program’s
behaviour. Mathematical Programming is a formal language for describing and solving optimization
problems expressed in very general terms. This paper establishes a link between the two disciplines
by providing a mathematical program that models the problem of finding the least fixed point of a
semantics function. Although we limit the discussion to integer affine arithmetic semantics in the
interval domain, the flexibility and power of mathematical programming tools have the potential
for enriching static analysis considerably.

Keywords: Guaranteed smallest code invariant, constraints, bilinear MINLP, policy iteration,
branch-and-bound.

1 Introduction

Static Analysis by Abstract Interpretation (SAAI) was introduced by Cousot
and Cousot in [9] and [10], and further developed, e.g., in [11]. It is widely used
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council (post-doctoral fellowship), System@tic consortium (“EDONA” project), ANR 07-
JCJC-0151 “Ars”, ANR 08-SEGI-023 “Asopt”, Digiteo Emergence “Paso”.
2 Email: eric.goubault@cea.fr
3 Email: leroux@lix.polytechnique.fr
4 Email: jeremy.leconte1@ens.fr
5 Email: liberti@lix.polytechnique.fr
6 Email: marinelli@diiga.univpm.it

c©2010 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
eric.goubault@cea.fr
mailto:eric.goubault@cea.fr
leroux@lix.polytechnique.fr
mailto:leroux@lix.polytechnique.fr
jeremy.leconte1@ens.fr
mailto:jeremy.leconte1@ens.fr
liberti@lix.polytechnique.fr
mailto:liberti@lix.polytechnique.fr
marinelli@diiga.univpm.it
mailto:marinelli@diiga.univpm.it


Goubault et al.

in static analysis of imperative programs to approximate the behaviour of a
program, for instance in terms of its variable environments. Given a program,
one builds a forward collecting semantics function expressing statically how
the environments at a given control point depend dynamically on other control
points. This function has a least fixed point (lfp), which is the “best” informa-
tion that the function may give about the program. Usual methods to compute
the lfp range from increasing sequences of under-approximations (relying on
Kleene fixed point theorem), decreasing sequences of over-approximations (re-
lying on Tarski fixed point theorem), or both methods combined (relying on
widening). The Policy Iteration (PI) method was introduced on the inter-
val domain in [7], further developed in [1] and extended to other (relational)
domains in [12,2]. PI computes the lfp when the semantics function is non-
expansive in the sup norm, and a fixed point otherwise. Another PI method
on intervals was described in [14] and later generalized to relational domains
in [15].

Computing the lfp of the semantics function is quite naturally an optimiza-
tion problem. Mathematical Programming (MP) is a declarative language that
describes the solution of very general optimization problems [26]. An MP con-
sists of a set of parameters (encoding the problem input prior to the solution
process), a set of decision variables x ∈ R

n (encoding the problem output
after the solution process), an objective function f : R

n → R, a set of equality
and/or inequality constraints g(x) ≤ 0 with g : R

n → R
m, a set of variable

bounds xL ≤ x ≤ xU and a set of integrality constraints ∀j ∈ Z xj ∈ Z

[19]. MPs are categorised according to the nature of the solution as: Linear
Programs (LPs), Nonlinear Programs (NLPs), Mixed-Integer Linear Programs
(MILPs), Mixed-Integer Nonlinear Programs (MINLPs), each category having
dedicated solution algorithms.

We study the following decision problem.

Static Analysis by Abstract Interpretation Problem (SAAIP). Given a
program written in the language P (defined in Sect. 2) does its semantics
function (defined in Sect. 3.1) have a finite lfp?

SAAIP is actually a problem schema, because it can be parametrized by the
type of abstraction used to overapproximate the concrete program semantics.
This paper aims to establish a strong link between SAAI and MP by for-
malizing the search for the lfp by means of a MP formulation. When the
semantics function only includes integer convex arithmetic, the MP turns out
to be a MINLP with convex objective and constraints, which can always be
solved to optimality in worst-case exponential time [4]. For semantics func-
tions including continuous and/or nonconvex arithmetic, the resulting MINLP
can be solved to ε-approximation using the spatial Branch-and-Bound (sBB)
algorithm [3]. The MP standard toolbox also includes several practically ef-
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ficient heuristic methods [5,21] which find non-optimal but feasible solutions:
in the present setting, these correspond to fixed points without guarantee of
minimality, which may provide useful information about the program. The
flexibility of MP can hardly be underestimated: variable relations, for exam-
ple, simply give rise to additional constraints which can just be adjoined to
the current MP formulation.

We set the framework by exemplifying the use of MP in SAAI limited
to a very classical setting: interval domains with integer affine arithmetic.
Although a particular case of the corresponding SAAIP was recently shown
to be in P [13], whereas our MP is solved by a worst-case exponential time
Branch-and-Bound (BB) algorithm, one of the restrictions of the polynomial
algorithm proposed in [13] is that all intersections must involve a constant
interval, whereas our MP need not necessarily be restricted in this sense. In
other words, the MP can naturally take into account variable relations arising
from test conditions. We define an imperative programming language (Sect. 2)
and its forward-collecting interval domain semantics function (Sect. 3) induc-
tively. This enables the inductive definition of the MP (Sect. 4), and the proof
that the semantics function has a finite lfp if and only if the MP has a solution
(Sect. 5). We also test the practical applicability of the proposed methodology
using the well-known CPLEX solver [17] (Sect. 7).

We remark that MP techniques were sometimes used in SAAI [23,8,6,14];
more precisely, LP technology was used as an operator within two extensions
of PI-type algorithms to relational domains [12,15]. However, to the best of
our knowledge, modelling fixed point equations by means of MP is new.

2 A basic programming language

The programming language P is defined inductively below. Its arithmetic
expressions involve constants in C (including the integers and included in the
real numbers), variables in V = {v1, . . . , vn}, multiplications of a constant by
a variable, and additions of two variables. Programs in P and instructions in
I are defined by (mutual) induction. There are only four basic instructions,
namely an instruction that does nothing, the classic assignment, if-then-else
branching, and the while loop.

E ::= C | V | C ∗ E | E + E

T ::= C ≤ V | V ≤ C | C < V | V < C | V ≤ V | V < V
I ::= skip | V ← E | if T {P} {P} | while T {P}
P ::= I | I P

We remark that P-programs are structurally finite objects. The language P

is not convenient for actual, large-scale programming but it allows simulating
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other classical branching and looping, complex tests and so on. Furthermore,
its simple definition keeps the proofs and explanations at a reasonable com-
plexity level.

Control points. Although the notion of control point is not needed here, it
may help intuition. In an alternative definition of the programming language
above, the control points could lie in the places corresponding to the stars
below.

I ::= skip ⋆ | V ← E ⋆ |

if T {⋆ P} {⋆ P} ⋆ | while ⋆ T {⋆ P} ⋆

Program size. The notion of size will help define functions involving pro-
grams and instructions, e.g. semantics functions and corresponding MPs. The
size of programs and instructions is defined below (definitions on the right).
The size of a program corresponds to the number of control points that one
may want to put in the program (definitions in the center).

|I P | = |I P |
def

= |I|+ |P |

|skip| = |skip ⋆ |
def

= 1

|vi ← expr| = |vi ← expr ⋆ |
def

= 1

|if test {P} {Q}| = |if test {⋆P} {⋆Q} ⋆ |
def

= |P |+ |Q|+ 3

|while test {P}| = |while ⋆ test {⋆P} ⋆ |
def

= |P |+ 3

3 Abstract interpretation

This paper uses a well-known lattice already used in [10] for abstract interpre-
tation: a subset of Cn is abstracted into (i.e. approximated by) the smallest
Cartesian box including the subset. When dealing with environments of pro-
gram variables, let B be the set of the (environment) boxes: B contains the
empty set and the Cartesian products I1×· · ·×In where the Ii are non-empty
intervals in C. Moreover, let IL

i (resp. IU
i ) be the lower (resp. upper) endpoint

of interval Ii. We slightly abuse notation of Cartesian products and their el-
ements for readability purposes. The following notation is used to modify a
box along one given dimension.

Definition 3.1 Let b be in B and z be an interval in C. b[i← z] stands for
b1 × · · · × bi−1 × z × bi+1 × · · · × bn where bi is the i-th projection of b.

The following functions are shorthands that help relate box-based approx-
imations of variable environments before and after branching according to a
test.
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Definition 3.2 Below T and F are functions that are typed in B× T→ B.

T(b, c ≤ vi)
def

= b[i← bi ∩ [c,+∞) ] F(b, vi < c)
def

= b[i← bi ∩ [c,+∞) ]

T(b, vi ≤ c)
def

= b[i← bi ∩ (−∞, c] ] F(b, c < vi)
def

= b[i← bi ∩ (−∞, c] ]

T(b, c < vi)
def

= b[i← bi ∩ (c,+∞) ] F(b, vi ≤ c)
def

= b[i← bi ∩ (c,+∞) ]

T(b, vi < c)
def

= b[i← bi ∩ (−∞, c) ] F(b, c ≤ vi)
def

= b[i← bi ∩ (−∞, c) ]

T(b, vj ≤ vi)
def

= b[i← bi ∩ [bL
j ,+∞) ][j ← bj ∩ (−∞, bU

i ] ]

F(b, vi < vj)
def

= b[i← bi ∩ [bL
j ,+∞) ][j ← bj ∩ (−∞, bU

i ] ]

Given an expression expr in E and an environment box b in B, the possible
values that expr may take when the variable environment lies in b constitute
an interval defined on expr below.

Definition 3.3 (Evaluation of expressions) Let b be in B and expr in E.
If b is empty, so is [[expr]]b. Otherwise [[expr]]b is defined by induction on expr.

[[c]]b
def

= [c, c] [[vj ]]b
def

= bj

[[c ∗ expr]]b
def

= c ∗ [[expr]]b = {c ∗ y | y ∈ [[expr]]b}

[[expr
1

+ expr
2
]]b

def

= [[expr
1
]]b + [[expr

2
]]b = {y1 + y2 | yi ∈ [[expri]]b}

3.1 Inductive definition of a forward collecting semantics function

Given a program P in P and an instruction I in I, the semantic functions
FP of P and FI of I are typed as FP : B → B

|P | → B
|P | and FI : B →

B
|I| → B

|I| respectively. The right-hand part of the types, i.e. B
|·| → B

|·|,
corresponds to the usual definition of the semantics function. The left-hand
part of the types, i.e. the stand-alone B, corresponds to an environment box
that the program’s execution may start with. Using this box parameter allows
programs and instructions with free variables to be meaningful and to have
associated semantics functions. This is useful when defining these functions
inductively on programs and instructions.

Definition 3.4 (Upper bound operators) We define the upper bounding
operator ∪B in B and an asymmetric union ∪B

w (which is useful for the while
loop):

x ∪B y
def

=
⋂

x,y⊆z

z x ∪B

w y
def

=

{

∅ if x = ∅

x ∪B y otherwise.

The semantics function is defined below by induction on programs and
instructions. For the sake of readability, we may write FP (b)(X) instead of
FP (b,X) for every P , b, and X in the definition and in the sequel. Also, in
the definition expr and test are meta-variables for expressions in E and tests
in T. The while-loop invokes the asymmetric union ∪B

w. It is relevant since
the execution of a program may exit a while-loop only after performing the
entrance test.
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Definition 3.5 (Forward collecting semantics function)
∀b ∈ B Fskip(b) : B→ B s.t. x 7→ b

∀b ∈ B FI P (b) : B
|I| × B

|P | → B
|I| × B

|P | s.t. X,Y 7→ FI(b,X), FP (X|I|, Y )

∀b ∈ B Fvi←expr(b) : B→ B s.t. x 7→ b[i← [[expr]]b]

∀b ∈ B Fif test {R} {S}(b) : B× B
|R| × B× B

|S| × B→ B× B
|R| × B× B

|S| × B

x,X, y, Y, z 7→ T(b, test), FR(x,X),F(b, test), FS(y, Y ),X|R| ∪
B Y|S|

∀b ∈ B Fwhile test {R}(b) : B× B× B
|R| × B→ B× B× B

|R| × B

x, y, Y, z 7→ b ∪B

w Y|R|,T(x, test), FR(y, Y ),F(x, test).

The function FP (b) is an increasing self-map in the complete lattice of envi-
ronment boxes 〈B,⊆,∪B,∩〉|P |, so by Tarski’s fixed point theorem [25] FP (b)
has a lfp which is included in every post-fixed point of FP (b).

4 Mathematical programming

We assume in the following that the distance between two different elements
in C is greater than a given ǫ > 0. So any vj < vi (resp. vi < vj) can
be replaced with vj + ǫ ≤ vi (resp. vi ≤ vj + ǫ) in P-programs. To each
box b ∈ B we associate a triplet (e, ℓ, u) ∈ {0, 1} × R

n × R
n, where b =

[ℓ(b)1, u(b)1]× · · · × [ℓ(b)n, u(b)n] and e = 0 iff b is empty.
The constraints SB(b, e) force the bounds of b to 0 when the binary

decision variable e is 0.
SB(b, e)

def
=

^

1≤i≤n

(1 − e)ui = 0 ∧ (1 − e)ℓi = 0.

The constraint Incl(b, b′, e), active only when e = 1, compares the bounds of
b′ and the bounds of b.

Incl(b, b′, e)
def
=

^

1≤i≤n

e ui ≤ e u
′
i ∧ e ℓ

′
i ≤ e ℓi.

The constraints UI(b1, b2, b3) model the statement if vj ≤
vi {b

1 . . . } {b2 . . . } b3, where the bj are environment boxes at key con-
trol points. Intuitively, they say that b3 is empty iff both b1 and b2 are
empty, otherwise b3 includes the box-wise union b1 ∪B b2; e1, e2 deactivate
the constraints when b1, b2 are empty, so that the bounds of the empty box
(i.e. 0) should not interfere with meaningful bounds in further constraints.
To compute the exact box-wise union, equality must hold instead of loose
inclusion. This will however be enforced by the objective function direction.

UI(b1, b2, b3)
def
= e3 = e1 + e2 − e1e2 ∧ SB(b3, e3)∧

Incl(b1, b3, e1) ∧ Incl(b2, b3, e2).

The constraints UW(b1, b2, b3) model the statement while b3 vj ≤ vi {b
2 . . . }b1.

Intuitively, they say that b1 is empty if b3 is empty, in which case b3 is set to
empty; otherwise, if b2 is non-empty, its bounds are taken into account; the
bounds of b1 may always be taken into account since b1 is empty if b3 is empty.

UW(b1, b2, b3)
def
= e3 ≥ e1 ∧ SB(b3, e3)∧

Incl(b1, b3, 1) ∧ Incl(b2, b3, e2).

The constraints Id(b, b′, I) enforce b′ = b (when b′ is non-empty) on all
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components not included in I.

Id(b, b′, I)
def
=

j /∈I
^

1≤j≤n

u
′
j = e

′
uj ∧ ℓ

′
j = e

′
ℓj .

The constraints Empty(e, e′, x, y) set e′ to 0 if e = 0 or x−y < 0 and otherwise
to 1 (used to define intersection).

Empty(e, e′, x, y)
def
= e′ ≤ e ∧ 0 ≤ e′(x − y) ∧

0 ≤ e(1 − e′)(y − ǫ − x).

The constraints ConstInter(b, bs, bf , c, i) disjoin the i-th interval component of
b into bs, bf , assigned respectively to the success (s) and failure (f) of the test
c ≤ vi; Id constraints manage the other components, the Empty constraints
manage emptiness, and the last constraints set the bounds in a correlated
manner, i.e. the bounds of bs involve bf and conversely.

ConstInter(b, bs, bf , c, i)
def
=

Id(b, bs, {i}) ∧ Id(b, bf , {i}) ∧

Empty(e, es, ui, c) ∧ Empty(e, ef , c − ǫ, ℓi) ∧

us
i = esui ∧ ℓs

i = (1 − ef )ℓi + esefc ∧

ℓ
f
i = ef ℓi ∧ u

f
i = (1 − es)ui + esef (c − ǫ).

Similarly, the constraints Inter(b, bs, bf , j, i) disjoins the i-th and j-th interval
components of b into bs, bf , assigned respectively to the success (s) and failure
(f) of the test vj ≤ vi.

Inter(b, bs, bf , j, i)
def
=

Id(b, bs, {i, j}) ∧ Id(b, bf , {i, j}) ∧

Empty(e, esi, ui, ℓj) ∧ Empty(e, efi, ℓj , ℓi) ∧

Empty(e, esj , ui, ℓj) ∧ Empty(e, efj , uj − ǫ, ui) ∧

us
i = esiui ∧ ℓs

i = (1 − efi)ℓi + esiefiℓj ∧

ℓ
f
i = efiℓi ∧ u

f
i = (1 − esi)ui + efiesi(ℓj − ǫ) ∧

ℓs
j = esjℓj ∧ us

j = (1 − efj)uj + esjefjui ∧

u
f
j = efjuj ∧ ℓ

f
j = (1 − esj)ℓj + efjesj(ui + ǫ).

The following express how environment boxes are transformed by assignment
statements. Let b be in B and expr in E; L(b, expr) and U(b, expr) are defined
by induction on expr.

L(b, c), U(b, c)
def
= e(b)c, e(b)c

L(b, vj), U(b, vj)
def
= ℓ(b)j , u(b)j

L(b, c ∗ expr), U(b, c ∗ expr)
def
= c ∗ L(b, expr), c ∗ U(b, expr) if 0 ≤ c

L(b, c ∗ expr), U(b, c ∗ expr)
def
= c ∗ U(b, expr), c ∗ L(b, expr) if c < 0

L(b, expr
1

+ expr
2
)

def
= L(b, expr

1
) + L(b, expr

2
)

U(b, expr
1

+ expr
2
)

def
= U(b, expr

1
) + U(b, expr

2
)

Assign(b, b′, i, expr)
def
= e′ = e ∧ u′

i = U(b, expr) ∧ ℓ′i = L(b, expr).

4.1 Inductive definition of a mathematical program

For all programs or instructions P/I (i.e. P in P or I in I), for all environment
boxes b, the constraints CP/I(b) and the objective function OP/I are defined
inductively below.
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Definition 4.1 (Objective and constraints)
Oskip, Ovi←expr : B → C s.t. x 7→ 0

For all P, I,R, S : OI P : B
|I| × B

|P | → C s.t. (X,Y ) 7→ OI(X) + OP (Y )

Oif test {R} {S} : B× B
|R| × B× B

|S| × B → C s.t.

(x,X, y, Y, z) 7→ OR(X) + OS(Y ) +
∑

1≤i≤n

(u(z)i − ℓ(z)i)

Owhile test {R} : B× B× B
|R| × B → C s.t.

(x, y, Y, z) 7→ OR(Y ) +
∑

1≤i≤n

(u(x)i − ℓ(x)i)

Cskip(b) : B → {0, 1} s.t. x 7→ e(x) = e(b)∧
(

∧

1≤i≤n u(x)i = u(b)i ∧ ℓ(x)i = ℓ(b)i

)

Cvi←expr(b) : B → {0, 1} s.t. x 7→ Id(b, x, {i}) ∧ Assign(b, x, i, expr)

For all P, I : CI P : B
|I| × B

|P | → {0, 1} s.t. (X,Y ) 7→ CI(X) ∧ CP (X|I|, Y )

If I = if c ≤ vi {R} {S} (resp. vi ≤ c {R} {S} ):

CI(b) : B× B
|R| × B× B

|S| × B → {0, 1} s.t.

(x,X, y, Y, z) 7→ CR(x,X) ∧ CS(y, Y ) ∧ UI(X|R|, Y|S|, z)∧

ConstInter(b, x, y, c, i) (resp. ConstInter(b, y, x, c + ǫ, i))
If I = if vj ≤ vi {R} {S}:

CI(b) : B× B
|R| × B× B

|S| × B → {0, 1} s.t. (x,X, y, Y, z) 7→ CR(x,X) ∧ CS(y, Y )∧

UI(X|R|, Y|S|, z) ∧ Inter(b, x, y, j, i)

If I = while c ≤ vi {R} (resp. while vi ≤ c {R} ):

CI(b) : B× B× B
|R| × B → {0, 1} s.t.(x, y, Y, z) 7→ CR(y, Y ) ∧ UW(b, Y|R|, x)∧

ConstInter(x, y, z, c, i)(resp. ConstInter(x, z, y, c + ǫ, i))
If I = while vj ≤ vi {R}:

CI(b) : B× B× B
|R| × B → {0, 1} s.t. (x, y, Y, z) 7→ CR(y, Y ) ∧ UW(b, Y|R|, x)∧

Inter(x, y, z, j, i).

Let P ∈ P ∪ I and b ∈ B. A vector X ∈ B
|P | is a unique solution of the

MP MP (OP , C0, CP (b)), where the constraints C0 : B → {0, 1} are s.t. x 7→
∧

1≤i≤n ℓ(x)i ≤ u(x)i, if it is the only vector satisfying the constraints and

minimizing the objective: MP (b,X)
def

= CP (b,X) ∧ ∀Y,CP (b, Y ) ⇒ OP (Y ) ≤
OP (X) ⇒ Y = X.

Example 4.2 Let P be the program int x = 1; while (x < 100) x = x+1;.
Then the corresponding MP is as follows (in this case we need only employ
two binary variables e3, e5 controlling emptiness on the different test outputs,
the others being fixed to 1). We minimize

∑5
k=1(u

k − ℓk) such that: ∀k ≤
5 uk ≥ ℓk (bound consistency constraints C0), ℓ1 = 1∧u1 = 1 (Assign for x=1),
ℓ2 ≤ ℓ1∧u2 ≥ u1∧ℓ2 ≤ ℓ4∧u2 ≥ u4 (Incl constraints), ℓ4 = ℓ3 +1∧u4 = u3 +1
(Assign for x=x+1), (1− e3)(ℓ2 − 100) ≥ 0 ∧ e3(99− ℓ2) ≥ 0 ∧ e5(u2 − 100) ≥
0 ∧ (1 − e5)(99 − u2) ≥ 0 (Empty constraints), u5 = e5u2 ∧ ℓ5 = (1 − e3)ℓ2 +
100e3e5 ∧ ℓ3 = e3ℓ2 ∧ u3 = (1 − e5)u2 + 99e5e3 (ConstInter for x<100). This
nonlinear MINLP was solved using Couenne [3] to find the (guaranteed) lfp
([1, 1], [1, 100], [1, 99], [2, 100], [100, 100]). Notice no widening operator was ever
used, and no variable was artificially bounded to arbitrary large constants.
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5 Correspondence between the semantics function and
the mathematical program

We list some lemmata relating semantics function and MP, which prove that
the MP characterizes the lfp.

Lemma 5.1 b 6= ∅ ⇒ [[expr]]b = [L(b, expr), U(b, expr)]

Proof by induction on expressions.

Lemma 5.2 Cvi←expr(b, x) ⇔ x = b[i← [[expr]]b]

Proof by double implication. For each implication consider cases on emptyness
of b and use Lemma 5.1.

Lemma 5.3 UI(x, y, z) ⇔ x ∪B y ⊆ z ∧ (x = ∅ ∧ y = ∅ ⇒ z = ∅).

Lemma 5.4 UW(x, y, z) ⇔ x ∪B

w y ⊆ z ∧ (x = ∅ ∧ y = ∅ ⇒ z = ∅).

Proofs of the two above lemmata by case splitting.

Lemma 5.5 ConstInter(b, x, y, c, i)⇔ x = T(b, c ≤ vi) ∧ y = F(b, c ≤ vi).

Lemma 5.6 Inter(b, x, y, j, i)⇔ x = T(b, vj ≤ vi) ∧ y = F(b, vj ≤ vi).

Again, proofs of the two above lemmata by double implication and case split
on emptyness of b. For the non-empty case, one may case split along u(b)i < c,
c ≤ ℓ(b)i, and ℓ(b)i < c ≤ u(b)i.
Every fixed point of a semantics function complies with the corresponding
constraints.

Lemma 5.7 ∀P/I, b,X FP/I(b,X) = X ⇒ CP/I(b,X).

We define vector inclusion as follows:
X ⊆ Y

def
= ∀i, Xi ⊆ Yi

X ⊂ Y
def
= X ⊆ Y ∧ X 6= Y

Every vector satisfying the constraints of the MP is a post-fixed point of the
corresponding semantics function.

Lemma 5.8 ∀P/I, b,X CP/I(b,X) ⇒ FP/I(b,X) ⊆ X.

The objective OP/I is (weakly) increasing.

Lemma 5.9 X ⊆ X ′ ⇒ OP/I(X) ≤ OP/I(X
′).

Proof by induction on programs and instructions, notice that OP/I only in-
volves sums of upper bounds minus lower bounds.
The objective is strongly increasing on vectors satisfying the same constraints.

Lemma 5.10 ∀P/I, b,X CP/I(b,X) ∧ CP/I(b,X
′) ∧ X ⊂ X ′ ⇒

OP/I(X) < OP/I(X
′).

The lfp of the forward-collecting semantics function of a program is the
unique solution of the MP associated with the program.

9
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Theorem 5.11 FP (b,X) = X ∧ (FP (b, Y ) = Y ⇒ X ⊆ Y ) ⇒ MP (b,X).

6 Policy Iteration algorithm in the MP setting

The products eiej between binary variables appearing for some i, j in the
MP of Sect. 4 can all be reformulated exactly as follows: replace eiej by
an added binary variable eij, and adjoin the constraints eij ≤ ei, eij ≤ ej,
eij ≥ ei + ej − 1. This is also called “Fortet’s reformulation”, see [20], p. 178.
After this reformulation, the MP has the following bilinear structure:

min{w⊤(x, e) |h(x) ≤ 0 ∧ e⊤(g(x)− x) ≤ 0 ∧ (1− e)⊤(g′(x)− x) ≤ 0}, (1)

where x = (ℓ, u) is a vector of continuous decision variables, w is a constant
vector encoding the (linear) interval width objective, h, g, g′ are affine forms,
and e ∈ {0, 1}p are binary decision variables. A policy in this setting is an
assignment of binary values to the binary variable vector e. It appears clear
from (1) that policies determine whether g(x) ≤ x or g′(x) ≤ x, where both
g, g′ are affine forms. The PI algorithm can be re-cast in the MP setting as
follows.

(i) Let e∗ be an initial (feasible) policy
(ii) Let e← e∗ in (1), yielding a LP
(iii) Value determination: solve the LP to obtain a solution x∗

(iv) Let ē← e∗

(v) Policy improvement:
(a) ∀i ≤ p (e∗i = 1 ∧ gi(x

∗) > g′i(x
∗)⇒ ēi ← 0)

(b) ∀i ≤ p (e∗i = 0 ∧ gi(x
∗) < g′i(x

∗)⇒ ēi ← 1)
(vi) If ē = e∗ then terminate with fixed point x∗

(vii) Set e∗ ← ē and repeat from Step ii.

Thus, the PI algorithm performs a local search on the e-space of (1), whereas
the algorithms mentioned in Sect. 7 explore the entirety of the e-space, thereby
always finding the guaranteed lfp. By comparison, a known sufficient condition
for PI methods to find a guaranteed lfp is that the semantics function should
be non-expansive in the sup norm [7].

7 Solving the mathematical program

Given a program P , the constraints CP of the associated MP are generated in
linear time w.r.t. the size |P | of the program. These constraints involve O(|P |)
binary variables. There are 2O(|P |) possible assignments for these variables.
Fixing the binary variables to one of these assignments yields an LP, which can
be solved in polynomial time in the size of the instance [18] (LP methods can
also certify infeasibility and unboundedness). If for all possible assignments
the LP has no solution, it means that the lfp of FP is not finite. Otherwise,

10
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any finite solution is a post-fixed point of FP by Lemma 5.8. The lfp is one of
the post-fixed points according to Theorem 5.11, and it is the smallest of them
according to Tarski [25]. The practical complexity of the proposed algorithm
for solving SAAIP is likely to be close to its worst-case complexity bound
(exponential), and is thus only useful to improve the best known complexity
bound so far for SAAIP (Kleene’s iteration with no widening takes infinite
time; the method proposed in [22] runs in doubly exponential time).

We can use MP methodology to derive a practically applicable algorithm
for solving a slightly modified SAAIP. By assuming an arbitrary large bound
on the variable values (this is akin to imposing that all boxes are in a large
pre-determined box, similarly to what is done in widening), we are able to
reformulate exactly ([20], p. 179) all products between decision variables oc-
curring in the MP to a linear form, yielding a MILP which we solve using the
BB based solver CPLEX 11 [17] on a 2.4GHz Intel Xeon CPU with 8GB RAM.
Notice that for most practical cases, the large bound need not be arbitrary, as
automatic range reduction techniques for MILP can help considerably [24].

Based on the above analysis, we implemented a C parser (recognizing a
subset of C which is sufficiently rich to be Turing-equivalent) that outputs the
corresponding MP. Our testbed consists of several (small) C programs 7 with
integer affine arithmetic: some minimal ones for validation purposes (short),
some longer ones (long) generated randomly, three instances using arrays and
functions and the subway code from [16] with the random() call commented
out and nbtrains set to 10. We compared our results to those obtained by a
prototype implementation of the PI algorithm [7]; in both approaches, ⊤ was
set to the interval [−5000, 5000]. In Table 1 we report: instance name, lines
of code, total number of variables (arrays of length n counting as n variables),
seconds of user CPU, lfp statistics (sum of the widths of all intervals | · |,
number of ⊤ intervals |⊤|, sum of widths of non-⊤ intervals |¬⊤|). In all tests
we obtained fixed points of width equal to or smaller than those obtained by
PI, thus validating the approach.

8 Conclusion

We exhibited a mathematical program modelling the problem of finding the
lfp of the semantic function of a program with integer affine arithmetic, and
proceeded to show that this yields a practically viable method for computing
lfps of programs. By this example we wish to emphasize the usefulness that the
standard mathematical programming toolbox has in the field of static analysis
by abstract interpretation. Future work will extend the MP approach to work
with different domains (specifically, relational domains); we shall also employ

7 http://www.lix.polytechnique.fr/~liberti/nsad10-instances.zip
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Instance MP PI

Name Lines Vars CPU | · | |⊤| |¬⊤| CPU | · | |⊤| |¬⊤|

short 31 32 3 0.008 250002 25 2 0 250023 25 23

short 32 20 3 0.02 270077 27 77 0 270077 27 77

short 35 22 3 0.02 32028 3 2028 0 32028 3 2028

short 37 25 3 0.008 420000 42 0 0 470000 47 0
short 38 35 3 0.12 34501 3 4501 0 34501 3 4501

long 1 213 4 0.768 90000 9 0 0.004 90052 9 52

long 2 217 4 0.916 80000 8 0 0.008 90002 9 2

long 3 130 4 0.64 120426 12 426 0.06 4.36e+06 436 246

long 4 195 4 0.412 120000 12 0 0.008 120002 12 2

long 5 216 4 0.772 110000 11 0 0.004 120010 12 10

arrays 22 6 0.04 300139 30 139 - - - -

fun arrays 53 6 0.016 30000 3 0 - - - -

functions 62 7 0.112 101190 10 1190 - - - -

subway 62 34 9.25258 1.77e+07 1766 675 - - - -

Table 1
Comparison of MP and PI methods. Instances are marked ‘-’ whenever the program could not be
analyzed because of parsing limitations (arrays, functions) in our prototype PI implementation.

other methods, such as policy iteration, as upper bounding procedures within
the standard Branch-and-Bound approach used to solve Problem (1).
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Lecture Notes in Computer Science 5760 (2009), pp. 422–437.

[14] Gawlitza, T. and H. Seidl, Precise fixpoint computation through strategy iteration, in: R. D.
Nicola, editor, European Symposium on Programming, LNCS 4421 (2007), pp. 300–315.

[15] Gawlitza, T. and H. Seidl, Precise relational invariants through strategy iteration, in: J. Duparc
and T. Henzinger, editors, Computer Science Logic, 2007, pp. 23–40.

[16] Halbwachs, N., Y.-E. Proy and P. Roumanoff, Verification of real-time systems using linear
relation analysis, Formal Methods in System Design 11 (1997), pp. 157–185.

[17] ILOG, “ILOG CPLEX 11.0 User’s Manual,” ILOG S.A., Gentilly, France (2008).

[18] Karmarkar, N., A new polynomial time algorithm for linear programming, Combinatorica 4

(1984), pp. 373–395.

[19] Liberti, L., Reformulations in mathematical programming: Definitions and systematics,
RAIRO-RO 43 (2009), pp. 55–86.

[20] Liberti, L., S. Cafieri and F. Tarissan, Reformulations in mathematical programming: A
computational approach, in: A. Abraham, A.-E. Hassanien, P. Siarry and A. Engelbrecht,
editors, Foundations of Computational Intelligence Vol. 3, number 203 in Studies in
Computational Intelligence, Springer, Berlin, 2009 pp. 153–234.
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Appendix: Proofs

Lemma 5.7 ∀P/I, b,X FP/I(b,X) = X ⇒ CP/I(b,X).

Proof By induction on P/I. (Induction hypotheses are assumed implic-
itly.) Case P = I: trivial. Case P = I Q: assume FP (b,X, Y ) = (X,Y ). So
by Definition 3.5, X and Y are fixed points of FI(b) and FQ(X|I|) respectively,
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so CI(b,X) and CQ(X|I|, Y ) by induction hypothesis, so CP (b,X, Y ) by Def-
inition 4.1. Case P = skip: if FP (b, x) = x then x = b by Definition 3.5,
then CP (b, x) by Definition 4.1. Case I = vi ← expr: assume FI(b, x) = x.
So x = b[i ← [[expr]]b] by Definition 3.5, so CI(b, x) by Lemma 5.2. Case
I = if test {R} {S}: assume FI(b, x,X, y, Y, z) = (x,X, y, Y, z). So by Defini-
tion 3.5, x = T(b, test), y = F(b, test), X and Y are fixed points of FR(x) and
FS(y) respectively, and z = X|R| ∪

B Y|S|. So CR(x,X) and CS(y, Y ) by induc-
tion hypothesis and UI(X|R|, Y|S|, z) by Lemma 5.3. For constant tests, assume
that test is c ≤ vi (since the other case is similar). So ConstInter(b, x, y, c, i) by
Lemma 5.5. For non-constant tests, by Lemma 5.6 we have Inter(b, x, y, j, i).
Therefore CI(b,X, Y, z) by Definition 4.1. Case I = while test {R}: assume
FI(b, x, y, Y, z) = (x, y, Y, z). So by Definition 3.5, x = b∪B

wY|R|, y = T(x, test),
Y = FR(y, Y ), and z = F(x, test). So CR(y, Y ) by induction hypothesis and
UW(b, Y|R|, x) by Lemma 5.4. For constant tests, assume test is c ≤ vi (since
the other case is similar), so ConstInter(x, y, z, c, i) by Lemma 5.5; for non-
constant tests, Inter(x, y, z, j, i) by Lemma 5.6. Therefore CI(b, x, Y, z) by
Definition 4.1. �

Lemma 5.8 ∀P/I, b,X CP/I(b,X) ⇒ FP/I(b,X) ⊆ X.

Proof By induction on P/I. (Induction hypotheses are assumed implic-
itly.) Case P = I: trivial. Case P = I Q: assume CP (b,X, Y ). So
CI(b,X) and CQ(X|I|, Y ) by Definition 4.1, so we have FI(b,X) ⊆ X and
FQ(X|I|, Y ) ⊆ Y by induction hypothesis, so FP (b,X, Y ) ⊆ (X,Y ) by Def-
inition 3.5. Case P = skip: if CP (b, x) then x = b By Definition 4.1, so
FP (b, x) = x by Definition 3.5. Case I = vi ← expr: assume CI(b, x). So
x = b[i ← [[expr]]b] by Lemma 5.2, so FI(b,X) = X by Definition 3.5. Case
I = if test {R} {S}: constant tests: assume test is c ≤ vi (since the other
case is similar). Assume CI(b, x,X, y, Y, z). So by Definition 4.1, CR(x,X)
and CS(y, Y ) and ConstInter(b, x, y, c, i) and UI(X|R|, Y|S|, z). So x = T(b, test)
and y = F(b, test) by Lemma 5.5. Non-constant tests: CR(x,X) and CS(y, Y )
and Inter(b, x, y, j, i) and UI(X|R|, Y|S|, z). So x = T(b, test) and y = F(b, test)
by Lemma 5.6. Also FR(x,X) ⊆ X and FS(y, Y ) ⊆ Y by induction hy-
pothesis and X|R| ∪

B Y|S| ⊆ z by Lemma 5.3. Therefore FI(b, x,X, y, Y, z) ⊆
(x,X, y, Y, z) by Definition 3.5. Case I = while test {R}: constant tests: as-
sume test is c ≤ vi (since the other case is similar). Assume CI(b, x, y, Y, z). So
by Definition 4.1, CR(y, Y ) and UW(b, Y|R|, x) and ConstInter(x, y, z, c, i). So
y = T(x, test) and z = F(x, test) by Lemma 5.5. Non-constant tests: CR(x,X)
and CS(y, Y ) and Inter(b, x, y, j, i) and UI(X|R|, Y|S|, z). Also FR(y, Y ) ⊆ Y
by induction hypothesis and b ∪B

w Y|R| ⊆ x by Lemma 5.4. Therefore
FI(b, x, y, Y, z) ⊆ (x, y, Y, z) by Definition 3.5. �

Lemma 5.9 ∀P/I, b,X CP/I(b,X) ∧ CP/I(b,X
′) ∧ X ⊂ X ′ ⇒ OP/I(X) <

OP/I(X
′).
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Proof By induction on P/I. (Induction hypotheses are assumed implicitly.)
Case P = I: trivial. Case P = I Q: assume CP (b,X, Y ) and CP (b,X ′, Y ′)
and (X,Y ) ⊂ (X ′, Y ′). So by Definition 4.1, CI(b,X) and CQ(X|I|, Y ) (resp.
with the prime). Also OI(X) ≤ OI(X

′) and OQ(Y ) ≤ OQ(Y ′) by Lemma 5.9
and assumption. If X ⊂ X ′ then OI(X) < OI(X

′) by induction hypothesis. If
X = X ′ then Y ⊂ Y ′, then OQ(Y ) < OQ(Y ′) by induction hypothesis. In both
cases OP (X,Y ) < OP (X ′, Y ′) by Definition 4.1. Case P = skip: if CP (b, x)
and CP (b, x′) then x = b = x′ by Definition 4.1. Case I = vi ← expr: assume
CI(b, x) and CI(b, x

′) and x ⊂ x′. So x = x′ by Definition 4.1 and Lemma 5.2.
Case I = if test {R} {S}: constant test: assume test is c ≤ vi (since the
other case is similar). Assume CI(b, x,X, y, Y, z) and CI(b, x

′, X ′, y′, Y ′, z′)
and (x,X, y, Y, z) ⊂ (x′, X ′, y′, Y ′, z′). So by Definition 4.1, we have CR(x,X),
CS(y, Y ), and ConstInter(b, x, y, c, i) (resp. with the prime). So x′ = x by
Lemma 5.5 applied twice, hence CR(x,X) and CR(x,X ′) (resp. with y and
Y ). Also OR(X) ≤ OR(X ′) and OS(Y ) ≤ OS(Y ′) by Lemma 5.9 and as-
sumption, and, further,

∑

1≤i≤n

(u(z)i − ℓ(z)i) ≤
∑

1≤i≤n

(u(z′)i − ℓ(z′)i) by as-

sumption. If X ⊂ X ′ (resp. Y ⊂ Y ′) then OR(X) < OR(X ′) (resp.
OS(Y ) < OS(Y ′)) by induction hypothesis. If X = X ′ and Y = Y ′,
then z ⊂ z′ by assumption, so z′ 6= ∅, so z 6= ∅ by Definition 4.1 and
Lemma 5.3, so

∑

1≤i≤n

(u(z)i − ℓ(z)i) <
∑

1≤i≤n

(u(z′)i − ℓ(z′)i). In any case

OP (x,X, y, Y, z) < OP (x′, X ′, y′, Y ′, z′) by Definition 4.1. The argument for
non-constant tests is similar. Case I = while test {R}: constant tests: as-
sume test is c ≤ vi (since the other case is similar). Assume CI(b, x, y, Y, z)
and CI(b, x

′, y′, Y ′, z′) and (x, y, Y, z) ⊂ (x′, y′, Y ′, z′). So by Definition 4.1,
we have CR(y, Y ) and UW(b, Y|R|, x) (resp. with the prime). By assump-
tion OR(Y ) ≤ OR(Y ′) and

∑

1≤i≤n

(u(x)i − ℓ(x)i) ≤
∑

1≤i≤n

(u(x′)i − ℓ(x′)i). If

Y ⊂ Y ′ then OR(Y ) < OR(Y ′) by induction hypothesis. Now assume
Y = Y ′. So UW(b, Y|R|, x) and UW(b, Y|R|, x

′). If x ⊂ x′ then x′ 6= ∅, then
x 6= ∅ by Lemma 5.4, then

∑

1≤i≤n

(u(x)i − ℓ(x)i) <
∑

1≤i≤n

(u(x′)i − ℓ(x′)i), then

OI(x, Y, z) < OI(x
′, Y ′, z′). If x = x′ then y = y′ and z = z′ by Lemma 5.5,

contradiction. In any case OI(x, y, Y, z) < OI(x
′, y′, Y ′, z′) by Definition 4.1.

The argument for non-constant tests is similar. �

Theorem 5.10 FP (b,X) = X ∧ (FP (b, Y ) = Y ⇒ X ⊆ Y )⇒MP (b,X).

Proof Let X be the lfp of FP (b). By Lemma 5.7, CP (b,X). Assume Y such
that CP (b, Y ) and OP (Y ) ≤ OP (X). By Lemma 5.8, Y is a post-fixed point of
FP (b), so X ⊆ Y by Tarski [25], so Y = X by contraposition of Lemma 5.10
and assumption OP (Y ) ≤ OP (X). �
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