

### **Reformulations in Mathematical Programming**

Leo Liberti

LIX, École Polytechnique, France



# **Summary of Talk**

- Motivation
- Definitions and results
- Symmetry-breaking narrowing example
- Applications and Perspectives



# **Pregress notions**

- Mathematical Programming Formulation : a set of parameters, decision variables, objective function(s) and constraints that precisely define an optimization problem ("model")
- LP, MILP, NLP, MINLP: main classes of MP formulations (linear, mixed-integer linear, nonlinear, mixed-integer nonlinear)
- Branch-and-Bound (BB): algorithm used for solving MILPs exactly and MINLPs at ε-optimality.
   Variable Neighbourhood Search (VNS): effective metaheuristic based on a given local search neighbourhood
- General-purpose algorithm: solution method targeting all problems in a given (large) class (such as e.g. MINLPs): typically, solution algorithms used to solve models \_\_\_\_\_



# **Existing definitions**

Problem Q is a reformulation of P": what does it mean?

#### Definition in Mathematical Programming Glossary :

Obtaining a new formulation Q of a problem P that is in some sense better, but equivalent to a given formulation. Trouble: Vague.

#### Definition by H. Sherali [private communication] :

bijection between feasible sets, objective function of Q is a monotonic univariate function of that of P. Trouble: feasible sets bijection: condition is too restrictive

### Definition by P. Hansen [Audet et al., JOTA 1997] : P, Q

opt. problems; given an instance p of P and q of Q and an optimal solution  $y^*$  of q, Q is a reformulation of P if an optimal solution  $x^*$  of p can be computed from  $y^*$  within a polynomial amount of time. Trouble: ignores feasible / locally optimal solutions



# **Motivation 1**

#### Widespread use of nonlinear modelling

- Solution methods for nonlinear models are not as advanced as for linear ones
- Modelling many real-life problems as linear is innatural / difficult
- Practitioners cannot solve nonlinear models and are not always able to model linearly
- Inhibits spreading of mathematical programming / optimization techniques in non-specialist industrial settings



# **Motivation 2**

#### Efficiency/choice of solution algorithms

- Most general purpose solution algorithms compute optima by means of the formulation
- Different formulations influence algorithmic behaviour
  - 1. In BB, alter (tighten) the bound
  - 2. In VNS, define different (more advantageous) neighbourhoods
- Reformulation may allow the use of a different general purpose solver (e.g. finding feasible solutions for tightly constrained MILPs by reformulation to LCPs [Di Giacomo et al., JOC 2007])



## **Motivation 3**

#### Solving large-scale NLPs/MINLPs

- Solution methods for nonlinear models are not as advanced as for linear ones (again)
- Instead of solving the original (nonlinear) model, can attempt to reformulate it to a linear one
- The reformulation should be *automatic* (i.e. transparent for the user)



### **Current status and needs**

#### Google search:

reformulation "mathematical programming" yields 419,000 hits  $\Rightarrow$  everyone uses them

No satisfactory definitions, no general theoretical results (how do we combine simple reformulations into a more complicated one? what is the size/solution difficulty of the complex reformulation?), no reformulation-based literature review, no software!

#### Need for:

- 1. reformulation theory
- 2. list of elementary reformulations
- 3. reformulation software
- Develop a reformulation systematics

### **Definitions**





$$\sum_{i=1}^{3} x_i y_i - \log(x_1/y_3)$$

$$+ \log$$

$$\times \times \times /$$

$$x_1 y_1 x_2 y_2 x_3 y_3 x_1 y_3$$

- A formulation P is a 7-tuple (P, V, E, O, C, B, T)
   =(parameters, variables, expression trees, objective functions, constraints, bounds on variables, variable types)
- Constraints are encoded as triplets  $c \equiv (e, s, b)$  (e ∈ E,
   s ∈ {≤, ≥, =}, b ∈ ℝ)
- $\mathcal{F}(P) = \text{feasible set, } \mathcal{L}(P) = \text{local optima, } \mathcal{G}(P) = \text{global optima}$



# **Auxiliary problems**

If problems P, Q are related by a computable function f through the relation f(P, Q) = 0, Q is an *auxiliary problem* with respect to P.

- Opt-reformulations: preserve all optimality properties
- Narrowings: preserve some optimality properties
- Relaxations: drop constraints / bounds / types
- Approximations: formulation Q depending on a parameter k such that " $\lim_{k \to \infty} Q(\varepsilon)$ " is an opt-reformulation, narrowing or relaxation

### **Opt-reformulations**





*Main idea*: if we find an optimum of Q, we can map it back to the same type of optimum of P, and for all optima of P, there is a corresponding optimum in Q.







*Main idea*: if we find a global optimum of Q, we can map it back to a global optimum of P. There may be optima of P without a corresponding optimum in Q.





#### A problem Q is a relaxation of P if $\mathcal{F}(P) \subseteq \mathcal{F}(Q)$ .



# **Approximations**

*Q* is an *approximation* of *P* if there exist: (a) an auxiliary problem  $Q^*$  of *P*; (b) a sequence  $\{Q_k\}$  of problems; (c) an integer k' > 0; such that:

**1.** 
$$Q = Q_{k'}$$

- 2.  $\forall f^* \in \mathcal{O}(Q^*)$  there is a sequence of functions  $f_k \in \mathcal{O}(Q_k)$  converging uniformly to  $f^*$ ;
- 3.  $\forall c^* = (e^*, s^*, b^*) \in C(Q^*)$  there is a sequence of constraints  $c_k = (e_k, s_k, b_k) \in C(Q_k)$  such that  $e_k$  converges uniformly to  $e^*$ ,  $s_k = s^*$  for all k, and  $b_k$  converges to  $b^*$ .

There can be approximations to opt-reformulations, narrowings, relaxations.



# **Fundamental results**

- Opt-reformulation, narrowing, relaxation, approximation are all transitive relations
- An approximation of any type of reformulation is an approximation
- A reformulation consisting of opt-reformulations, narrowings, relaxations is a relaxation
- A reformulation consisting of opt-reformulations and narrowings is a narrowing
- A reformulation consisting of opt-reformulations is an opt-reformulation





## The SYMMBREAK2 narrowing 1/7

- SYMMBREAK2 motivating example
- Consider the mathematical program P:

• The set of solutions is  $\mathcal{G}(P) =$ 

 $\{ (0, 1, 1, 1, 0, 0), (1, 0, 0, 0, 1, 1), (0, 0, 1, 1, 1, 0), \\ (1, 1, 0, 0, 0, 1), (1, 0, 1, 0, 1, 0), (0, 1, 0, 1, 0, 1) \}$ 



### The SYMMBREAK2 narrowing 2/7

- The group *G*<sup>\*</sup> of automorphisms of *G*(*P*) is
    $\langle (1,4)(2,5)(3,6), (1,5)(2,4)(3,6), (1,4)(2,6)(3,5) \rangle \cong D_{12}$
- For all  $x^* \in \mathcal{G}(P)$ ,  $Gx^* = \mathcal{G}(P) \implies$  ∃ only one solution in  $\mathcal{G}(P)$  (modulo symmetries)
- This is bad for Branch-and-Bound techniques: many branches will contain (symmetric) optimal solutions and therefore will not be pruned by bounding  $\Rightarrow$  deep and large BB trees
- If we knew  $G^*$  in advance, we might add constraints eliminating (some) symmetric solutions out of  $\mathcal{G}(P)$
- $\checkmark$  ... in other words, look for a *narrowing* of P
- Can we find  $G^*$  (or a subgroup thereof) a priori?
- What constraints provide a valid narrowing of P excluding symmetric solutions of  $\mathcal{G}(P)$ ?



# The SYMMBREAK2 narrowing 3/7

- The cost vector  $c^{\mathsf{T}} = (1, 1, 1, 1, 1, 1)$  is fixed by all (column) permutations in  $S_6$
- The vector b = (1, 1, 1, 1, 1) is fixed by all (row) permutations in  $S_5$
- Consider P's constraint matrix:

| ( | 1 | 1 | 1 | 0 | 0 | 0 |  |
|---|---|---|---|---|---|---|--|
|   | 0 | 0 | 0 | 1 | 1 | 1 |  |
|   | 1 | 0 | 0 | 1 | 0 | 0 |  |
|   | 0 | 1 | 0 | 0 | 1 | 0 |  |
|   | 0 | 0 | 1 | 0 | 0 | 1 |  |

- Let  $\pi \in S_6$  be a column permutation such that  $\exists$  a row permutation  $\sigma \in S_5$  with  $\sigma(A\pi) = A$
- Then permuting the variables/columns in P according to  $\pi$  does not change the problem formulation



# The SYMMBREAK2 narrowing 4/7

• For a packing or covering problem with  $c = \mathbf{1}_n$  and  $b = \mathbf{1}_m$ ,

$$G_P = \{ \pi \in S_n \mid \exists \sigma \in S_m \; (\sigma A \pi = A) \}$$
(1)

is called the problem symmetry group of P

• In the example above, we get  $G_P \cong D_{12} \cong G^*$ 

Thm.

For a covering/packing problem  $P, G_P \leq G^*$ .

- Result can be extended to all MILPs [Margot02, Margot03, Margot07]
- Extension to MINLPs under way



### The SYMMBREAK2 narrowing 5/7

#### Thm.

Assume:

 $\exists x^* \in \mathcal{G}(P) \text{ with } 1 \leq \operatorname{supp}(x^*) < n-1;$ 

 $|G_P| > 1.$ 

Let  $\gamma = (\gamma_1, \dots, \gamma_k)$  with k > 1 be a cycle in the disjoint cycle representation of  $\pi \in G_P$ . Then adjoining the constraints:

$$\forall 2 \le j \le k \quad x_{\sigma_1} \le x_{\sigma_k} \tag{2}$$

to *P* results in a nontrivial narrowing *Q* of *P* (i.e. one s.t.  $|\mathcal{G}(Q)| < |\mathcal{G}(P)|$ ).



### The SYMMBREAK2 narrowing 6/7

Good news: there are automatic ways to find permutations in  $G_P$ 

One formulates an auxiliary mathematical program the solution of which encodes  $\pi \in G_P$  (incidentally if  $\pi = e$  this proves  $G_P = \{e\}$ )

- Bad news: the CPU time required to find permutations of  $G_P$  is prohibitively high (for now)
- Good news: once some  $\pi \in G_P$  is known, adding
   constraints (2) for the longest disjoint cycle of  $\pi$  yields a
   narrowing *Q* computationally as tractable as *P*
- Bad news: there is an element of arbitrary choice in (2), namely that  $x_{\sigma_1}$  is a minimum element within  $x[\sigma]$
- found no way (yet) to eliminate this arbitrary choice without adding more variables to Q



## The SYMMBREAK2 narrowing 7/7

Very preliminary computational results on a small set of instances (some from MILPLib, some from Margot's website):

| Instance | Group                                                        | $\gamma$ | BBn(P)  | BBn(Q) |
|----------|--------------------------------------------------------------|----------|---------|--------|
| enigma   | $C_2$                                                        | 2        | 3321    | 269    |
| jgt18    | $C_2 \times S_4$                                             | 6        | 573     | 1300   |
| oa66234  | $S_3$                                                        | 2        | 0       | 0      |
| oa67233  | $C_2 \times S_4$                                             | 6        | 6       | 0      |
| oa76234  | $S_3$                                                        | 2        | 0       | 0      |
| ofsub9   | $C_3 \times S_7$                                             | 21       | 1111044 | 980485 |
| stein27  | $((C_3 \times C_3 \times C_3) \ltimes PSL(3,3)) \ltimes C_2$ | 24       | 1084    | 1843   |
| sts27    | $((C_3 \times C_3 \times C_3) \ltimes PSL(3,3)) \ltimes C_2$ | 26       | 1317    | 968    |

Results are promising but not exciting Need to improve narrowing efficacy



# **Other applications**

RCLIN opt-reformulation: applied in (L., 4OR, 2007) to the GRAPH PARTITIONING PROBLEM (GPP), the MULTIPROCESSOR SCHEDULING PROBLEM WITH COMMUNICATION DELAYS (MSPCD) and the QUADRATIC ASSIGNMENT PROBLEM (QAP): CPU improvement 2 Orders of Magnitude (OMS)

#### **RRLTRELAX** relaxation:

- used in (L. &Pantelides, JOGO, 2006) to drastically tighten the convex relaxation of pooling and blending problems from the oil industry: sBB nodes improvements 2-5 OMs
- use in (Lavor et al., EPL, 2007 and L. et al., DAM, accepted) to be able to compute molecular orbitals solving Hartree-Fock systems by sBB (impossible without it)
- INNERAPPROX approximation: found feasible solutions of a large-scale (25-50K bin vars/constrs) convex MINLP occurring in a sphere covering problem arising in the configuration of gamma-ray radiotherapy units (using CPLEX)



# Perspectives

- Principal Investigator for the Automatic Reformulation Search (ARS) project funded by ANR, and part of a WP in the EU project "Morphex": extend the reformulation library and implement a prototype of the automatic reformulation software
- Reformulation techniques offer high didactical value when teaching modelling courses
- My bet: successful algorithms for large scale MINLPs will *have* to employ automatic reformulation techniques to some extent
- My regret: there is a widespread belief that reformulations are "just" modelling tricks, and to dismiss them as implementation details, even though computational results improvements due to reformulations are major.





# Thank you