
ooOPS

A C++ Callable Object-Orientated Library for the

Definition and Solution of Large, Sparse Mixed

Integer Nonlinear Programming (MINLP) Problems

Draft v. 1.25

L. Liberti, P. Tsiakis, B.R. Keeping, C.C. Pantelides
Centre for Process Systems Engineering

Imperial College of Science, Technology and Medicine
London SW7 2BY
United Kingdom

30th January 2002

1

Contents

1 Introduction 6

2 Fundamental Concepts 8

2.1 Object Classes . 8

2.2 Multidimensional Sets in ooOPS 8

2.3 Constants, Variables, Constraints and Objective Function . . 10

2.4 Nonlinear Expressions and Constants 11

2.5 Notes . 13

3 General Software Issues 15

3.1 Software Constants . 15

3.2 The si, sd and li Argument Types and the IntSeq Auxiliary
Function . 15

4 The MINLP Object Class 16

4.1 MINLP Instantiation: The NewMINLP Function 16

4.2 MINLP Construction Methods 17

4.2.1 Method NewContinuousVariable 17

4.2.2 Method NewIntegerVariable 19

4.2.3 Method NewConstraint 21

4.2.4 Method AddLinearVariableSliceToConstraintSlice 22

4.2.5 Method NewConstant 24

4.2.6 Method NewConstantExpression 25

4.2.7 Method NewVariableExpression 26

4.2.8 Method BinaryExpression 27

4.2.9 Method UnaryExpression 28

4.2.10 Method AssignExpressionSliceToConstraintSlice 29

4.2.11 Method NewObjectiveFunction 30

4.2.12 AddLinearVariableSliceToObjectiveFunction . . . 31

4.2.13 Method AssignExpressionToObjectiveFunction . . 33

4.3 MINLP Modification Methods 34

4.3.1 Method SetVariableValue 34

2

4.3.2 Method SetVariableBounds 35

4.3.3 Method SetConstraintBounds 36

4.3.4 Method SetConstantValue 37

4.3.5 Method SetConstantSliceValue 38

4.3.6 Method SetKeyVariable 39

4.4 Structured MINLP Information Access Methods 40

4.4.1 Method GetVariableInfo 40

4.4.2 Method GetConstraintInfo 42

4.4.3 Method GetObjectiveFunctionInfo 44

4.4.4 Method GetProblemInfo 45

4.5 Flat MINLP Information Access Methods 46

4.5.1 General Properties of the Flat MINLP 46

4.5.2 Method GetFlatMINLPSize 47

4.5.3 Method GetFlatMINLPStructure 49

4.5.4 Method GetFlatMINLPVariableInfo 51

4.5.5 Method SetFlatMINLPVariableBounds 53

4.5.6 Method GetFlatMINLPVariableValues 54

4.5.7 Method SetFlatMINLPVariableValues 55

4.5.8 Method GetFlatMINLPConstraintInfo 56

4.5.9 EvalFlatMINLPNonlinearObjectiveFunction 58

4.5.10 Method EvalFlatMINLPNonlinearConstraint 59

4.5.11 GetFlatMINLPObjectiveFunctionDerivatives . . . 60

4.5.12 Method GetFlatMINLPConstraintDerivatives . . . 62

4.5.13 Method GetFlatMINLPNoPartitions 64

4.5.14 Method GetFlatMINLPPartition 65

4.6 Standard Form MINLP Information Access Methods 66

4.6.1 Method GetSFNumberOfVariables 67

4.6.2 Method GetSFVariableInfo 68

4.6.3 Method GetSFObjFunVarIndex 69

4.6.4 Method GetSFNumberOfLinearConstraints 70

4.6.5 Method GetSFLinearBounds 71

4.6.6 Method GetSFLinearStructure 72

3

4.6.7 Method GetSFMatrix 73

4.6.8 Method GetSFNumberOfNonlinearConstraints . . . 74

4.6.9 Method GetSFNonlinearConstraint 75

4.6.10 Method UpdateSolution 77

5 MINLP Solvers and Systems 78

5.1 Introduction . 78

5.1.1 MINLP Solver Managers and MINLP Systems 78

5.1.2 Algorithmic Parameters for MINLP Solvers 78

5.2 The ssolpar and sstat Argument Types 79

5.3 NewMINLPSolverManager . 81

5.4 MINLP Solver Managers . 83

5.4.1 Method GetParameterList 83

5.4.2 Method SetParameter 84

5.4.3 Method NewMINLPSystem 85

5.5 MINLP Systems . 86

5.5.1 Method GetParameterList 86

5.5.2 Method SetParameter 87

5.5.3 Method GetStatistics 88

5.5.4 Method Solve . 89

5.5.5 Method GetSolutionStatus 90

6 Auxiliary Interfaces 91

6.1 The Convexification Module 91

6.1.1 Convexifier Manager Instantiation: the Function New-
ConvexifierManager 91

6.1.2 Method GetConvexMINLP 93

6.1.3 Method UpdateConvexVarBounds 94

6.1.4 Methods of the Convex MILP 96

6.2 The FlatExpression Interface 98

6.2.1 The FlatConstantExpression Interface 99

6.2.2 The FlatVariableExpression Interface 100

6.2.3 The FlatOperatorExpression Interface 101

4

6.2.4 Usage of FlatExpression Interface 103

7 Implementation Restrictions 105

8 An Example of the Use of ooOPS 106

8.1 Creating the MINLP . 107

8.1.1 Creating Variables . 107

8.1.2 Creating Constraints 108

8.1.3 Adding Variables to Constraints 108

8.1.4 Objective Function . 110

8.1.5 Objective Function Coefficients 110

8.1.6 Modifying the Variable Bounds 111

8.1.7 Modifying the Constraint Bounds 111

8.1.8 Creating the Nonlinear Parts 111

8.1.9 Assigning Expressions to Constraints and Objective
Function . 112

8.2 MINLP Solution . 114

8.2.1 Creating an MINLP Solver Manager Object 114

8.2.2 Creating an MINLP System 114

8.2.3 Solving the MINLP 114

8.3 Accessing the Solution of the MINLP 114

8.3.1 Obtaining Information on the Variables 114

8.3.2 Obtaining Information on the Objective Function . . . 115

5

1 Introduction

ooOPS is a library of C++ callable procedures for the definition, manipu-
lation and solution of large, sparse mixed integer linear and nonlinear pro-
gramming (MINLP) problems. In particular, ooOPS:

• facilitates the definition of complex sets of constraints, reducing the
required programming effort to a minimum;

• allows its client programs to create and manipulate simultaneously
more than one MINLP;

• provides a common interface to diverse MINLP solvers to be used
without any changes to client programs.

MINLPs are optimisation problems whose objective function and con-
straints can, in general, contain nonlinear terms. The variables appearing in
the objective function and constraints are generally restricted to lie between
specified lower and upper bounds. Furthermore, some of these variables
may be restricted to integer values only. The aim of the optimisation is to
determine values of the variables that minimise or maximise the objective
function while satisfying the constraints and all other restrictions imposed
on them.

A simple mathematical description of an MINLP can be written as:

[Flat MINLP]:
min

x
φ(x)+cT x (1)

subject to:
a ≤ f(x) + Ax ≤ b (2)

xl ≤ x ≤ xu (3)

xi ∈ Z ∀i ∈ I ⊆ {1, .., n} (4)

where x, xl, xu, c ∈ Rn, b ∈ Rm, A : Rn → Rm, φ : Rn → R and f : Rn →
Rm. Thus, the variables x are characterised by an index i = 1, .., n; all
constraints are expressed as inequalities of the form ≤ 0 and are indexed
over the discrete domain 1, ..,m.

The above general formulation also embeds three special cases:

• Mixed Integer Linear Programming (MILP) Problems.
In this case, φ(x) = 0 and f(x) = 0.

6

• Nonlinear Programming (NLP) Problems.
In this case, I = ∅.

• Linear Programming (LP) Problems.
In this case, φ(x) = 0, f(x) = 0 and I = ∅.

The ooOPS software design aims to support the definition and solution of
all these special cases, with minimal overhead being incurred because of the
generality of the overall software.

Albeit quite general, the above MINLP form is not necessarily easy to
construct and/or manipulate. A major reason for this is that the variables
and constraints are maintained as unstructured “flat” lists or sets which may
contain thousands of elements. On the other hand, most mathematical for-
mulations of practical problems in terms of MINLPs are expressed in terms
of a relatively small number of distinct sets of variables and constraints.

For example, in a typical network flow problem, a commonly occurring
set of variables would be the flow of material from one node in the network
to another, while a typical set of constraints would be the conservation of
material arriving at, and leaving any node i in the network.

Of course, each such set of variables (or constraints) may have multiple
elements, each corresponding to an individual variable (or constraint). An
indexed set representation is usually employed for notational purposes. For
instance, Fij could represent the flow from node i to node j, while Ck could
represent the set of conservation constraints:∑

i6=k

Fik =
∑
j 6=k

Fkj , ∀ node k

In view of the above discussion, ooOPS allows types of variables and
constraints to be defined in a structured fashion as sets of an arbitrary
number of dimensions.

7

2 Fundamental Concepts

2.1 Object Classes

ooOPS is designed as object-orientated software recognising two major
classes of objects, each with its own interface:

1. The ops object
An ops object is a software representation of a MINLP problem. The
corresponding interface, discussed in detail in section 4, provides the
following functionality:

• It allows MINLP objects to be constructed and modified in a
structured manner.

• It allows access to all information pertaining to the MINLP.

• It provides the equivalent simple [Flat MINLP] form of the
structured MINLP (see section 1).

2. The opssystem object
This is formed by the combination of an MINLP object (see above)
with a code (“solver”) for the numerical solution of MINLP problems.
The corresponding interface, discussed in detail in section 5, provides
the following functionality:

• It allows the behaviour of the solver to be configured via the
specification of any algorithmic parameters that the solver may
support.

• It permits the solution of the MINLP.

2.2 Multidimensional Sets in ooOPS

As detailed later in the document, an MINLP is characterised by a number
of distinct multidimensional sets of variables and constraints. We note that:

• A multidimensional set is an ordered set whose elements can be ac-
cessed through a list of indices.

• The dimensionality of a multidimensional set is given by the length of
the index lists (i.e. the number of dimensions) and the range of each
index in the list.

8

• The dimensionality size of a multidimensional set is the list of its
dimension sizes. More precisely, a multidimensional set having n di-
mensions, with index ij ranging from iLJ to iUj for each j between 1
and n, has dimensionality size:

(iU1 − iL1 + 1, . . . , iUn − iLn + 1).

• A scalar has dimensionality size (1).

For instance, consider a 3-dimensional variable set X(i, j, k), with the
first dimension varying from i = 0 to i = 10, the second dimension from j =
1 to j = 5, and the third dimension from k = −1 to k = +1. We can view this
as a multidimensional set, the dimensionality of which is characterised by
the number of dimensions (3, in this case) and the ranges of each dimension
(0 : 10, 1 : 5,−1 : 1). The dimensionality size is the list (11, 5, 3) (= 10− 0+
1, 5 − 1 + 1, 1 − (−1) + 1). The total number of elements of this set is 165
(= 11× 5× 3).

ooOPS makes extensive use of the concept of slices as a convenient way
of referring to subsets of multidimensional sets. In general:

• A slice [sL : sU] of an N -dimensional set is defined by a pair of N -
dimensional integer vectors sL

i , i = 1, .., N and sU
i , i = 1, .., N where

sL
i ≤ sU

i .

• The element at position (k1, k2, .., kN) of the set belongs to the slice
[sL : sU] if and only if:

sL
i ≤ ki ≤ sU

i , ∀ i = 1, .., N (5)

Here are some examples:

• The slice [(2) : (5)] of a 1-dimensional set X denotes the elements
Xi, i = 2, 3, 4, 5.

• The slice [(2, 3) : (5, 4)] of a 2-dimensional set X denotes the elements
Xij , i = 2, 3, 4, 5, j = 3, 4.

• The slice [(2, 3, 3) : (5, 3, 4)] of a 3-dimensional set X denotes the
elements Xi3k, i = 2, 3, 4, 5, k = 3, 4.

• The slice [(2, 3, 3, 4) : (2, 3, 3, 4)] of a 4-dimensional set X denotes the
single element X2334.

9

2.3 Constants, Variables, Constraints and Objective Func-
tion

Most optimization problems involve arithmetic constants. In ooOPS, these
can be organized in one or more multidimensional sets. A constant set is
characterised by the following information:

• its name;

• the dimensionality of the set;

• the current value of each element of the set;

The variables to be determined by the optimization are also organized in
one or more multidimensional sets. A variable set is characterised by the
following information:

• its name;

• the type of all variables in this set (continuous or integer);

• the dimensionality of the set ;

• the current value of each element of the set;

• the upper and lower bounds of the value of each element of the set.

Similarly, the constraints in the optimization problem are also organized in
one or more multidimensional sets.

A constraint set is characterised by the following information:

• its name;

• the lower and upper bound of the constraint;

• the dimensionality of the set;

• the variables occurring in the linear parts of these constraints and the
corresponding coefficients (see note 1 in section 2.5 below);

• the expression (see below) defining the nonlinear part of these con-
straints.

Most of the information characterising a set of constants, variables or con-
straints is common to all elements of the set. The only exceptions to this
rule are:

10

• the values of elements of constant sets may differ from element to
element;

• the values and bounds of elements of variable sets may differ from
element to element;

• the constraint bounds of the constraint sets may differ from element
to element.

Each MINLP object has a unique objective function. This is characterised
by:

• the name of the objective function

• the type of the problem (minimisation or maximisation)

• the variables occurring in the linear part of the objective function and
the corresponding coefficients (see note 1 in section 2.5 below);

• the expression defining the nonlinear part of the objective function.

2.4 Nonlinear Expressions and Constants

A nonlinear expression is, in general, built hierarchically from the algebraic
combination of variables, constants (see below) and other expressions by us-
ing operators and functions. Expressions are characterised by the following
information:

• their name;

• their dimensionality size;

• whether they represent variables, constants or operators.

An expression represents a valid algebraic expression. The operators and
functions that can be used to combine variables, constants and other ex-
pressions are given in the following table:

11

Name Meaning
Binary Arithmetic Operators

sum addition
difference subtraction
product multiplication
ratio division
power exponentiation

Unary Arithmetic Operators
minus unary minus
Unary Transcendental Functions

log natural logarithm
exp exponential
sin sine
cos cosine
tan tangent
cot cotangent
sinh hyperbolic sine
cosh hyperbolic cosine
tanh hyperbolic tangent
coth hyperbolic cotangent
sqrt square root

In general, expressions are multidimensional sets with the special property
that the range of each dimension starts from 1. The dimensionality size of an
expression can be determined from the dimensionality sizes of its variables,
constants and subexpressions and the type of its constituent operators, ac-
cording to the rules given in the following tables:

Binary Arithmetic Operators
dimensionality dimensionality dimensionality
size of 1st operand size of 2nd operand size of result
(s1, . . . , sn) (s1, . . . , sn) (s1, . . . , sn)
(1) (s1, . . . , sn) (s1, . . . , sn)
(s1, . . . , sn) (1) (s1, . . . , sn)

otherwise illegal

Unary Operators and Functions
dimensionality dimensionality
size of operand size of result
(s1, . . . , sn) (s1, . . . , sn)

12

2.5 Notes

1. Variable occurrences in linear parts of constraints
An important part of the characterisation of the linear part of a

constraint is the information on which variables actually occur in it,
and the coefficients that multiply each such variable.

In ooOPS, such occurrences are specified as a variable slice occurring
in a constraint slice with a given coefficient. This simply means that:

Every element of the variable slice occurs in each element of the
constraint slice, always with the same coefficient.

Of course, the client constructing an MINLP object using the facilities
provided by ooOPS can add any number of such occurrences. More-
over, if any such specification involves an element of a variable vector
that already appears1 in one or more of the specified constraints, the
later specification overrides the earlier one.

2. Variable occurrences in linear part of objective function
An important part of the characterisation of the linear part of the

objective function is the information on which variables actually occur
in it, and the coefficients that multiply each such variable.

In ooOPS , such occurrences are specified as a variable slice occurring
in the objective function with a given coefficient. This simply means
that:

Every element of the variable slice occurs in the objective function
always with the same coefficient.

Of course, the client constructing an MINLP object using the facilities
provided by ooOPS can add any number of such occurrences. More-
over, if any such specification involves an element of a variable vector
that already appears2 in the objective function, the later specification
overrides all earlier ones.

3. Nonlinear expression occurrences in constraints
An important part of the characterisation of a constraint is its non-

linear part. In ooOPS, this can be specified by assigning one or more
expressions to different slices of the constraint. Each expression must
either be a scalar or its dimensionality size must match that of the
constraint slice to which it is assigned, in which case each element

1as a result of earlier specifications
2as a result of earlier specifications

13

of the slice is set the corresponding the corresponding element of the
expression.

Note that, unlike linear variable occurrences, expression elements do
not accumulate. If a new expression is assigned to a constraint element
which has already been assigned an expression, the later assignment
overrides the earlier one.

4. Nonlinear expression occurrences in objective function
An important part of the characterisation of the objective function is
its nonlinear part. In ooOPS, this is specified as a (scalar) expression
occurring in the objective function.

Note that, unlike linear variable occurrences, expression elements do
not accumulate. if a new expression is assigned to an objective function
which has already been assigned an expression, the later assignment
overrides the earlier one.

14

3 General Software Issues

3.1 Software Constants

ooOPS defines two constants which should primarily be used for the spec-
ification of lower and upper bounds of variables, as well as constraint right
hand side constants. These are:

• ooOPSPlusInfinity
Setting the upper bound of a variable to PlusInfinity implies that
this variable is effectively unbounded from above.
Setting the upper bound of an inequality constraint to PlusInfinity
is the standard way to represent an inequality of the form c(x) ≥ LB.

• ooOPSMinusInfinity
Setting the lower bound of a variable to MinusInfinity implies that
this variable is effectively unbounded from below.
Setting the lower bound of an inequality constraint to MinusInfinity
is the standard way to represent an inequality of the form c(x) ≤ UB.

3.2 The si, sd and li Argument Types and the IntSeq Aux-
iliary Function

In order to describe the arguments to the various methods of its object
classes, ooOPS introduces the following C++ type definition:

• si: a sequence of integers

• sd: a sequence of doubles

• li: a list of integers

The precise implementation of this type is irrelevant as ooOPS also provides
an auxiliary function for its construction. In particular, the IntSeq function
takes a list of any number of integers and returns a vector of type si.

For example, the C++ code segment:

si* SetSize = IntSeq (3,7,4) ;

creates a sequence called SetSize of three integers (3, 7 and 4). This may
then, for instance, be passed as an input argument to a method to create
a new 3-dimensional variable set, with the lengths of the three dimensions
being specified in SetSize.

15

4 The MINLP Object Class

4.1 MINLP Instantiation: The NewMINLP Function

Declaration: ops* NewMINLP()

Function: Creates a new empty MINLP.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Specified On Entry
return value ops* the MINLP object

Notes: None

Example of usage:

The following creates a new MINLP called NetOpt :

ops* NetOpt = NewMINLP() ;

16

4.2 MINLP Construction Methods

4.2.1 Method NewContinuousVariable

Declaration: void NewContinuousVariable(string vname, si* dimLB,
si* dimUB, double LB, double UB, double value)

Function: Creates a new set of continuous variables with given name, do-
main, bounds and value.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set to be created
dimLB si* lower bounds of the variable set dimensions
dimUB si* upper bounds of the variable set dimensions
LB double lower bound
UB double upper bound

value double value

Arguments returned to client: None

Notes:

• The specified name must be unique among all variables (continuous
or integer) in the MINLP as it will be used to identify the variable in
all future communications with the MINLP object.

• In general, a variable is represented by a multidimensional set (cf. sec-
tion 2.2). The arguments dimLB and dimUB are sequences of integers,
representing respectively the lower and upper bounds of the domains
of the individual dimensions. In the case of the example of set X men-
tioned in section 2.2, these two sequences would be (0, 1, -1) and (10,
5, 1) respectively.

• The length of the above integer sequences must be equal to each other
and implicitly determine the number of dimensions of the variable.

• Scalar variables should be specified as 1-dimensional sets of size 1.

• The index of the individual elements for each dimension ranges from
the corresponding element of dimLB to the corresponding element of
dimUB.

• The specified lower bound, upper bound and value must satisfy:

LB ≤ value ≤ UB

• All elements of the variable set being created are given the same lower
and upper bounds as well as the same value. However, these quantities

17

may subsequently be changed for individual elements or slices of the
set (see sections 4.3.1 and 4.3.2).

Example of usage:

The following creates a 2-dimensional continuous variable called Material-
Flow, with individual elements MaterialFlow (i, j), i = 0, .., 4, j = 1, .., 6
within an existing ops object called NetOpt. All elements of the new variable
are initialised with a lower bound of 0.0, an upper bound of 100.0 and a
current value of 1.0.

NetOpt->NewContinuousVariable("MaterialFlow", IntSeq(0,1),
IntSeq(4,6), 0.0, 100.0, 1.0);

18

4.2.2 Method NewIntegerVariable

Declaration: void NewIntegerVariable(string vname, si* dimLB,
si* dimUB, int LB, int UB, int value)

Function: Creates a new set of integer variables with given name, size,
bounds and value.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set to be created
dimLB si* lower bounds of the variable set dimensions
dimUB si* upper bounds of the variable set dimensions
LB int lower bound
UB int upper bound

value int value

Arguments returned to client: None

Notes:

• The specified name must be unique among all variables (continuous
or integer) in the MINLP as it will be used to identify the variable in
all future communications with the MINLP object.

• In general, a variable is represented by a multidimensional set (cf. sec-
tion 2.2). The arguments dimLB and dimUB are sequences of integers,
representing respectively the lower and upper bounds of the domains
of the individual dimensions. In the case of the example of set X men-
tioned in section 2.2, these two sequences would be (0, 1, -1) and (10,
5, 1) respectively.

• The length of the above integer sequences must be equal to each other
and implicitly determine the number of dimensions of the variable.

• Scalar variables should be specified as 1-dimensional sets of size 1.

• The index of the individual elements for each dimension ranges from
the corresponding element of dimLB to the corresponding element of
dimUB.

• The specified lower and upper bounds ,and value must satisfy:

LB ≤ value ≤ UB

• All elements of the variable set being created are given the same lower
and upper bounds as well as the same value. However, these quantities
may subsequently be changed for individual elements or slices of the
set (see sections 4.3.1 and 4.3.2).

19

Example of usage:

The following creates a 1-dimensional integer (binary) variable called Plant-
Exists of length 3 with individual elements PlantExists(i), i = 1, .., 3
within an existing ops object called NetOpt. All elements of the new variable
are initialised with a lower bound of 0, an upper bound of 1 and a current
value of 0.

NetOpt->NewIntegerVariable("PlantExists", IntSeq(1), IntSeq(3),
0, 1, 0);

20

4.2.3 Method NewConstraint

Declaration: void NewConstraint(string cname, si* dimLB,
si* dimUB, double LB, double UB)

Function: Creates a new set of constraints with given name, size, type and
bounds.

Arguments to be specified by the client:

Argument Type Specified On Entry
cname string name of constraint set to be created
dimLB si* lower bounds of the constraint set dimensions
dimUB si* upper bounds of the constraint set dimensions
LB double lower bound
UB double upper bound

Arguments returned to client: None

Notes:

• The specified name must be unique among all constraints in the
MINLP as it will be used to identify the constraint in all future com-
munications with the MINLP object.

• In general, a constraint is represented by a multidimensional set (cf.
note 2.2 in section 2.5). The arguments dimLB and dimUB are sequences
of integers, representing respectively the lower and upper bounds of
the domains of the individual dimensions. Their length must be equal
and determine the number of dimensions of the constraint set.

• Scalar constraints should be specified as 1-dimensional sets of size 1.

• The index of the individual elements for each dimension ranges from
the corresponding element of dimLB to the corresponding element of
dimUB.

• All elements of the constraint set being created are assigned lower
and upper bounds. However, these may subsequently be changed (see
section 4.3.3).

• Initially, the constraint does not contain any variables occurring lin-
early in it. It is also assigned a null nonlinear part.

Example of usage:

Creates a new constraint UniqueAllocation with bounds fixed at 1.

NetOpt->NewConstraint("UniqueAllocation", IntSeq(1), IntSeq(1),
1.0, 1.0);

21

4.2.4 Method AddLinearVariableSliceToConstraintSlice

Declaration: void AddLinearVariableSliceToConstraintSlice(string
vname, si* vdimLB. si* vdimUB, string cname, si* cdimLB,
si* cdimUB, double coefficient)

Function: Adds a linear occurrence of every element of a specified variable
slice to each element of a specified constraint slice, always with the specified
coefficient.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string variable set, elements of which

are to be added
vdimLB si* lower bounds of the variable set slice

to be added to constraints
vdimUB si* upper bounds of the variable set slice

to be added to constraints
cname string name of constraint set, elements of which

are to receive the new variable occurrences
cdimLB si* lower bounds of the constraint set slice

to receive variable occurrences
cdimUB si* upper bounds of the constraint set slice

to receive variable occurrences
coefficient double coefficient of variables in the constraints

Arguments returned to client: None

Notes:

• The specified variable set must have already been created using the
NewContinuousVariable or NewIntegerVariable methods (see sec-
tions 4.2.1 and 4.2.2 respectively).

• The specified constraint set must have already been created using the
NewConstraint method (see section 4.2.3).

• If an element of the variable slice has already been declared to occur in
an element of constraint slice via an earlier invocation of this method,
then the current specification supersedes the earlier one.

• A value of 0.0 for the specified coefficient has the effect of removing
an existing occurrence of a variable in a constraint.

Examples of usage:

The following creates a new inequality constraint called SourceFlowLimit
within an existing ops object called NetOpt for each of the 5 source nodes

22

in a network with a right hand side of 450. It then adds to the constraint
for each node all the elements of the corresponding row of the variable
MaterialFlow (cf. example in section 4.2.1) with a coefficient of 1.

NetOpt->NewConstraint ("SourceFlowLimit",
IntSeq(0), IntSeq(4), ’<’, 450.0);

for (int i=0; i<=4; i++)
NetOpt->AddLinearVariableSliceToConstraintSlice(
"MaterialFlow", IntSeq(i,1), IntSeq(i,6),
"SourceFlowLimit", IntSeq(i), IntSeq(i), 1.0);

The following adds an occurrence of all elements of the variable Plant-
Exists (cf. example in section 4.2.2) to the scalar constraint UniqueAllo-
cation (cf. example in section 4.2.3) within an existing ops object called
NetOpt.

NetOpt->AddLinearVariableSliceToConstraintSlice
("PlantExists", IntSeq(1), IntSeq(3),
"UniqueAllocation", IntSeq(1), IntSeq(3), 1.0);

23

4.2.5 Method NewConstant

Declaration: void NewConstant(string kname, si* kdimLB,
si* kdimUB, double value)

Function: Creates a new constant set of specified dimensionality, each ele-
ment of which is initialized to the specified value.

Arguments to be specified by the client:

Argument Type Specified On Entry
kname string name of the constant set/slice being created
kdimLB si* lower bounds of constant set/slice
kdimUB si* upper bounds of constant set/slice
value value initial value

Arguments returned to client: None

Notes:

• None

Examples of usage:

The following code creates a constant called Const1 within an existing ops
object called NetOpt, consisting of a three-dimensional vector whose com-
ponents are all 1.

NetOpt->NewConstant("Const1", IntSeq(1), IntSeq(3), 1);

24

4.2.6 Method NewConstantExpression

Declaration: void NewConstantExpression(string ename, string
kname, si* kdimLB, si* kdimUB)

Function: Creates a new expression consisting of a constant set or constant
slice.

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string name of the expression being created
kname string name of the constant set/slice
kdimLB si* lower bounds of constant set/slice
kdimUB si* upper bounds of constant set/slice

Arguments returned to client: None

Notes:

• If an expression called ename already exists within the ops object, the
new expression will overwrite it.

Examples of usage:

The following code creates an expression called Expr1 (within an existing
ops object called NetOpt) from the constant set Const1.

NetOpt->NewConstant("Const1", IntSeq(1), IntSeq(3), 1);
NetOpt->NewConstantExpression("Expr1", "Const1",

IntSeq(1), IntSeq(3));

25

4.2.7 Method NewVariableExpression

Declaration: void NewVariableExpression(string ename, string
vname, si* vdimLB, si* vdimUB*)

Function: Creates a new expression consisting of a variable set or a variable
slice.

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string name of the expression
vname string name of the variable set/slice
vdimLB si* lower bounds of the variable set/slice
vdimUB si* upper bounds of the variable set/slice

Arguments returned to client: None

Notes:

• If an expression called ename already exists within the ops object, the
new expression will overwrite it.

Examples of usage:

The following code creates a variable expression called Expr2 (within an
existing ops object called NetOpt) consisting of the vector (x1, x2, x3).

NetOpt->NewContinuousVariable("x", IntSeq(1), IntSeq(3), -1, 1, 0);
NetOpt->NewVariableExpression("Expr2", "x", IntSeq(1), IntSeq(3));

26

4.2.8 Method BinaryExpression

Declaration: void BinaryExpression(string ename, string ename1,
si* edimLB1, si* edimUB1, string ename2, si* edimLB2, si*
edimUB2, string binaryoperator)

Function: Creates a new expression representing a binary operation between
the expressions specified in the argument.

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string name of the new expression
ename1 string name of expression representing

the first operand
edimLB1 si* lower bound of slice to be

used from first expression
edimUB1 si* upper bound of slice to be

used from first expression
ename2 string name of expression representing

the second operand
edimLB2 si* lower bound of slice to be

used from second expression
edimUB2 si* upper bound of slice to be

used from second expression
binaryoperator string label of the binary operator

to be used.

Arguments returned to client: None

Notes:

• The dimensionality size of the new expression depends on those of its
operands (see table in section 2.4).

• The argument binaryoperator describes the type of binary operator
in the expression. It can be one of the following strings: "sum",
"difference", "product", "ratio", "power" (cf. section 2.4).

• If an expression called ename already exists within the ops object, the
new expression will overwrite it.

Examples of usage: The following code creates a nonlinear term x1x2 within
an existing ops object called NetOpt.

NetOpt->NewContinuousVariable("x", IntSeq(1), IntSeq(2), -1, 1, 0);
NetOpt->BinaryExpression("NLT", "x", IntSeq(1), IntSeq(1),

"x", IntSeq(2), IntSeq(2), "product");

27

4.2.9 Method UnaryExpression

Declaration: void UnaryExpression(string ename, string ename1,
si* edimLB1, si* edimUB1, string unaryoperator)

Function: Creates a new expression representing a unary operation on the
expression specified in the argument.

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string name of the new expression
ename1 string name of expression

representing the operand
edimLB1 si* lower bound of slice to be

used from the operand expression
edimUB1 si* upper bound of slice to be

used from the operand expression
unaryoperator string label of the unary arithmetic

operator or unary transcendental
function to be used

Arguments returned to client: None

Notes:

• The dimensionality and dimension sizes of the new expression is the
same as that of its operands.

• The argument unaryoperator describes the type of unary operator
in the expression. It can be one of the following strings (the mean-
ing is self-explanatory): "minus", "log", "exp", "sin", "cos",
"tan", "cot", "sinh", "cosh", "tanh", "coth" (cf. section 2.4).

• If an expression called ename already exists within the ops object, the
new expression will overwrite it.

Examples of usage: The following code creates a nonlinear term log(x)
within an existing ops object called NetOpt.

NetOpt->NewContinuousVariable("x", IntSeq(1), IntSeq(3), -1, 1, 0);
NetOpt->UnaryExpression("NLT", "x", IntSeq(1), IntSeq(3), "log");

28

4.2.10 Method AssignExpressionSliceToConstraintSlice

Declaration: void AssignExpressionSliceToConstraintSlice
(string ename, si* edimLB, si* edimUB, string cname,
si* cdimLB, si* cdimUB)

Function: Assigns the specified expression slice to the specified constraint
slice.

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string the name of the expression to be set
edimLB si* lower bound of expression slice
edimUB si* upper bound of expression slice
cname string name of constraint set to which the

expression must be set
cdimLB si* lower bounds of the constraint set slice

to be set with the expression elements
cdimUB si* upper bounds of the constraint set slice

to be set with the expression elements

Arguments returned to client: None

Notes:

• The specified constraint set must have already been created using the
NewConstraint method (see section 4.2.3).

• The specified expression either must be a scalar or its dimensionality
size must match exactly that of the constraint slice. In the former case,
the same scalar expression will be assigned to each of the constraints
in the slice; in the latter, each element in the expression slice will be
assigned to the corresponding element in the constraint slice.

Examples of usage:

The following code creates the term x
log(x) within an existing ops object

called NetOpt and assigns it to the constraint UniqueAllocation.

NetOpt->NewContinuousVariable("x", IntSeq(1), IntSeq(3), -1, 1, 0);
NetOpt->UnaryExpression("NLT", "x", IntSeq(1), IntSeq(3), "log");
NetOpt->BinaryExpression("NLT", "x",

IntSeq(1), IntSeq(3), "NLT",
IntSeq(1), IntSeq(3), "ratio");

NetOpt->AssignExpressionSliceToConstraintSlice
("NLT", IntSeq(1), IntSeq(3),
"UniqueAllocation", IntSeq(1), IntSeq(3));

29

4.2.11 Method NewObjectiveFunction

Declaration: void NewObjectiveFunction(string oname, string
otype)

Function: Specifies the name and the type for the objective function for the
MINLP.

Arguments to be specified by the client:

Argument Type Specified On Entry
oname string objective function name
otype string objective function type

Arguments returned to client: None

Notes:

• The objective function created by this method does not contain any
variables either linearly or nonlinearly.

• The type of the objective function must be a string of at least 3 char-
acters; any characters beyond the third one are ignored. Valid type
specifications are "min" and "max" denoting minimisation and max-
imisation respectively. The case of the characters in the type specifi-
cation is irrelevant.

• If the method is invoked more than once for a given MINLP, then each
invocation supersedes all earlier ones and any information associated
with the previous objective function (e.g. on the variables occurring
in it) is lost.

Examples of usage:

The following creates an objective function called TotalProfit within an
existing ops object called NetOpt, that is to be maximised by the solution
of the MINLP:

NetOpt->NewObjectiveFunction{"TotalProfit", "max") ;

30

4.2.12 Method AddLinearVariableSliceToObjectiveFunction

Declaration: void AddLinearVariableSliceToObjectiveFunction
(string vname, si* dimLB, si* dimUB, double coefficient,
string oname)

Function: Adds a linear occurrence of every element of a specified variable
slice to the specified objective function using the specified coefficient.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set, elements of which

are to be added
dimLB si* lower bounds of the variable set slice

to be added to objective function
dimUB si* upper bounds of the variable set slice

to be added to objective function
coefficient double coefficient of variables

in the objective function
oname string name of current objective function

Arguments returned to client: None

Notes:

• The specified variable set must have already been created using the
NewContinuousVariable or NewIntegerVariable methods (see sec-
tions 4.2.1 and 4.2.2 respectively).

• If an element of the variable slice has already been declared to occur
in the objective function via an earlier invocation of this method, then
the current specification supersedes the earlier one.

• A value of 0.0 for the specified coefficient has the effect of removing
an existing occurrence of a variable in a constraint.

• The specified objective function must be the current objective func-
tion which must have already been created using the NewObjective-
Function method (see section 4.2.11).

Examples of usage:

The following adds the elements of variables MaterialFlow (cf. example
in section 4.2.1) relating to destination node 1 to the objective function
TotalProfit (cf. example in section 4.2.11) within the existing ops object
called NetOpt. A coefficient of 100 is used. It then subtracts from the same
objective function the sum of the integer variables PlantExists (cf. example
in section 4.2.2) multiplied by a coefficient of -0.1:

31

NetOpt->AddLinearVariableSliceToObjectiveFunction
("MaterialFlow", IntSeq(0, 1), IntSeq(4,1),
100.0, "TotalProfit");

NetOpt->AddLinearVariableSliceToObjectiveFunction
("PlantExists", IntSeq(1), IntSeq(3),
-0.1, "TotalProfit");

32

4.2.13 Method AssignExpressionToObjectiveFunction

Declaration: void AssignExpressionToObjectiveFunction
(string ename, string oname)

Function: Sets the specified expression to the specified objective function.

Arguments to be specified by the client:

Argument Type Specified On Entry
ename string expression to be set
oname string name of current objective function

Arguments returned to client: None

Notes:

• The specified objective function must be the current objective func-
tion which must have already been created using the NewObjective-
Function method (see section 4.2.11).

• The expression must be scalar.

Examples of usage:

The following code creates the scalar nonlinear term x1x2 and assigns it
to the objective function TotalProfit within an existing ops object called
NetOpt.

NewContinuousVariable("x", IntSeq(1), IntSeq(2), -1, 1, 0);
BinaryExpression("NLT", "x", IntSeq(1), IntSeq(1),

"x", IntSeq(2), IntSeq(2), "product");
AssignExpressionToObjectiveFunction("NLT", "TotalProfit");

33

4.3 MINLP Modification Methods

4.3.1 Method SetVariableValue

Declaration: void SetVariableValue(string vname, si* dimLB,
si* dimUB, double value)

Function: Sets the current value of the elements of a specified slice of a
specified variable set, overriding their previous values.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set, elements of which

are to be modified
dimLB si* lower bounds of the variable set slice

to be modified
dimUB si* upper bounds of the variable set slice

to be modified
value double new value for elements to be modified

Arguments returned to client: None

Notes:

• The specified variable set must have already been created using the
NewContinuousVariable or NewIntegerVariable methods (see sec-
tions 4.2.1 and 4.2.2 respectively).

• The specified value must lie between the lower and upper bounds for
every element of the specified variable slice.

Examples of usage:

The following modifies all elements of the variable set MaterialFlow (cf.
example in section 4.2.1) pertaining to source 3 to a new value of 150:

SetVariableValue ("MaterialFlow", IntSeq(3, 1), IntSeq(3,6),
150.0) ;

34

4.3.2 Method SetVariableBounds

Declaration: void SetVariableBounds(string vame, si* dimLB,
si* dimUB, double LB, double UB)

Function: Sets the current lower and upper bounds of the elements of a
specified slice of a specified variable set, overriding their previous values.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set, elements of which

are to be modified
dimLB si* lower bounds of the variable set slice

to be modified
dimUB si* upper bounds of the variable set slice

to be modified
LB double new value of lower bound for elements

to be modified
UB double new value of upper bound for elements

to be modified

Arguments returned to client: None

Notes:

• The specified variable set must have already been created using the
NewContinuousVariable or NewIntegerVariable methods (see sec-
tions 4.2.1 and 4.2.2 respectively).

• The specified bounds must satisfy LB ≤ UB.

Examples of usage:

The following modifies the bounds of all elements of the variable set Mat-
erialFlow (cf. example in section 4.2.1) pertaining to source 3 to new values
of 10 and 20 respectively:

SetVariableBounds("MaterialFlow", IntSeq(3, 1), IntSeq(3,6),
10.0, 20.0) ;

The following sets both bounds of an element of the variable set Plant-
Exists (cf. example in section 4.2.2) to 1, thereby effectively fixing the value
of this variable in any MINLP solution also to 1:

SetVariableBounds("PlantExists", IntSeq(2), IntSeq(2),
1.0, 1.0) ;

35

4.3.3 Method SetConstraintBounds

Declaration: void SetConstraintBounds(string cname, si* dimLB,
si* dimUB, double LB, double UB)

Function: Sets the lower and upper bounds of a specified slice of a specified
constraint set, overriding any previous bounds.

Arguments to be specified by the client:

Argument Type Specified On Entry
cname string name of constraint set, elements of which

are to be modified
dimLB si* lower bounds of the constraint set slice

to be modified
dimUB si* upper bounds of the constraint set slice

to be modified
LB double new lower bound for elements

to be modified
UB double new upper bound for elements

to be modified

Arguments returned to client: None

Notes:

• The specified constraint set must have already been created using the
NewConstraint method (see section 4.2.3).

• The specified bounds must satisfy LB ≤ UB.

Examples of usage:

The following modifies the lower and upper bounds of constraint Unique-
Allocation (cf. example in section 4.2.3) to infinity:

SetConstraintBounds("UniqueAllocation", IntSeq(0), IntSeq(0),
MinusInfinity, PlusInfinity);

This modification effectively de-activates the UniqueAllocation constraint.

36

4.3.4 Method SetConstantValue

Declaration: void SetConstantValue(string kname, si* indexlist,
double value)

Function: Sets the value of the constant element pointed to by the specified
index list to the specified value.

Arguments to be specified by the client:

Argument Type Specified On Entry
kname string name of constant set containing the

element to be modified
indexlist si* list of indices which point to the

element to be modified
value double new value to be assigned to element

Arguments returned to client: None

Notes:

• The indices in the index list must lie between the respective index
bounds defining the dimensionality of the constant set.

37

4.3.5 Method SetConstantSliceValue

Declaration: void SetConstantSliceValue(string kname, si* kdimLB,
si* kdimUB, double value)

Function: Sets the values of the constant elements in the specified slice to
the specified value.

Arguments to be specified by the client:

Argument Type Specified On Entry
kname string name of constant set containing the

elements to be modified
kdimLB si* lower bounds of the constant set slice

to be modified
kdimUB si* upper bounds of the constant set slice

to be modified
value double new value to be assigned to elements

Arguments returned to client: None

Notes:

• None.

38

4.3.6 Method SetKeyVariable

Declaration: void SetKeyVariable(string vame, si* dimLB,
si* dimUB)

Function: Sets the elements of a specified slice of a specified variable set to
be used as key variables for the decomposition algorithm.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set, elements of

which are to be modified
dimLB si* lower bounds of the variable set slice

to be modified
dimUB si* upper bounds of the variable set slice

to be modified

Arguments returned to client: None

Notes:

• The specified variable set must have already been created using the
NewContinuousVariable or NewIntegerVariable methods (see sec-
tions 4.2.1 and 4.2.2 respectively).

Examples of usage:

The following sets all elements of the variable set MaterialFlow (cf. example
in section 4.2.1) to be key variables:

SetKeyVariable ("MaterialFlow", IntSeq(3, 1), IntSeq(3,6)) ;

The following sets an element of the variable set PlantExists (cf. ex-
ample in section 4.2.2) to be a key variable:

SetKeyVariable ("PlantExists", IntSeq(2), IntSeq(2)) ;

39

4.4 Structured MINLP Information Access Methods

4.4.1 Method GetVariableInfo

Declaration: void GetVariableInfo(string vname, si* dimLB,
si* dimUB, double* value, double* LB, double* UB)

Function: Returns the current values and lower and upper bounds of all
elements of a specified slice of a specified set of variables.

Arguments to be specified by the client:

Argument Type Specified On Entry
vname string name of variable set on which information

is required
dimLB si* lower bounds of the variable set slice

on which information is required
dimUB si* upper bounds of the variable set slice

on which information is required

Arguments returned to client:

Argument Type Value on Exit
value double* pointer to set of real numbers

containing current values of elements
in specified slice

LB double* pointer to set of real numbers
containing lower bounds of elements

in specified slice
UB double* pointer to set of real numbers

containing upper bounds of elements
in specified slice

Notes:

• The specified variable set must have already been created using the
NewContinuousVariable or NewIntegerVariable methods (see sec-
tions 4.2.1 and 4.2.2 respectively).

• In the case of multidimensional variable sets, the information in the
sets value, LB and UB is ordered so that the last index varies fastest,
followed by the penultimate index, and so on until the first index which
varies the most slowly. For example, a 2-dimensional set is ordered by
rows.

Examples of usage:

The following returns the information on a slice of the variable Material-
Flow (cf. example in section 4.2.1):

40

double* CurrentFlows ;
double* MinimumFlows ;
double* MaximumFlows ;

GetVariableInfo ("MaterialFlow", IntSeq(1,1), IntSeq(4,4),
CurrentFlows, MinimumFlows, MaximumFlows) ;

41

4.4.2 Method GetConstraintInfo

Declaration: bool GetConstraintInfo(string cname, si* dimLB, si*
dimUB, double* LB, double* UB, double* LagMult)

Function: Returns the current values, lower and upper bounds and Lagrange
multipliers of all elements of a specified slice of a specified constraint set;
the return value is true if every element of the constraint slice is linear, or
false otherwise.

Arguments to be specified by the client:

Argument Type Specified On Entry
cname string name of constraint set on which information

is required
dimLB si* lower bounds of the constraint set slice

on which information is required
dimUB si* upper bounds of the constraint set slice

on which information is required

Arguments returned to client:

Argument Type Value on Exit
LB double* pointer to set of real numbers

containing the upper bounds
of elements in specified slice

UB double* pointer to set of real numbers
containing the upper bounds
of elements in specified slice

LagMult double* pointer to set of real numbers
containing the Lagrange multipliers of

elements in specified slice
return value bool true if constraint is linear

Notes:

• The return value is true if every element of the constraint is linear
and false otherwise.

• The specified constraint set must have already been created using the
NewConstraint method (see section 4.2.3).

• In the case of multidimensional constraint sets, the information in the
sets LB, UB and LagMult is ordered so that the last index varies fastest,
followed by the penultimate index, and so on until the first index which
varies the most slowly. For example, a 2-dimensional set is ordered by
rows.

• If the Lagrange multiplier for a element of the specified slice is not

42

available (e.g. because the MINLP has not yet been solved or because
the MINLP solver does not make this information available), the a
value of PlusInfinity (cf. section 3.1) will be returned for the corre-
sponding element of LagMult.

Examples of usage:

The following returns information on all elements of the constraint Source-
FlowLimit (cf. example in section 4.2.3):

char* CurrentType ;
double* CurrentUB ;
double* CurrentLM ;
bool isLinear ;

isLinear = GetConstraintInfo("SourceFlowLimit",
IntSeq(0), IntSeq(4),
CurrentType, CurrentUB, CurrentLM);

43

4.4.3 Method GetObjectiveFunctionInfo

Declaration: bool GetObjectiveFunctionInfo(string oname, char*
otype, double& ovalue)

Function: Returns the current value and type of the objective function
specified by name; the “return value” is true if the constraint slice has
an expression set to it, false otherwise.

Arguments to be specified by the client:

Argument Type Specified On Entry
oname string name of objective function on which

information is required

Arguments returned to client:

Argument Type Value on Exit
otype char* pointer to set of characters

containing the type of the
objective function

ovalue double& value of the objective function
return value bool true if objective function is linear

Notes:

• The return value is false if the objective function has a nonlinear
expression assigned to it and true otherwise.

• The specified objective function must have already been created using
the NewObjectiveFunction method (see section 4.2.11).

• The returned type of the objective function could be either "min" or
"max", denoting minimisation and maximisation respectively.

• The value of the objective function returned is based on the current
values of the variables.

Examples of usage:

The following returns information on the objective function named Total-
Profit (cf. example in section 4.2.11):

char* CurrentObjType ;
double CurrentObjValue ;
bool isLinear;

isLinear = GetObjectiveFunctionInfo ("TotalProfit", CurrentObjType,
CurrentObjValue) ;

44

4.4.4 Method GetProblemInfo

Declaration: GetProblemInfo(string pname, bool& islinear, double&
ovalue, bool& isfeasible)

Function: Returns the problem name, whether the problem is a MILP or a
MINLP, the current recorded value of the objective function (as set by the
last solver module that tried to solve the problem), and whether the problem
is feasible or not (with respect to the current values of problem variables).

Arguments to be specified by the client: None.

Arguments returned to client:

Argument Type Value on Exit
pname string name of the problem

islinear bool& true if problem is a MILP,
false if it is a MINLP

ovalue double& value of the objective function
isfeasible bool& true if problem is feasible,

false if it is not

Notes:

• The variable ovalue is not the value of the objective function calcu-
lated at the current variable values, but rather the value set by the
solver module that last tried to solve this problem.

Examples of usage:

The following returns information on the problem.

string ProblemName;
bool MILP;
double ObjFunValue;
bool Feasible;

NetOpt->GetProblemInfo(ProblemName, MILP, ObjFunValue, Feasible);

45

4.5 Flat MINLP Information Access Methods

Although it is convenient for client programs to construct ops objects in a
structured manner using the methods of section 4.2, most existing numer-
ical solvers are designed to operate on the much simpler “flat” form [Flat
MINLP] described in section 1.

In view of the above, the ops interface provides a set of methods that
allows access to the information characterising this flat representation. The
latter is constructed automatically and efficiently by ooOPS in a manner
that is transparent to the client.

4.5.1 General Properties of the Flat MINLP

The flat MINLP generated by ooOPS has the following characteristics:

• The constraints in the flat MINLP comprise those elements of the con-
straint sets in the ops object that fulfil both of the following criteria:

– they have at least one variable occurring linearly with a non-zero
coefficient, or a nonlinear part occurrence;

– at least one of the bounds is different from the respective infinity
constant.

• The variables in the flat MINLP comprise those elements of the vari-
able sets in the ops object that appear with a non-zero coefficient in at
least one of the constraints and/or in the objective function in the flat
MINLP (see above), or in the nonlinear parts of at least one constraint
and/or the objective function.

46

4.5.2 Method GetFlatMINLPSize

Declaration: void GetFlatMINLPSize(int& nv, int& niv, int& nlv,
int& nliv, int& nc, int& nlc, int& nlz, int& nnz, int& nlzof,
int& nnzof)

Function: Returns information on the size of the flat MINLP.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
nv int total number of variables in flat MINLP
niv int number of integer variables in flat MINLP
nlv int number of variables in flat MINLP

which only appear linearly
nliv int number of integer variables in

flat MINLP which only appear linearly
nc int total number of constraints

in flat MINLP
nlc int number of linear constraints

in flat MINLP
nlz int number of non-zero elements in the

matrix of flat MINLP (A in eqn. (2))
nnz int number of non-zero elements

in the Jacobian matrix of the
nonlinear constraints (f in eqn. (2))

nlzof int number of variables having non-zero
coefficients in the linear part of

the objective function of flat MINLP
nnzof int number of non-zero first order derivatives

in the objective function of flat MINLP

Notes:

• The numbers of variables and constraints in the flat MINLP are de-
termined using the rules detailed in section 4.5.1.

• The number of variables nv includes both continuous and integer vari-
ables.

Examples of usage:

The following returns information on the size of a flat MINLP described by
an existing ops object called NetOpt:

int NumberOfVariables ;

47

int NumberOfIntegerVariables ;
int NumberOfLinearVariables ;
int NumberOfLinearIntegerVars ;
int NumberOfConstraints ;
int NumberOfLinearConstraints ;
int NumberOfNZLinVarsInConstraints ;
int NumberOfNZNonLinJacInConstraints ;
int NumberOfNZLinVarsInObjFun ;
int NumberOfNZNonLinJacInObjFun ;

NetOpt->GetFlatMINLPSize(&NumberOfVariables,
&NumberOfIntegerVariables,
&NumberOfLinearVariables,
&NumberOfLinearIntegerVariables,
&NumberOfConstraints,
&NumberOfLinearConstraints,
&NumberOfNZLinVarsInConstraints,
&NumberOfNZNonLinJacInConstraints,
&NumberOfNZLinVarsInObjFun,
&NumberOfNZNonLinJacInObjFun);

48

4.5.3 Method GetFlatMINLPStructure

Declaration: void GetFlatMINLPStructure(int* rowindex,
int* columnindex, int* objindex, string structuretype)

Function: Returns information on the sparsity structure of the objective
function and the constraints. This corresponds to one of the following,
depending on the request issued by the client:

1. the linear variable occurrences;

2. the jacobian elements occurrences;

3. the union of the preceding structures.

Arguments to be specified by the client:

Argument Type Specified on Entry
structuretype string specifies whether returned

structure should be of type
(1), (2) or (3) (see above)

Arguments returned to client:

Argument Type Value on Exit
rowindex int* pointer to set of integers containing

the numbers of the constraints in the
flat MINLP from which the
nonzero elements originate

columnindex int* pointer to set of integers containing
the numbers of the variables in the
flat MINLP from which the nonzero

elements in constraints originate
objindex int* pointer to set of integers containing

the numbers of the variables in the
flat MINLP from which the nonzero

elements in the objective function originate

Notes:

• The input parameter structuretype must be one of the following
strings: "LINEAR", "NONLINEAR", "BOTH" depending on whether the
client needs the linear structure, the nonlinear structure or a union of
both.

• The integer sets pointed at by rowindex and columnindex are both
of length nlz, nnz or nlz + nnz (see section 4.5.2) depending on
whether structuretype is "LINEAR", "NONLINEAR" or "BOTH".

49

• The integer set pointed at by objindex is of length nlzof, nnzof or
nlzof + nnzof (see section 4.5.2) according as to whether struct-
uretype is "LINEAR", "NONLINEAR" or "BOTH".

• Constraints and variables in the flat MINLP are numbered starting
from 1.

• When calling with "BOTH" the linear and nonlinear vectors may be
overlapping (i.e. there may be indices i < j such that rowindex[i]
= rowindex[j] and columnindex[i] = columnindex[j], but the ac-
tual derivatives refer respectively to linear and nonlinear entries). For
example, if the first flat problem constraint is 0 ≤ x2

1 + 3x1 ≤ 0 then
the linear derivatives matrix entry (1, 1) is 3, and the nonlinear deriva-
tives matrix entry (1, 1) is ∂x2

1
∂x1

evaluated at the current value of x1.
Thus the union of linear and nonlinear problem structure contains two
entries for position (1, 1), but the first refers to the linear derivative
and the second refers to the nonlinear derivative.

• The same is true for the objective function structure.

Examples of usage:

The following returns the linear structure of a flat MINLP described by an
existing ops object called NetOpt:

int* Rows ;
int* Columns ;
int* ObjFunColumns ;

NetOpt->GetFlatMINLPStructure(Rows, Columns,
ObjFunColumns, "LINEAR");

50

4.5.4 Method GetFlatMINLPVariableInfo

Declaration: void GetFlatMINLPVariableInfo(int vid,
string& vname, si* &index, bool& isinteger, bool& islinear,
double& value, double& LB, double& UB)

Function: Returns information pertaining to a variable in the flat MINLP.

Arguments to be specified by the client:

Argument Type Specified On Entry
vid int the number of the variable

in the flat MINLP structure

Arguments returned to client:

Argument Type Value on Exit
&vname string the name of the variable set from which

this variable originates
&index si* the index of the variable in the variable set

from which it originates
&isinteger bool true if the variable is of type integer

false otherwise
&islinear bool true if the variable only

appears linearly in the problem
&value double the current value of the variable
&LB double the lower bound of the variable
&UB double the upper bound of the variable

Notes:

• The variable number vid specified must be in the range 1,.., nv (see
section 4.5.2).

• Index holds a pointer to a sequence which is part of the MINLP’s
internal data and must not be altered in any way.

Examples of usage:

The following returns information on variable 375 in a flat MINLP described
by an existing ops object called NetOpt:

string vname ;
si* index ;
bool isinteger ;
bool islinear ;
double value ;
double LB ;
double UB ;

51

NetOpt->GetFlatMINLPVariableInfo(375, vname, index, isinteger,
islinear, value, LB, UB);

On return from GetFlatMINLPVariableInfo, variable vname could have the
value MaterialFlow (cf. example in section 4.2.1), index could be (2, 4),
isinteger could be false, and value, LB and UB could be 1, 0 and 100
respectively. Thus, we can deduce that variable 375 in the flat MINLP
originated from the continuous variable MaterialFlow(2,4) in the original
(structured) MINLP.

52

4.5.5 Method SetFlatMINLPVariableBounds

Declaration: void SetFlatMINLPVariableBounds(double* LB, double*
UB)

Function: Changes the lower and upper problem variable bounds.

Arguments to be specified by the client:

Argument Type Specified on Entry
LB double* set of double precision numbers which

will hold the new lower bounds
UB double* set of double precision numbers which

will hold the new upper bounds

Arguments returned to client: None

Notes:

• The sets LB and UB have size nv (see section 4.5.2).

Examples of usage:

The following reads the values of the problem variables described by an
existing ops object called NetOpt:

double* vl = new double [nv];
double* vu = new double [nv];
for(int i = 0; i < nv; i++) {
vl[i] = 0;
vl[i] = 1;

}
NetOpt->SetFlatMINLPVariableBounds(vl, vu);

53

4.5.6 Method GetFlatMINLPVariableValues

Declaration: void GetFlatMINLPVariableValues(double* values)

Function: Fills the set of double precision numbers passed to the function
with the current values of the flat MINLP problem variables.

Arguments to be specified by the client:

Argument Type Specified on Entry
values double* set of double precision numbers which

will hold the variable values

Arguments returned to client: None

Notes:

• The set values has size nv (see section 4.5.2).

Examples of usage:

The following sets the bounds of the problem variables described by an
existing ops object called NetOpt:

double* v = new double [nv];
NetOpt->GetFlatMINLPVariableValues(v);

54

4.5.7 Method SetFlatMINLPVariableValues

Declaration: void SetFlatMINLPVariableValues(double* values)

Function: Sets the values of the flat MINLP variables.

Arguments to be specified by the client:

Argument Type Specified on Entry
values double* set of double precision numbers

holding the variable values to be set

Arguments returned to client: None

Notes:

• The set values has size nv (see section 4.5.2).

Examples of usage:

The following sets the values of the problem variables described by an ex-
isting ops object called NetOpt:

double* vv = new double [nv];
for(int i = 0; i < nv; i++)

vv[i] = i / 2;
NetOpt->SetFlatMINLPVariableValues(vv);

55

4.5.8 Method GetFlatMINLPConstraintInfo

Declaration: void GetFlatMINLPConstraintInfo(int cid,
string& cname, si* &index, double& LB, double& UB, si* &vlist,
sd* &cflist, FlatExpression* &fe)

Function: Returns information pertaining to a constraint in the flat MINLP.

Arguments to be specified by the client:

Argument Type Specified On Entry
cid int the number of the constraint

in the flat MINLP structure

Arguments returned to client:

Argument Type Value on Exit
&cname string the name of the constraint set

from which this constraint originates
&index si* the index of the constraint in the

constraint set from which it originates
&LB double the current constraint lower bound
&UB double the current constraint upper bound

&vlist si* the vector of integers which contains the
variable indices occuring in this constraint

&cflist sd* the vector of doubles which contains
the coefficients of the variables occuring

in this constraint
&fe Flat- an object which contains the symbolic

Expres- information which defines the nonlinear part
sion* of the constraint (see section 6.2)

Notes:

• The variable number cid specified must be in the range 1,..,nc (see
section 4.5.2).

• Index holds a pointer to a sequence which is part of the MINLP’s
internal data and must not be altered in any way.

• The argument FlatExpression* &fe contains the symbolic informa-
tion which defines the nonlinear part of the constraint. For its descrip-
tion and usage see section 6.2.

Examples of usage: The following returns information on constraint 532 in
a flat MINLP described by an existing ops object called NetOpt:

string cname ;

56

si* index ;
double LB ;
double UB ;
si* varList ;
sd* coefList;
FlatExpression* fe;

NetOpt->GetFlatMINLPConstraintInfo(532, cname, index, LB, UB,
varList, coefList, fe)

On return from GetFlatMINLPConstraintInfo, variable cname could have
the value "SourceFlowLimit" (cf. example in section 4.2.4), index could
be (3), and UB could be 450. Thus, we can deduce that constraint 532 in
the flat MINLP originated from the constraint SourceFlowLimit(3) in the
original (structured) MINLP.

57

4.5.9 Method EvalFlatMINLPNonlinearObjectiveFunction

Declaration: double EvalFlatMINLPNonlinearObjectiveFunction(void)

Function: Returns the value of the nonlinear part of the objective function.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Specified On Entry
return value double the value of the objective function

at the current variable values

Notes: None

Examples of usage:

The following sets the variable values and evaluates the objective function
of the problem described by an existing ops object called NetOpt:

double* vv = new double [nv];
for(int i = 0; i < nv; i++)

vv[i] = i / 2;
NetOpt->SetFlagMINLPVariableValues(vv);
double vof = NetOpt->EvalFlatMINLPNonlinearObjectiveFunction();

58

4.5.10 Method EvalFlatMINLPNonlinearConstraint

Declaration: void EvalFlatMINLPNonlinearConstraint(int lowercid,
int uppercid, double* values)

Function: Returns the values of a range of nonlinear parts of constraints,
starting with constraint lowercid up to and including constraint uppercid
(also see (4.5.8)).

Arguments to be specified by the client:

Argument Type Specified On Entry
lowercid int the number of the first constraint

of the range to be evaluated
uppercid int the number of the last constraint

of the range to be evaluated

Arguments returned to client:

Argument Type Value on Exit
values double* vector containing the constraint values

Notes:

• The vector values containing the values of the evaluated constraints,
has size uppercid - lowercid + 1.

Examples of usage:

The following evaluates constraints 2-5 in the flat MINLP described by an
existing ops object called NetOpt:

double* cv = new double[4];
NetOpt->EvalFlatMINLPNonlinearConstraint(cv, 2, 5);

59

4.5.11 Method GetFlatMINLPObjectiveFunctionDerivatives

Declaration: void GetFlatMINLPObjectiveFunctionDerivatives
(double* A, string structuretype)

Function: Returns a vector containing one of the following:

1. the values of the nonzero coefficients in the vector c defining the linear
part of the objective function (cf. equation (1));

2. the values of the nonzero first order partial derivatives of the nonlinear
part of the objective function evaluated at the current variable values;

3. the union of the preceding vectors.

Arguments to be specified by the client:

Argument Type Specified on Entry
structuretype string specifies whether returned

structure should be of type
(1), (2) or (3) (see above)

Arguments returned to client:

Argument Type Value on Exit
values double* pointer to set of doubles containing

the nonzero elements of c, of the
derivatives of the obj. fun., or both

Notes:

• The input parameter structuretype must be one of the following
strings: "LINEAR", "NONLINEAR", "BOTH" depending on whether the
client needs information about the linear part of the objective function,
or the nonlinear part, or both.

• The length of this vector follows the rules given in note 3 to section
4.5.3.

• The indices of the variables to which the elements of this vector corre-
spond can be obtained from method GetFlatMINLPStructure as the
integer vector objindex (see section 4.5.3).

• When calling with "BOTH", see notes on page 50.

Examples of usage:

The following returns the nonzero partial derivatives of the nonlinear part of
the objective function of a flat MINLP described by an existing ops object
called NetOpt, evaluated at the current variable values:

60

int d0, d1, d2, d3, d4, d5, d6, d7, d8;
int nnzof;
NetOpt->GetFlatMINLPSize(&d0, &d1, &2, &d3, &d4,

&d5, &d6, &d7, &8, &d9, &nnzof);
double* A = new double [nnzof];
NetOpt->GetFlatMINLPObjectiveFunctionDerivatives(A, "NONLINEAR");

In this case, c(k), k = 1,..,nlzof is the coefficient of variable objindex(k)
in the objective function.

61

4.5.12 Method GetFlatMINLPConstraintDerivatives

Declaration: void GetFlatMINLPConstraintDerivatives(string
structuretype, int lowercid, int uppercid, sd& values)

Function: Returns a sequence of doubles (see section 3.2) containing one of
the following:

1. the values of the nonzero coefficient in the linear part of the specified
constraints;

2. the values of the nonzero partial derivatives, evaluated at the current
variable values, of the nonlinear parts of the specified constraints;

3. the union of the preceding vectors.

Arguments to be specified by the client:

Argument Type Specified on Entry
structuretype string specifies whether returned

structure should be of type
(1), (2) or (3) (see above)

lowercid int specifies the lower end of the
constraint range

uppercid int specifies the upper end of the
constraint range

Arguments returned to client:

Argument Type Value on Exit
values sd& sequence of doubles containing

the nonzero elements of A, of the
Jacobian of f , or both

Notes:

• The input parameter structuretype must be one of the following
strings: "LINEAR", "NONLINEAR", "BOTH" according as to whether
the client needs the linear part of the constraints, the derivatives, or
a union of both.

• The length of this vector is given by values.size().

• If lowercid and uppercid are both set to zero, then this function
returns the nonzero coefficients of the entire matrix A (see equation
(2)), or the nonzero coefficients of the entire Jacobian of f (see equation
(2)) evaluated at the current variable values, or both, depending on
structuretype. In this case this method effectively acts as though
the whole range of problem constraints had been specified.

62

• The row and column indices of the elements of the vector can be ob-
tained from method GetFlatMINLPStructure as integer vectors row-
index and columnindex respectively (see section 4.5.3).

• Nonlinear derivatives which are identically zero are not recorded. Thus,
for example, if you have a linear constraint and you request its non-
linear derivatives, the vector values might be empty. Referring to
elements of an empty vector results in runtime segmentation fault er-
rors, so it is advisable to check values.size() before using the vector.

• When calling with "BOTH", see notes on page 50.

Examples of usage:

The following returns the matrix A of a flat MINLP described by an existing
ops object called NetOpt:

sd A;
NetOpt->GetFlatMINLPConstraintDerivatives(A, 0, 0, "LINEAR");

In this case, A(k), k =1,..,nlz is the coefficient of variable columnindex(k)
in constraint rowindex(k) in the left hand side matrix A (cf. equation (2)).

63

4.5.13 Method GetFlatMINLPNoPartitions

Declaration: void GetFlatMINLPNoPartitions(int& np)

Function: Returns the number of partitions of the flat MINLP.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
np int total number of partitions of flat MINLP

Notes:

• The number of partitions are deternimed based on the properties of
key variables.

Examples of usage:

The following returns the number of partitions occuring in a flat MINLP
described by an existing ops object called NetOpt:

int np;

NetOpt->GetFlatMINLPNoPartitions(np) ;

64

4.5.14 Method GetFlatMINLPPartition

Declaration: void GetFlatMINLPPartition(int& np, li* &varlist,
li* &conlist)

Function: Returns information on the partitions of the flat MINLP specified
by its number.

Arguments to be specified by the client:

Argument Type Specified On Entry
np int the number of the partition of the flat MINLP

Arguments returned to client:

Argument Type Value on Exit
varlist li list of variable indices occuring

in the partition
conlist li list of constraint indeces occuring

in the partition

Notes:

• The number np must be less or equal to the maximum number of
partitions.

Examples of usage:

The following returns the variable and constraint lists of the partition 2
occuring in a flat MINLP described by an existing ops object called NetOpt:

int np;
li* variableList;
li* constraintList;

NetOpt->GetFlatMINLPPartition(np, variableList, constraintList) ;

65

4.6 Standard Form MINLP Information Access Methods

A MINLP is in standard form when its nonlinear parts are reduced to their
basic building blocks and all its linear parts are gathered together in a
matrix. This is explained in more details in [SP99]. Suffice it here to recall
the basics with an example. The constraint

−1 ≤ 4x1 + 3x2 − x3 +
x1x2

log(x3)
≤ 10

in standard form becomes

−1 ≤ w1 ≤ 10
w1 = 4x1 + 3x2 − x3 + w2

w2 =
w3

w4
w3 = x1x2

w4 = log(x3)

The standard form of a MINLP is as follows:

minx xi

l ≤ Ax ≤ u
y = w ⊗ z

xL ≤ x ≤ xU

(6)

where y, w, z are subsets of x ∪ R and ⊗ is any unary or binary operator.

In view of the above, the ops interface provides a set of methods that
allows access to the information characterising this standard form represen-
tation. The latter is constructed automatically and efficiently by ooOPS in
a manner that is transparent to the client.

66

4.6.1 Method GetSFNumberOfVariables

Declaration: void GetSFNumberOfVariables(int& nv, int& nzlv)

Function: It returns the total number of variables of the problem in standard
form and the number of linearly appearing variables with nonzero coefficients
in the linear part of the problem.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value On Exit
nv int& the number of total problem variables
nzlv int& number of nonzero coeff. linear variables

Notes:

• The total number of problem variables includes the original problem
variables and the variables which have been added by the standard
form process.

Examples of usage:

int nv;
int nzlv;
NetOpt->GetSFNumberOfVariables(nv, nzlv) ;

67

4.6.2 Method GetSFVariableInfo

Declaration: void GetSFVariableInfo(int vid, double value,
double& LB, double& UB)

Function: It returns the current variable value and the lower and upper
bounds of variable vid in the problem in standard form.

Arguments to be specified by the client:

Argument Type Specified on Entry
vid int variable id in the standard form problem

Arguments returned to client:

Argument Type Value On Exit
value double& current variable value
LB double& variable lower bound
UB double& variable upper bound

Notes: None

Examples of usage:

double value, LB, UB;
NetOpt->GetSFVariableInfo(1, value, LB, UB) ;

68

4.6.3 Method GetSFObjFunVarIndex

Declaration: void GetSFObjFunVarIndex(int& vid)

Function: It returns the variable index (variable id) corresponding to the
objective function.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
vid int& variable index corresponding

to the objective function

Notes:

• As well as the constraints, the objective function of the MINLP is
transformed by the standard form reduction, so that, for example,
minx1x2 would become minw1 s.t. w1 = x1x2. In this case, the vari-
able index of w1 would be returned.

Examples of usage:

int vid;
NetOpt->GetSFObjFunVarIndex(vid);

69

4.6.4 Method GetSFNumberOfLinearConstraints

Declaration: void GetSFNumberOfLinearConstraints(int& nlc)

Function: This returns the number of linear constraints in the standard form
of the problem.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
nlc int& number of linear constraints

Notes: None

• The number of linear constraints is equal to the number of rows in the
matrix A in the general formulation of the standard form (see eqn. 6
above).

Examples of usage:

int nlc;
NetOpt->GetSFNumberOfLinearConstraints(nlc);

70

4.6.5 Method GetSFLinearBounds

Declaration: void GetSFLinearBounds(double* lb, double* ub)

Function: It returns the vector of lower and upper bounds in the linear
constraints of the standard form problem (l and u in the formulation 6).

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
lb double* vector of lower bounds
ub double* vector of upper bounds

Notes:

• The arrays lb and ub must be created by the client with the correct
length nlc (use method GetSFNumberOfLinearConstraints above).

Examples of usage:

int nlc;
NetOpt->GetSFNumberOfLinearConstraints(nlc);
double* lb = new double[nlc];
double* ub = new double[nlc];
NetOpt->GetSFLinearBounds(lb, ub);

71

4.6.6 Method GetSFLinearStructure

Declaration: void GetSFLinearStructure(int* rowindex,
int* columnindex)

Function: Returns the sparsity structure of the linear part of the problem
in standard form.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
rowindex int* vector of row indices

columnindex int* vector of column indices

Notes:

• The arrays rowindex and columnindex must be created by the client
with the correct length nzlv (use method GetSFNumberOfVariables
above).

Examples of usage:

int nv;
int nzlv;
NetOpt->GetSFNumberOfVariables(nv, nzlv) ;
int* rowindex = new int [nzlv];
int* columnindex = new int [nzlv];
NetOpt->GetSFLinearStructure(rowindex, columnindex);

72

4.6.7 Method GetSFMatrix

Declaration: void GetSFMatrix(double* A)

Function: Returns the linear part of the standard form problem in sparse
format.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
A double* matrix A in sparse form

Notes:

• The array A must be created by the client with the correct length nlzv
(use method GetSFNumberOfVariables above).

• The sparsity structure can be found with the method GetSFLinear-
Structure (4.6.6).

Examples of usage:

int nv;
int nzlv;
NetOpt->GetSFNumberOfVariables(nv, nzlv) ;
double* A = new double [nzlv];
NetOpt->GetSFMatrix(A);

73

4.6.8 Method GetSFNumberOfNonlinearConstraints

Declaration: void GetSFNumberOfNonlinearConstraints(int& nnlc)

Function: This returns the number of nonlinear constraints in the standard
form of the problem.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value on Exit
nnlc int& number of nonlinear constraints

Notes: None

• The number of nonlinear constraints is equal to the number of “con-
straint definitions” of the form y = w ⊗ z in the general formulation
of the standard form (see eqn. 6 above).

Examples of usage:

int nnlc;
NetOpt->GetSFNumberOfNonlinearConstraints(nnlc);

74

4.6.9 Method GetSFNonlinearConstraint

Declaration: void GetSFNonlinearConstraint(int cid, int& vid,
int& vid1, int& vid2, string& operator, double& constant1,
double& constant2

Function: This function returns the elements of nonlinear standardized con-
straint number cid in the standard form of the problem.

Arguments to be specified by the client:

Argument Type Specified on Entry
cid int standardized nonlinear constraint id

Arguments returned to client:

Argument Type Value on Exit
vid int& left hand side variable id
vid1 int& first right hand side variable id
vid2 int& second right hand side variable id

operator string& operator type
constant1 double& first left hand side constant
constant2 double& second left hand side constant

Notes:

• The standard nonlinear constraint ID (cid) always starts from 1.

• In this discussion, we assume that each standard form nonlinear con-
straint has the form

variable = operand1⊗ operand2

where variable is the “added variable” that is defined by the right hand
side and the operator ⊗ is either unary or binary (if it is unary, then
operand2 is a dummy placeholder).

• vid is the variable id of variable.

• vid1 is the variable id of operand1 if the latter is a variable (e.g.
w1 = x1x2). If operand1 is a constant then vid1 is set to -1 (e.g.
w2 = 2

x3
).

• vid2 is the the variable id of operand2 if the latter is a variable and if
⊗ is a binary operator. If operand2 is a constant (e.g. w3 = x2

4) or if
⊗ is unary then vid2 is set to -1.

• operator represents the type of operator. It can be one of the follow-
ing strings (the meaning is self-explanatory): "sum", "difference",
"product", "ratio", "power", "minus", "log", "exp", "sin", "cos",
"tan", "cot", "sinh", "cosh", "tanh", "coth" (cf. section 2.4).

75

• constant1 is meaningful only when vid1 is set to -1.

• constant2 is meaningful only when vid2 is set to -1 and ⊗ is a binary
operator.

• Note that in a problem in standard form the constraint id cid only
applies to nonlinear standardized constraints and does not take into
account linear constraints.

Examples of usage:

int cid = 1;
int vid;
int vid1;
int vid2;
string operat;
double constant1;
double constant2;
NetOpt->GetSFNonlinearConstraint(cid, vid, vid1, vid2,

operat, constant1, constant2);

76

4.6.10 Method UpdateSolution

Declaration: void UpdateSolution(double* sol)

Function: This method is specifically designed to make it easy to insert
the solution of the MINLP into both the structured and the flat form. In
short, this method updates the variable values in both the structured and
flat MINLP forms.

Arguments to be specified by the client:

Argument Type Specified on Entry
sol double array of (flat) variable values

Arguments returned to client: None

Notes:

• The length of the array sol has to be at least nv, the number of
variables in flat form (see section 4.5.2).

• This method has been specifically designed to make it easy to update
the solution in the MINLP at the end of a MINLP solver module, and
is therefore targeted towards those programmers who wish to write
their own solver module.

Examples of usage:

double sol[nv];
NetOpt->UpdateSolution(&(sol[0]));

77

5 MINLP Solvers and Systems

5.1 Introduction

Section 4 of this document described in detail how ops objects can be con-
structed and modified, and how information in them can be accessed in both
a structured and a flat form. This section is concerned with the solution of
the mathematical problem described by an already existing ops object.

5.1.1 MINLP Solver Managers and MINLP Systems

The solution of an MINLP is normally effected by a numerical solver. There
are commercial solvers (e.g. SNOPT) as well as non-commercial ones (e.g.
DONLP2). A major objective for the ooOPS software is to provide applica-
tion programs with a uniform interface to all such solvers. This is achieved
by embedding each solver within a opssolvermanager object.

The main function of the Manager for a given MINLP Solver is the
creation of opssystem objects (cf. section 2.1) by combining an existing
ops object with the numerical solver embedded within the Manager. It is
this combination that ultimately permits the solution of the MINLP to take
place.

5.1.2 Algorithmic Parameters for MINLP Solvers

MINLP solvers of the kind of interest to ooOPS are sophisticated pieces of
software. Although the basic algorithms implemented by different solvers
are often very similar, the specific implementations may be significantly
different. Moreover, the users of these solvers are normally provided with
substantial flexibility in configuring the details of the behaviour of the im-
plementation. This is typically achieved by setting the values of one or
more algorithmic parameters. These are usually quantities of logical, inte-
ger, real or string type. Different MINLP solvers may recognise different
sets of parameters; some typical examples include:

• The branching strategy to be used by branch-and-bound algorithms
(e.g. depth-first, breadth-first etc.).

• The maximum number of nodes to be examined during the branch-
and-bound search.

• The maximum CPU time to be spent by the solution.

• The infeasibility tolerance within which constraints need to be satis-
fied.

78

Usually, MINLP solvers also incorporate a default value for each parameter.
Although these values may lead to reasonably good performance for a wide
range of applications, sophisticated users may wish to change them to suit
the specific characteristics of particular applications.

ooOPS provides general mechanisms for handling algorithmic parame-
ters that allows the client program (a) to determine the parameters a par-
ticular MINLP solver recognises, and their current values, and (b) to specify
new values for one or more of these parameters. Parameter specification can
operate at two levels:

• At the Solver Manager level:
Specifying the value of a parameter in a MINLPSolverManager object
ensures that any opssystem objects subsequently created from this
MINLPSolverManager will, at least initially, have this value of the pa-
rameter.

• At the MINLP System level:
Specifying the value of a parameter in a opssystem object affects this
particular object only.

5.2 The ssolpar and sstat Argument Types

In order to handle the passing of these different kinds of parameters, ooOPS
introduces the following C++ type definitions:

• variant: a union containing a value which may be one of several
different types

• ssolpar: a sequence of solver parameters

• sstat: a sequence of solution statistics

The following C++ type definitions, which are included in the ops.h
header file supplied to the user describe these types fully:

enum vtype {logical, integer, real, expression};

struct variant {
vtype thetype;
union val {
int ival;
double dval;
string* sval;

79

bool bval;
};

};

struct solparameter {
variant theval;
string name;
string description;
double lowerbound;
string upperbound;

};

typedef vector<solparameter> ssolpar;

struct statistic {
variant theval;
string description;
string unit;

};

typedef vector<statistic> sstat;

80

5.3 MINLP Solver Manager Instantiation: The NewMINLP-

SolverManager Function

Declaration: opssolvermanager* (*NewMINLPSolverManager)(void)

Function: Creates a new MINLPSolverManager object incorporating a spec-
ified numerical code.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Specified On Entry
return value opssolvermanager* the ops solver manager

incorporating the MINLP

Notes:

• This function is not available at compile time (hence it is only a pointer
to a function). It is loaded from a shared object library at run time
using the dlopen()/dlsym() mechanism. See example below for de-
tails.

• When using run time linking, keep in mind that search paths for shared
object files vary from operating system to operating system and do not
usually include the current working directory.

• Please be warned that shared object files produced from C++ source
code have ”mangled” symbol named which usually dlopen and dlsym
cannot read properly. There are two solutions: first, write wrapper
functions to dlopen and dlsym which take care of this problem; and
second, use non-demangled symbol names (as in the example below).

• When writing a new solver manager for a particular solver code, the
new solver manager has to expose the following function in the global
namespace:

opssolvermanager* NewMINLPSolverManager(void) {
// ... code
return new opssolvermanager_i();

}

Please use the provided template source files for the creation of new
solver managers.

Examples of usage:

The following creates a new MINLP solver manager called MySNOPTSolver-
Manager incorporating the SNOPT numerical MINLP solver:

81

#include <dcfcn.h>
opssolvermanager* (*NewMINLPSolverManager)(void);
opssolvermanager* MySNOPTSolverManager;
void* handle = dlopen("libopssnopt.so", RTLD_LAZY);
if (!handle) {
cerr << "MAIN: shared object error: \n\t" << dlerror() << endl;
exit(-1);

} else {
// have to use "non-demangled" C++ symbol names
void *tmp = dlsym(handle, "NewMINLPSolverManager__Fv");
char* error;
if ((error = dlerror()) != NULL) {
cerr << "MAIN: shared object error: \n\t" << error << endl;
exit(-1);

}
NewMINLPSolverManager = (opssolvermanager* (*)()) (tmp);

}
opssolvermanager* MySNOPTSolverManager = (*NewMINLPSolverManager)();
// ... code
dlclose(handle);

This manager can now be used to create one or more MINLP systems, each
incorporating a separate ops object (see section 5.4.3 below).

82

5.4 MINLP Solver Managers

5.4.1 Method GetParameterList

Declaration: ssolpar* GetParameterList()

Function: Gets the list of parameters with which a MINLPSystem can be
configured. It returns a sequence of structures holding the current values of
the parameters, their (single word) names and short descriptions, and valid
upper and lower bounds where applicable (the values MinusInfinity and
PlusInfinity will be used to indicate unconstrained parameters).

The section 5.2 for the detailed description of this type.

Arguments to be specified by the client: None

Arguments returned to client: None

Examples of usage:

The following retrieves the list of parameters for a solver:

ssolpar* params = SnoptManager->GetParameterList();

83

5.4.2 Method SetParameter

Declaration: void SetParameter(string ParamName,
variant ParamValue)

Function: Sets a specific parameter to configure a Solver Manager. Sub-
sequent calls to GetParameterList will return the value supplied, and all
MINLPSystems subsequently created will use the value supplied.

Arguments to be specified by the client:

Argument Type Specified On Entry
ParamName string parameter name
ParamValue variant assigns a value to the parameter

Arguments returned to client: None

Examples of usage:

The following sets a parameter named “MaxRelaxations” to 100 in the
Solver Manager SnoptManager:

variant var100;
var100.vtype=integer;
var100.val.ival=100;
SnoptManager->SetParameter("MaxRelaxations",var100) ;

84

5.4.3 Method NewMINLPSystem

Declaration: opssystem* NewMINLPSystem(const ops* theops)

Function: Creates a new opssystem object from a given ops object.

Arguments to be specified by the client:

Argument Type Specified On Entry
theops const ops* the ops object to be incorporated

in the new opssystem

Arguments returned to client:

Argument Type Specified On Entry
return value opssystem* the ops system incorporating

the MINLP and the numerical code

Notes:

• The specified theops object must already exist, having been created
using the NewMINLP function (cf. section 4.1 and the methods described
in sections 4.2 and 4.3.

Examples of usage:

The following uses the MINLP solver manager object SnoptManager cre-
ated in the example of section 5.3 to create a new MINLP system, called
NetOptSnopt incorporating the ops object NetOpt created in the example
of section 4.1:

opssystem* NetOptSnopt = SnoptManager->NewMINLPSystem(NetOpt) ;

85

5.5 MINLP Systems

5.5.1 Method GetParameterList

Declaration: ssolpar* GetParameterList()

Function: Gets the list of parameters with which a MINLPSystem can be
reconfigured after creation. It returns a sequence of structures holding the
current values of the parameters, their (single word) names and short de-
scriptions, and valid upper and lower bounds where applicable (the values
MinusInfinity and PlusInfinity will be used to indicate unconstrained
parameters).

See section 5.2 for the detailed description of this type.

Arguments to be specified by the client: None

Arguments returned to client: None

Examples of usage:

The following retrieves the list of parameters for a system:

ssolpar* params=NetOptSnopt->GetParameterList();

86

5.5.2 Method SetParameter

Declaration: void SetParameter(string ParamName,
variant ParamValue)

Function: Sets a specific parameter to configure an MINLPSystem.

Arguments to be specified by the client:

Argument Type Specified On Entry
ParamName string parameter name
ParamValue variant assigns a value to the parameter

Arguments returned to client: None

Examples of usage:

The following sets a parameter named “DiagnosticsOutputFile” to “my-
diag.out” in the MINLPSystem NetOptSnopt:

variant filename;
filename.vtype=string;
filename.val.sval="mydiag.out";
NetOptSnopt->SetParameter("DiagnosticsOutputFile",filename) ;

87

5.5.3 Method GetStatistics

Declaration: sstat* GetStatistics()

Function: Gets the list of solution statistics which accumulate during the
lifetime of the MINLPSystem. It returns a sequence of structures holding
the current values of the statistics, their short descriptions, and units.

See section 5.2 for the detailed description of this type.

Arguments to be specified by the client: None

Arguments returned to client: None

Examples of usage:

The following retrieves the statistics for a system and writes them to stan-
dard output, assuming the C++ << operator has been suitably configured
for the variant type.

sstat* stats = NetOptSnopt->GetStatistics();
cout << "Solution statistics:" << endl;
for(sstat::const_iterator it = stats->begin();

it != stats->end();
it++)

cout << " " << it->description << ";"
<< it->theval << it->unit << endl;

The output produced might be:

Solution statistics:
CPU time: 233.23 seconds
Number of relaxations: 23

88

5.5.4 Method Solve

Declaration: void Solve()

Function: Attempts to solve the MINLP problem incorporated in the ops-
system object using the numerical MINLP solver embedded within the ops-
system object.

Arguments to be specified by the client: None

Arguments returned to client: None

Notes:

• The numerical solution algorithm is applied to the “flat” form of the
MINLP. The solver obtains the latter from the ops object incorporated
within the opssystem object using the methods of section 4.5. This
operation is performed automatically and is completely transparent to
the client.

• The solution procedure will leave the final values of variables and other
information within the ops object. The client may subsequently re-
trieve them from there using the methods of section 4.4.

Examples of usage:

The following method invocation applied to the MINLP system NetOpt-
Snopt created in the example of section 5.4.3 will trigger the solution of the
MINLP described by the ops object NetOpt using the SNOPT solver:

NetOptSnopt->Solve() ;

89

5.5.5 Method GetSolutionStatus

Declaration: void GetSolutionStatus(int& status)

Function: Returns the exit status of the solver which attempted to solve the
MINLP.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Specified On Entry
status int& exit status

Notes:

• This method only returns meaningful information after the method
Solve() has been called.

Examples of usage:

The following returns the exit status of the numerical solver (SNOPT) which
just tried to solve the NetOpt problem

int status;
NetOptSnopt->GetSolutionStatus(status);
if (status == 0)
cout << "Solution OK!" << endl;

90

6 Auxiliary Interfaces

6.1 The Convexification Module

This interface provides functionality for producing a convex relaxation of
the MINLP. The ooOPS software provides a convexifiermanager object
which embeds an existing ops object and provides only one public method,
Convexify(), which returns an ops containing a convex flat MILP.

The “convexification” algorithm gets its input data from the MINLP in
standard form (see section 4.6) and produces a convex (linear) MILP. The
output convex problem is embedded in a slightly modified version of the
ops class (see section 4) whose interface only offers flat form data access
(see section 6.1.4).

6.1.1 Convexifier Manager Instantiation: the Function NewCon-
vexifierManager

Declaration: convexifiermanager* (*NewConvexifierManager) (ops*
theops)

Function: Creates a new convexifiermanager object incorporating the
MINLP theops.

Arguments to be specified by the client:

Argument Type Specified On Entry
theops ops* the MINLP to be convexified

Arguments returned to client:

Argument Type Specified On Entry
return value convexifiermanager* the convexifiermanager

incorporating the MINLP

Notes:

• This function is not available at compile time (hence it is only a pointer
to a function). It is loaded from a shared object library at run time
using the dlopen()/dlsym() mechanism. See example below for de-
tails.

• When using run time linking, keep in mind that search paths for shared
object files vary from operating system to operating system and do not
usually include the current working directory.

• Please be warned that shared object files produced from C++ source
code have ”mangled” symbol named which usually dlopen and dlsym

91

cannot read properly. There are two solutions: first, write wrapper
functions to dlopen and dlsym which take care of this problem; and
second, use non-demangled symbol names (as in the example below).

Examples of usage: The following creates a new convexifiermanager in-
corporating the MINLP NetOpt.

#include <dcfcn.h>
convexifiermanager* (*NewConvexifierManager)(ops*);
convexifiermanager* NetOptCM;
void* handle = dlopen("libopssnopt.so", RTLD_LAZY);
if (!handle) {
cerr << "MAIN: shared object error: \n\t" << dlerror() << endl;
exit(-1);

} else {
// have to use "non-demangled" C++ symbol names
void *tmp = dlsym(handle, "NewMINLPSolverManager__FP3ops");
char* error;
if ((error = dlerror()) != NULL) {
cerr << "MAIN: shared object error: \n\t" << error << endl;
exit(-1);

}
NetOptCM = (convexifiermanager*) (*)(ops*)) (tmp);

}
// ... code
dlclose(handle);

92

6.1.2 Method GetConvexMINLP

Declaration: ops* GetConvexMINLP(void)

Function: Returns a convex linear relaxation of the MINLP embedded in
the convexifiermanager.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Specified On Entry
return value ops* the convex linear relaxation of the MINLP

Notes:

• The memory allocated by the returned convex linear problem should
not be deallocated before the convexifiermanager object is deleted.

Examples of usage: The following returns a new ops object containing a
convex linear relaxation of the MINLP.

ops* myconvexops = NetOptCM->GetConvexMINLP() ;

93

6.1.3 Method UpdateConvexVarBounds

Declaration: void UpdateConvexVarBounds(double* lb, double* ub)

Function: Updates the convex problem created with GetConvexMINLP (see
6.1.2) with new variable bounds. Because of the way the convexification
is done, this has the effect of changing some of the linear structure of the
convex problem.

Arguments to be specified by the client:

Argument Type Specified On Entry
lb double* new lower bounds of variables

in the convex problem
ub double* new upper bounds of variables

in the convex problem

Arguments returned to client: None

Notes:

• The convex problem created with GetConvexMINLP must not be deal-
located prior to the call to this function.

Examples of usage: The following updates bounds to the first convex prob-
lem variable.

// get convex problem
ops* myconvexops = NetOptCM->GetConvexMINLP() ;
// get convex problem size
int NumberOfVariables ;
int NumberOfIntegerVariables ;
int NumberOfLinearVariables ;
int NumberOfLinearIntegerVars ;
int NumberOfConstraints ;
int NumberOfLinearConstraints ;
int NumberOfNZLinVarsInConstraints ;
int NumberOfNZNonLinJacInConstraints ;
int NumberOfNZLinVarsInObjFun ;
int NumberOfNZNonLinJacInObjFun ;
myconvexops->GetFlatMINLPSize(&NumberOfVariables,

&NumberOfIntegerVariables,
&NumberOfLinearVariables,
&NumberOfLinearIntegerVariables,
&NumberOfConstraints,
&NumberOfLinearConstraints,
&NumberOfNZLinVarsInConstraints,
&NumberOfNZNonLinJacInConstraints,
&NumberOfNZLinVarsInObjFun,
&NumberOfNZNonLinJacInObjFun);

94

// get convex problem variable bounds
double vlb = new double [NumberOfVariables];
double vub = new double [NumberOfVariables];
string strdummy;
si* sidummy;
bool bdummy1, bdummy2;
double ddummy;
for(int i = 1; i <= NumberOfVariables; i++) {
myconvexops->GetFlatMINLPVariableInfo(i, strdummy, sidummy,

bdummy1, bdummy2, ddummy,
vlb[i - 1], vub[i - 1]);

}
// change first variable bounds
vlb[0] = vlb[0] - 1;
vub[0] = vub[0] + 1;
// update the convex problem
NetOptCM->UpdateConvexVarBounds(vlb, vub);

95

6.1.4 Methods of the Convex MILP

This is a cut-down version of the MINLP object interface (the ops class,
see section 4) which only offers functionality for reading/writing (linear)
data in the flat form problem. This modified ops class offers no methods
for dealing with (nonlinear) information, no multidimensional construction
methods and no standard form methods.

The methods provided by this interface are:

• GetFlatMINLPSize (see 4.5.2);

Notes: Call is the same as in section 4.5.2.

• GetFlatMINLPStructure (see 4.5.3);

Notes: Call is the same as in section 4.5.3.

• GetFlatMINLPVariableInfo (see 4.5.4);

Notes: The arguments string vname, si* index, bool
isinteger, bool islinear are meaningless in this context
and are only kept for compatibility3.

• GetFlatMINLPConstraintInfo (see 4.5.8);

Notes: The arguments string cname, si* index, si* ci-
list, sd* cflist, FlatExpression* fe are meaningless in
this context and are only kept for compatibility4.

• GetFlatMINLPVariableValues (see 4.5.6);

Notes: Call is the same as in section 4.5.6.

• SetFlatMINLPVariableValues (see 4.5.7);

Notes: Call is the same as in section 4.5.7.

• SetFlatMINLPVariableBounds (see 4.5.5);

Notes: Call is the same as in section 4.5.5.

• EvalFlatMINLPNonlinearObjectiveFunction (see 4.5.9);

Notes: This is for compatibility only; it returns 0.

• EvalFlatMINLPNonlinearConstraint (see 4.5.10);
3They can simply be skipped in the call.
4They can simply be skipped in the call.

96

Notes: This is for compatibility only; it does not do any-
thing.

• GetFlatMINLPObjectiveFunctionDerivatives — linear objective fu-
nction only (see 4.5.11);

Notes: Call is the same as in section 4.5.3.

• GetFlatMINLPConstraintDerivatives — linear constraints only (see
4.5.12).

Notes: Call is the same as in section 4.5.3.

97

6.2 The FlatExpression Interface

This object class has the purpose of conveying symbolic flat expression
information to the client. A FlatExpression object is returned by the
GetFlatMINLPConstraintInfo method (see section 4.5.8) and is then trans-
formed, according to its type, to any of the derived objects FlatVariable-
Expression, FlatConstantExpression, FlatOperatorExpression. Each
of these objects provides a special interface used to access the encapsulated
data.

The FlatExpression interface has only one method.

Method GetKind

Declaration: int GetKind()

Function: Returns the kind of this FlatExpression.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value On Exit
return value int kind of FlatExpression

Notes:

• The value returned by this method can be one of FlatConstantType,
FlatVariableType, FlatOperatorType according as to whether the
current FlatExpression is respectively one of FlatConstantExpres-
sion, FlatVariableExpression, FlatOperatorExpression.

Examples of usage:

See below for a comprehensive example of all the methods relative to Flat-
Expression.

98

6.2.1 The FlatConstantExpression Interface

This object class is derived from the FlatExpression class and provides
flat symbolic information about constant expression objects created with
the NewConstantExpression method (see section 4.2.6).

This interface has only one method.

Method GetValue

Declaration: double GetValue()

Function: Returns the value of the flat symbolic constant expression.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value On Exit
return value double value of flat symbolic constant

Notes: None

Examples of usage:

See below for a comprehensive example of all the methods relative to Flat-
Expression.

99

6.2.2 The FlatVariableExpression Interface

This object class is derived from the FlatExpression class and provides
flat symbolic information about variable expression objects created with the
NewVariableExpression method (see section 4.2.7).

This interface has only one method.

Method GetVarIndex

Declaration: double GetVarIndex()

Function: Returns the variable index (or variable id, a.k.a. vid) of the flat
symbolic variable expression.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value On Exit
return value double value of flat symbolic constant

Notes: None

Examples of usage:

See below for a comprehensive example of all the methods relative to Flat-
Expression.

100

6.2.3 The FlatOperatorExpression Interface

This object class is derived from the FlatExpression class and provides
flat symbolic information about expression objects created with the Unary-
Expression and BinaryExpression methods (see sections 4.2.9 and 4.2.8).

This interface has two methods.

Method GetOperator

Declaration: int GetOperator()

Function: Returns the operator type of the flat symbolic unary or binary
expression.

Arguments to be specified by the client: None

Arguments returned to client:

Argument Type Value On Exit
return value int operator type

Notes:

• The return function value describes the type of operator in the ex-
pression. It can be one of the following strings (the meaning is self-
explanatory): "sum", "difference", "product", "ratio", "power",
"minus", "log", "exp", "sin", "cos", "tan", "cot", "sinh", "cosh",
"tanh", "coth" (cf. section 2.4).

Examples of usage:

See below for a comprehensive example of all the methods relative to Flat-
Expression.

Method GetOperand

Declaration: FlatExpression* GetOperand(int eid)

Function: Returns one of the operands of the flat symbolic unary or binary
expression.

Arguments to be specified by the client:

Argument Type Specified on Entry
eid int the operand expression id

Arguments returned to client:

101

Argument Type Value On Exit
return value FlatExpression* flat symbolic

operand expression

Notes:

• The operand expression id, eid, can only be 1 for unary expressions;
it can be 1 or 2 for binary expressions.

• The return value is placed into an object of type FlatExpression.
This can be analysed with the methods described in section 6.2.

Examples of usage:

See below for a comprehensive example of all the methods relative to Flat-
Expression.

102

6.2.4 Usage of FlatExpression Interface

The procedure to gather symbolic expression information from a Flat-
Expression is as follows.

1. Find out the FlatExpression type; there are three possible types:
Constant, Variable and Operator.

int fetype = fe->GetKind();

2. Depending on the type, cast the FlatExpression object dynamically
to one of the following objects: FlatConstantExpression, Flat-
VariableExpression and FlatOperatorExpression.

FlatConstantExpression* fke;
FlatVariableExpression* fve;
FlatOperatorExpression* foe;
switch(fetype) {
case Constant:
fke = dynamic_cast<FlatConstantExpression*>(fe);
break;

case Variable:
fve = dynamic_cast<FlatVariableExpression*>(fe);
break;

case Operator:
foe = dynamic_cast<FlatOperatorExpression*>(fe);
break;

}

3. Now find out the actual information.

• The FlatConstantExpression interface has only one method:

double GetValue(void);

which returns the actual value of the constant.

• The FlatVariableExpression interface has only one method:

long int GetVarIndex(void);

which returns the flat variable index of the variable.

• The FlatOperatorExpression interface has two methods: the
first,

int GetOpType(void);

returns the type of operator of the expression (possible values are
as on page 12); the second method,

FlatExpression* GetFlatExpression(int index);

103

returns an operand of the operator given by GetOpType(). In the
case of binary operators index can be 0 (for the left operand) or
1 (for the right operand). In the case of unary operators index
can only be zero.

4. The symbolic analysis of the expression can go on in a recursive fashion
until no more FlatOperatorExpressions are found.

5. It is important to notice that the deallocation of all the FlatExpres-
sion objects is left to the client.

The following is the actual coded example:

string cname ;
si* index ;
double LB ;
double UB ;
si* varList ;
sd* coefList;
FlatExpression* fe;

NetOpt->GetFlatMINLPConstraintInfo(532, cname, index, LB, UB,
varList, coefList, fe)

FlatConstantExpression* fke;
FlatVariableExpression* fve;
FlatOperatorExpression* foe;
switch(fe->GetKind()) {
case Constant:
fke = dynamic_cast<FlatConstantExpression*>(fe);
cout << "Constraint Nonlinear Part is a Constant" << endl;
cout << "Value = " << fke->GetValue() << endl;
break;

case Variable:
fve = dynamic_cast<FlatVariableExpression*>(fe);

cout << "Constraint Nonlinear Part is a Variable" << endl;
cout << "VarIndex = " << fve->GetVarIndex() << endl;
break;

case Operator:
foe = dynamic_cast<FlatOperatorExpression*>(fe);
cout << "Constraint Nonlinear Part is an Operator" << endl;
cout << "Operator Type = " << foe->GetOpType() << endl;
break;

}
delete fe;

104

7 Implementation Restrictions

The following restrictions of the current implementation in comparison to
the functionality described in this document are known:

1. Limited number of arguments to IntSeq function
The IntSeq auxiliary function can have a maximum of 8 integer ar-
guments.

2. Currently available MINLP Managers
The following MINLP solvers have been interfaced to date to ooOPS
and can be used in conjunction with the function NewMINLPSolver-
Manager (see section 5.3):

• SNOPT v. 5.3 (Systems Optimization Laboratory, Stanford Uni-
versity.)
Accessed by specifying sname = "snopt"

105

8 An Example of the Use of ooOPS

The example is based on a slightly simplified form of the Resource Task Net-
work (RTN) formulation proposed by C. Pantelides for process scheduling,
plus a few spurious nonlinear terms which mess up the model hopelessly and
completely, but help show how to use the methods which deal with nonlin-
earity. The formulation seeks to optimise a process involving NR resources
r = 1, .., NR and NK tasks k = 1, .., NK over a time horizon discretised
into NT time intervals t = 1, .., NT . It involves the objective function:

max
∑

r

(CF
r (Rr,NT −Rr0) +

∑
t

R2
rt) (7)

subject to the constraints:

Rrt = Rr,t−1 +
∑

k

τk∑
θ=0

(µkrθNk,t−θ +νkrθξk,t−θ)+Πrt +
RrtRr,t−1

Πrt
∀r, t (8)

0 ≤ Rrt ≤ Rmax
rt ∀r, t (9)

V min
k Nkt ≤ ξkt ≤ V max

k Nkt ∀k, t (10)

The variables in the above formulation are the following:

Variable Type Range Description
Rrt Continuous r = 1, .., NR Amount of resource r at time t

t = 0, .., NT
Nkt Integer k = 1, .., NK Number of units used for

task k at time t
t = 1, .., NR

ξkt Continuous k = 1, .., NK Size of task k at time t
t = 1, .., NT

Table 1: Variable sets

A number of parameters and coefficients also appear in the formulation.
These are listed in Table 2. The initial values of the resource levels, Rr0,
are also fixed at given values R∗

r .

106

Parameter Type Description
Cf

r Constant Unit cost of resource r
µrt Constant Production or consumption coefficient

referring to integer variable Nkt

νkt Constant Production or consumption coefficient
referring to continuous variable ξkt

Πrt Constant Amount of resource r made available
from/to external sources at time t

τk Constant Duration of task k
Rmax

rt Constant Maximum amount of resource r
that can be stored at time t

V min
k Constant Minimum useful capacity

of unit suitable for task k
V max

k Constant Maximum useful capacity
of unit suitable for task k

Table 2: Parameters appearing in the RTN formulation

8.1 Creating the MINLP

The first step is to create (an empty) ops object:

ops* RTNops=NewMINLP();

Now we have to add to this object (RTNops) the information that defines it.
This is done below using the methods described in section 4.

8.1.1 Creating Variables

Variables are added to the ops object using the variable construction meth-
ods described in section 4.2.

Continuous variables are created using the method NewContinuous-
Variable in the way specified in section 4.2.1:

RTNops->NewContinuousVariable("Xi", IntSeq(1,1), IntSeq(NK,NT),
0.0, ooOPSPlusInfinity, 0.0);

RTNops->NewContinuousVariable("R", IntSeq(1,0), IntSeq(NR,NT),
0.0, ooOPSPlusInfinity, 0.0);

while integer variables are created using the method NewIntegerVariable
described in section 4.2.2:

107

RTNops->NewIntegerVariable("N", IntSeq(1,1), IntSeq(NK,NT),
0, ooOPSPlusInfinity, 0);

All variables are two-dimensional, their lower bounds are initialised to zero
and so are their default values. No upper bounds are imposed at this stage.

8.1.2 Creating Constraints

We now use the construction method presented in section 4.2.3 to create
constraints (8) and (10):

RTNops->NewConstraint("ResourceBalance",IntSeq(1,1),
IntSeq(NR,NT), 0.0, 0.0);

RTNops->NewConstraint("EquipmentCapacityLB",IntSeq(1,1),
IntSeq(NK,NT), 0.0, ooOPSPlusInfinity);

RTNops->NewConstraint("EquipmentCapacityUB",IntSeq(1,1),
IntSeq(NK,NT), ooOPSMinusInfinity, 0.0);

We note that constraint 8 has been rearranged to the form:

−Rrt + Rr,t−1 +
∑

k

∑τk
θ=0(µkrθNk,t−θ + νkrθξk,t−θ)+

+Πrt + RrtRr,t−1

Πrt
= 0 ∀r, t (8′)

while 10 has been split into two separate constraints of the form:

ξkt − V min
k Nkt ≥ 0 ∀k, t (10′)

and

ξkt − V max
k Nkt ≤ 0 ∀k, t (10′′)

On the other hand, no constraint corresponding to (9) is introduced since
this can be dealt with via upper bounds imposed on the Rrt variables (see
section 8.1.6).

8.1.3 Adding Variables to Constraints

The constraints created in section 8.1.2 do not yet contain any variables.
We now have to create appropriate variable occurrences in them by applying

108

the method AddVariableSliceToConstraintSlice as described in section
4.2.4 5:

• Constraint (8′)

for(int r=1 ; r<=NR ; r++){
for(int t=1 ; t<=NT ; t++){
RTNops->AddVariableSliceToConstraintSlice("R",

IntSeq(r,t), IntSeq(r,t), "ResourceBalance",
IntSeq(r,t),IntSeq(r,t), -1.0);

RTNops->AddVariableSliceToConstraintSlice("R",
IntSeq(r,t-1),IntSeq(r,t-1),"ResourceBalance",
IntSeq(r,t),IntSeq(r,t), 1.0);

for(int k=1 ; k<=NK ; k++){
for(int theta = 0;

theta <= min(tau(k), (double) t - 1);
theta++){

RTNops->AddVariableSliceToConstraintSlice("N",
IntSeq(k,t-theta), IntSeq(k,t-theta),
"ResourceBalance",IntSeq(r,t),IntSeq(r,t),
mu(k,r,theta));

RTNops->AddVariableSliceToConstraintSlice("Xi",
IntSeq(r,t-theta), IntSeq(r,t-theta),
"ResourceBalance",IntSeq(r,t),IntSeq(r,t),
nu(k,r,theta));

}
}

}
}

• Constraint (10′)

for(int k=1 ; k<=NK ; k++){
for(int t=1 ; t<=NT ; t++){

RTNops->AddVariableSliceToConstraintSlice("Xi",
IntSeq(k,t), IntSeq(k,t),
"EquipmentCapacityLB",
IntSeq(k,t),IntSeq(k,t), 1.0);

RTNops->AddVariableSliceToConstraintSlice("N",
IntSeq(k,t), IntSeq(k,t),
"EquipmentCapacityLB",
IntSeq(k,t),IntSeq(k,t),
-Vmin(k,t));

}
}

5Here we assume that appropriate sets holding data components to the parameters of
table 2 are already available.

109

• Constraint (10′)

for(int k=1 ; k<=NK ; k++){
for(int t=1 ; t<=NT ; t++){

RTNops->AddVariableSliceToConstraintSlice("Xi",
IntSeq(k,t), IntSeq(k,t),
"EquipmentCapacityUB",
IntSeq(k,t),IntSeq(k,t), 1.0);

RTNops->AddVariableSliceToConstraintSlice("N",
IntSeq(k,t), IntSeq(k,t),
"EquipmentCapacityUB",
IntSeq(k,t),IntSeq(k,t),
-Vmax(k,t));

}
}

8.1.4 Objective Function

The creation of the objective function is effected using the method New-
ObjectiveFunction (cf.section 4.2.11):

RTNops->NewObjectiveFunction("TotalProfit","max");

For this example, the name of the objective function to be maximised is
"TotalProfit" .

8.1.5 Objective Function Coefficients

The creation of the objective function is followed by the declaration of the co-
efficients of the variable instances appearing in it. The appropriate method
is AddVariableSliceToObjectiveFunction described in section 4.2.12:

for(int r=1 ; r<=NR ; r++){
RTNops->AddVariableSliceToObjectiveFunction("R",IntSeq(r,NT),

IntSeq(r,NT), CFR(r),"TotalResources");
RTNops->AddVariableSliceToObjectiveFunction("R",IntSeq(r,0),

IntSeq(r,0), -CFR(r),"TotalResources");
}

Again, we assume the coefficients CF
r that appear in the objective function

are stored in set CFR.

110

8.1.6 Modifying the Variable Bounds

Variable Rrt is bounded as shown in eqn. (9). Method SetVariableBounds
can be used to impose these bounds which may be different for different
elements of the Rrt set:

for(int r=1 ; r<=NR ; r++){
for(int t=1 ; t<=NT ; t++){
RTNops->SetVariableBounds("R",IntSeq(r,t),IntSeq(r,t),

0.0, R_max[r][t]);
}

}

Moreover, the initial resource levels Rr0 are fixed at given values R∗
r . This

is achieved by setting both lower and upper bounds to R∗
r :

for(int r=1 ; r<=NR ; r++){
RTNops->SetVariableBounds("R",IntSeq(r,0),IntSeq(r,0),

R_star[r], R_star[r]);
}

8.1.7 Modifying the Constraint Bounds

Constraint (8) has a right hand coefficient which is not constant so we use
the function SetConstraintBounds to obligate this restriction.

for(int r=1 ; r<=NR ; r++){
for(int t=1 ; t<=NT ; t++){
RTNops->SetConstraintBounds("ResourceBalance",

IntSeq(r,t), IntSeq(r,t),
-Pi[r][t], -Pi[r][t]);

}
}

8.1.8 Creating the Nonlinear Parts

We create nonlinear parts of constraints and objective function by employing
the methods described in section 4.2.6.

// make nonlinear part of constraints
RTNops->NewVariableExpression("Leaf1", "R",

IntSeq(1,1), IntSeq(NR, NT));
RTNops->NewVariableExpression("Leaf2", "R",

IntSeq(1,1), IntSeq(NR, NT));

111

RTNops->BinaryExpression("Expr1",
"Leaf1", IntSeq(1,1), IntSeq(NR, NT),
"Leaf2", IntSeq(1,1), IntSeq(NR, NT),
"product");

RTNops->NewConstant("Const1", IntSeq(1,1), IntSeq(NR, NT), 1.0);
for(int r=1 ; r<=NR ; r++){
for(int t=1 ; t<=NT ; t++){
RTNops->SetConstantValue("Const1", IntSeq(r,t), 1/Pi[r][t]);

}
}
RTNops->NewConstantExpression("Leaf3", "Const1",

IntSeq(1,1), IntSeq(NR, NT));
RTNops->BinaryExpression("Expr1",

"Expr1", IntSeq(1,1), IntSeq(NR,NT),
"Leaf3", IntSeq(1,1), IntSeq(NR,NT),
"ratio");

// make nonlinear part of objective function
RTNops->NewConstant("Const2", IntSeq(1,1), IntSeq(1,1), 2.0);
RTNops->NewConstantExpression("Power2", "Const2",

IntSeq(1,1), IntSeq(1,1));
RTNops->BinaryExpression("Expr2",

"Leaf1", IntSeq(1,1), IntSeq(NR,NT),
"Const2", IntSeq(1,1), IntSeq(1,1),
"power");

RTNops->NewConstant("Zero", IntSeq(1), IntSeq(1), 0);
RTNops->NewConstantExpression("Expr3", "Zero",

IntSeq(1), IntSeq(1));
for(int r=1; r<=NR; r++) {
for(int t=1; t<= NT; t++) {

RTNops->BinaryExpression("Expr3",
"Expr3", IntSeq(1), IntSeq(1),
"Expr2", IntSeq(r,t), IntSeq(r,t),
"sum");

}
}

8.1.9 Assigning Expressions to Constraints and Objective Func-
tion

After having created the expressions representing the nonlinear parts, we
assign them to the existing constraints and objective function by using the
methods described in section 4.2.7.

// assign expressions to constraints
RTNops->AssignExpressionSliceToConstraintSlice

("Expr1", IntSeq(1,1), IntSeq(NR, NT),

112

"ResourceBalance", IntSeq(1,1), IntSeq(NR, NT));

// assign expression to objective function
RTNops->AssignExpressionToObjectiveFunction

("Expr3", "TotalProfit");

113

8.2 MINLP Solution

Having created the ops object RTNops, we now have to combine it with an
appropriate MINLP solver to create an opssystem that can be solved.

8.2.1 Creating an MINLP Solver Manager Object

We start by creating an appropriate opssolvermanager object. The usage
of this method is described in section 5.3. Here, we create a MINLP solver
manager based on the SNOPT solver:

opssolvermanager* SnoptManager = NewMINLPSolverManager("snopt");

8.2.2 Creating an MINLP System

Using the MINLP solver manager object created above, a opssystem is
created from the ops object:

opssystem* RTNsystem = SnoptManager->NewMINLPSystem(RTNops);

8.2.3 Solving the MINLP

At last, the above MINLPsystem can be solved by invoking its Solve method
as described in section 5.5.4:

RTNsystem->Solve();

8.3 Accessing the Solution of the MINLP

Various aspects of the MINLP solution can be accessed using methods de-
scribed in section 4.4.

8.3.1 Obtaining Information on the Variables

The optimal values of the variables can be obtained using method 4.4.1. In
this example we have three types of variables:

• Rrt

double* R_value;
double* R_LB;
double* R_UB;

114

RTNops->GetVariableInfo("R",IntSeq(1,1),IntSeq(NR,NT),
R_value, R_LB, R_UB);

• Nkt

int* N_value;
int* N_LB;
int* N_UB;

RTNops->GetVariableInfo("N",IntSeq(1,1),IntSeq(NK,NT),
N_value, N_LB, N_UB);

• ξkt

double* Xi_value;
double* Xi_LB;
double* Xi_UB;

RTNops->GetVariableInfo("Xi",IntSeq(1,1),IntSeq(NK,NT),
Xi_value, Xi_LB, Xi_UB);

8.3.2 Obtaining Information on the Objective Function

The value of the objective function can be accessed using the method of
section 4.4.3:

char* obj_type;
double* obj_value;

RTNops->GetObjectiveFunctionInfo("TotalProfit",
objt_type, obj_value);

The value of the objective function returned is based on the current (hope-
fully optimal) values of the variables.

115

References

[SP99] E.M.B. Smith and C.C. Pantelides. A symbolic reformulation/spatial
branch-and-bound algorithm for the global optimisation of noncon-
vex minlps. Computers and Chemical Engineering, 23:457–478, 1999.

116

