
Experiments with a Feasibility Pump approach

for nonconvex MINLPs

Claudia D’Ambrosio1, Antonio Frangioni2,
Leo Liberti3, and Andrea Lodi1

1 DEIS, University of Bologna, Italy
{c.dambrosio; andrea.lodi}@unibo.it

2 Dipartimento di Informatica, University of Pisa, Italy
frangio@di.unipi.it

3 LIX, École Polytechnique, France
liberti@lix.polytechnique.fr

Abstract. We present a new Feasibility Pump algorithm tailored for
nonconvex Mixed Integer Nonlinear Programming problems. Differences
with the previously proposed Feasibility Pump algorithms and difficulties
arising from nonconvexities in the models are extensively discussed. The
main methodological innovations of this variant are: (a) the first subprob-
lem is a nonconvex continuous Nonlinear Program, which is solved using
global optimization techniques; (b) the solution method for the second
subproblem is complemented by a tabu list. We exhibit computational
results showing the good performance of the algorithm on instances taken
from the MINLPLib.

1 Introduction

Heuristic algorithms have always played a fundamental role in optimiza-
tion, both as independent tools and as part of general-purpose solvers.
Heuristics can be classified into two broad categories: those which are
based on a specific problem structure (e.g., heuristics for Set Covering,
or Knapsack, or Quadratic Assignment problems) and those which tar-
get a large class of problems, such as Mixed Integer Linear Program-
ming (MILP), or Mixed Integer Nonlinear Programming (MINLP). Far
fewer heuristics (including the present one) belong to the second class
with respect to the first one because of the inherent difficulty of devising
general-purpose methods. In the rest of the paper we focus on algorithms
belonging to the second class.

Starting from MILPs, different kinds of heuristics have been proposed:
their aim is finding a good feasible solution rapidly or improving the
best solution found so far. Within a MILP solver context, both types
are used. Examples are rounding heuristics, metaheuristics (e.g. [1]), Fea-
sibility Pump (FP) [2–4], Local Branching [5] and Relaxation Induced

2 D’Ambrosio, Frangioni, Liberti, Lodi

Neighborhoods Search [6]. Since the early 1990’s, MINLP has attracted
rising interest from the operations research and the chemical engineering
communities. Typically, MINLP solution techniques complement contin-
uous Nonlinear Programming (NLP) algorithms with combinatorial-type
searches. Chemical plant design and operations are amongst the early
applications of this field. Special attention has been devoted to convex
MINLPs, a class of MINLP problems whose objective function and con-
straints are convex (thus, any local optimum of the continuous relaxation
is also its global optimum). Furthermore, standard linearization inequali-
ties such as Outer Approximation (OA) cuts [7] are valid. OA cuts linearly
approximate each nonlinear convex constraint, say f(x) ≤ 0, at a given
point x̄:

f(x̄) + ∇f(x̄)T (x − x̄) ≤ 0. (1)

It is easy to show that (1) does not cut off any feasible point of the original
convex MINLP. Heuristics have been proposed recently also for convex
MINLPs. Basically the ideas originally tailored on MILP problems have
been extended to convex MINLPs, for example, Feasibility Pump [8–10]
and diving heuristics [10].

This paper proposes a heuristic algorithm for nonconvex MINLPs.
These problems are in general very difficult to solve to optimality and,
often, also finding a feasible solution is practically difficult (besides being
NP-hard in theory, since they generalize NLP feasibility [11]). For this rea-
son, heuristic algorithms are a fundamental part of any solution process.
General-purpose nonconvex MINLP heuristics proposed so far are, for ex-
ample, Variable Neighborhood Search [12] and Local Branching [13]. All
existing exact convex MINLP methods [7, 8, 14–19] can be heuristically
deployed on nonconvex MINLPs. This field, however, is still relatively
young and current heuristics leave a lot of room for improvement.

We already mentioned FP for 0-1 MILP, introduced by Fischetti et
al. [2]. The algorithm has been extended to general integer variables
by Bertacco et al. [3] and improved with respect to solution quality by
Achterberg and Berthold [4]. The idea is to iteratively solve subproblems
of the original (difficult) problem with the aim of “pumping” the feasi-
bility in the solution. More precisely, Feasibility Pump iteratively solves
the continous relaxation of the problem trying to minimize the distance
to a target (infeasible) integer solution, then rounding the fractional solu-
tion obtained to become the next integer target. Few years later a similar
technique applied to convex MINLPs was proposed by Bonami et al. [8].
In that case the subproblems are a convex NLP and a MILP. The authors
also prove the convergence of the algorithm and extend the same result to

Experiments with a Feasibility Pump approach for nonconvex MINLPs 3

MINLP problems with nonconvex constraints, defining, however, a con-
vex feasible region. More recently Bonami and Gonçalves [10] proposed
a more efficient version in which the MILP solution process is replaced
by a rounding phase similar to that originally proposed by Fischetti et
al. [2] for MILPs. Finally, an enhancement for the MILP case has been
recently studied by Fischetti and Salvagnin [20] by using domain propa-
gation during rounding.

In this paper, we propose a FP algorithm for general nonconvex
MINLPs. The remainder of the paper is organized as follows. In Section 2
we present the structure of the algorithm. Details on implementation is-
sues are given in Section 3. In Section 4 we present computational results
on MINLPLib instances. Section 5 concludes the paper.

2 The Algorithm

We address the following nonconvex MINLP:

(P) min f(x, y) (2)

g(x, y) ≤ 0 (3)

x ∈ X ∩ Z
n (4)

y ∈ Y, (5)

where X and Y are two polyhedra of appropriate dimension (possibly
including variable bounds), f : R

n+p → R is convex, but g : R
n+p → R

m

is nonconvex. We will denote by

P = { (x, y) | g(x, y) ≤ 0 ∧ x ∈ X ∧ y ∈ Y } ⊆ R
n+p

the (nonconvex) feasible region of the continuous relaxation of the prob-
lem, by X the set {1, . . . , n} and by Y the set {1, . . . , p}. We will also de-
note by N ⊆ {1, . . . ,m} the subset of (indices of) nonconvex constraints,
so that C = {1, . . . ,m} \ N is the set of (indices of) convex constraints.
Note that the convexity assumption on the objective function f does not
involve a loss of generality: one can always introduce an additional vari-
able v to be minimized, and add the (m+1)−th constraint f(x, y)−v ≤ 0
to deal with the case where f is nonconvex.

Problem (P) presents two sources of nonconvexities:

1. integrality requirements on x variables;
2. constraints gj(x, y) ≤ 0 with j ∈ N , defining a nonconvex feasible

region.

4 D’Ambrosio, Frangioni, Liberti, Lodi

Algorithm 1 The general scheme of Feasibility Pump
1: i = 0;
2: initialize (x̂0, ŷ0) and (x̄0, ȳ0);
3: while ((x̂i, ŷi) 6= (x̄i, ȳi) and CPU time < limit) do

4: increase i;
5: solve (P1) (minimize distance to (x̂i−1, ŷi−1) subject to (x, y) ∈ P) to yield

(x̄i, ȳi);
6: solve (P2) (minimize distance to (x̄i, ȳi) subject to (x, y) ∈ (X ∩ Z

n) × Y) to
yield (x̂i, ŷi);

7: end while

The basic idea of FP is to decompose the original problem in two easier
subproblems. One, called (P1), is obtained by relaxing the integrality re-
quirements; the other, called (P2), by relaxing the nonlinear constraints.
Both problems are solved at each iteration, yielding a pair of solutions
(x̄, ȳ) and (x̂, ŷ) respectively. The aim of the algorithm is to make the
trajectories of the two solutions converge to a unique point, satisfying all
the constraints and the integrality requirements (see Algorithm 1).

In the next two sections we discuss the general framework by special-
izing it to our context, i.e., the nonconvex MINLP case.

2.1 Subproblem (P1)

At iteration i the subproblem (P1) is denoted by (P1)i and has the form

min
x∈X, y∈Y

||x − x̂i−1|| (6)

g(x, y) ≤ 0, (7)

where (x̂i−1, ŷi−1) is the solution of subproblem (P2)i−1 which satisfies
the integrality requirements on x (see Section 2.2) and in (6) we used the
2-norm. Either (a) the globally optimal objective function value of (P1)i

is 0, implying a feasible solution of (P) with x = x̂i−1; or (b) no feasible
point of (P) exists with x = x̂i−1. Unfortunately, solving (P1)i to global
optimality is too computationally expensive to be considered as a viable
option. Using a local NLP solver to solve (P1)i is not a viable alternative
either: if (x̄i, ȳi) is a local optimum of (P1)i with value > 0, (b) no longer
holds and there might exist a feasible solution of (P) with x = x̂i−1. We
would then erroneously consider the solution with x = x̂i−1 as infeasible
and continue iterating. We therefore propose the following strategy:

1. Solve (P1)i using a simple multistart heuristic [21] to maximize chances
of finding the global optimum.

Experiments with a Feasibility Pump approach for nonconvex MINLPs 5

2. If no solution yielding 0 as objective function value was found, solve
the following problem denoted as (P1fix)i:

min f(x̂i, y) (8)

g(x̂i, y) ≤ 0. (9)

Problem (P1fix)i differs with respect to problem (P1)i because the
objective (6) (constant if x is fixed to x̂i like in this case) is replaced
by the original objective f , and it is solved in the attempt of finding
a MINLP feasible solution with x̂i values of x variables.

The solution proposed does not give any guarantee that the global opti-
mum will be found and, consequentely, that no feasible solution of (P)
will be ignored, but, since we propose a heuristic algorithm, we consider
this simplification as a good compromise. Our computational experiments
show that for some classes of nonconvex MINLP the approach is sound.
Consider, for example, a problem (P) that, once variables x are fixed, is
convex: in this case solving problem (P1fix)i would provide the global
optimum.

2.2 Subproblem (P2)

At iteration i subproblem (P2), denoted as (P2)i, has the form

min ||x − x̄i|| (10)

gj(x̄
k, ȳk) + ∇gj(x̄

k, ȳk)T
(

x − x̄k

y − ȳk

)

≤ 0 k = 1, . . . , i; j ∈ Mk (11)

x ∈ X ∩ Z
n (12)

y ∈ Y, (13)

where (x̄i, ȳi) is the solution of subproblem (P1)i and Mk ⊆ {1, . . . ,m}
is the set (possibly empty) of (indices of) constraints from which OA cuts
are generated at point (x̄k, ȳk). We remark that Mk will most usually be
a proper subset of {1, . . . ,m} because, when nonconvex constraints are
involved, not all the possible OA cuts generated are “safe”, i.e., do not
cut off feasible solutions of (P) (see Figure 1). We remark that the OA
cut generated from a convex constraint g(z) is valid for (P). In order to
model subproblem (P2)i as a MILP, in (10) we use the 1-norm.

Generation of OA cuts involves essentially two issues, one stemming
from a practical consideration, the other from a theoretical point of view.
The first issue is that discriminating convex and nonconvex constraints is

6 D’Ambrosio, Frangioni, Liberti, Lodi

(x0, y0)

Fig. 1. Outer Approximation constraint cutting off part of the nonconvex feasible re-
gion.

a hard task in practice. We will describe in Section 4 how we simplified
this step on the implementation side. The second issue is that OA cuts
play a fundamental role on the convergence of the algorithm for convex
MINLPs (see Bonami et al. [8]): if at one iteration no OA cut can be
added, the algorithm may cycle. However, in the nonconvex case, even
if an OA cut is added, there is no guarantee that it would cut off the
solution of the previous iteration, as shown by the following example.

Example 2.1. In Figure 2 a nonconvex feasible region and its current lin-
ear approximation are depicted. Let us consider x̄ being the current solu-
tion of subproblem (P1). In this case, only one Outer Approximation cut
can be generated, the one corresponding to convex constraint γ. However,
this OA cut does not cut off solution x̂, i.e., the solution of (P2) at the
previous iteration. In this example, the FP would not immediately cycle,
because x̂ is not the solution of (P2) which is closest to x̄. This shows
that there is a distinction between cutting off and cycling. However, in
the long(er) term not cutting off previously generated integer solutions
might lead to cycling. �

A possible solution to this issue is using a tabu list for the last solu-
tions obtained from (P2): the MILP solver will discard integer feasible
solutions in the tabu list. The integer part of the solution is compared
with the one of the solutions in the tabu list and it is accepted only if its
integer part is different from that of the forbidden solutions. Otherwise it
is discarded: this prevents algorithmic cycling as long as the cycle length
is shorter than the tabu list length. This simple idea works with both
binary and general integer variables.

Experiments with a Feasibility Pump approach for nonconvex MINLPs 7

x̂

x̄
x1

x2

OA cut from γ

γ

Fig. 2. The OA cut from γ does not cut off x̄.

Before ending Section 2, we discuss previous FP implementations with
respect to the general framework described above.

First, when the original problem (P) is an MILP, (P1) is simply the
LP relaxation of the current problem and (P2) is the original MILP itself
but with a different objective function. However, because in such a case
problem (P2) is probably as difficult as (P), Fischetti et al. [2] iteratively
solved a trivial relaxation in which all the constraints are relaxed, i.e., an
integer solution is obtained by rounding the fractional solution of (P1).

Moreover, when the original problem (P) is a convex MINLP, i.e.,
N = ∅, (P1) is the NLP relaxation of the problem and (P2) is a MILP
relaxation of (P). In this case, we know that: (a) (P1) is convex as well
and it can ideally be solved to global optimality; and (b) (P2) can be
defined as the OA of (P) (see, e.g., Bonami et al. [8]) or replaced by a
rounding phase (see Bonami and Gonçalves [10]).

Finally, when N 6= ∅, as previously discussed, things get much more
complicated because we have two different sources of nonconvexity. This
is the main difference with respect to the previous FP algorithms and
both (P1) and (P2) require specialized algorithmic techniques.

8 D’Ambrosio, Frangioni, Liberti, Lodi

3 Software Structure

The algorithm was implemented within the AMPL environment [22]. We
chose to use this framework to make it easy to change subsolver. In prac-
tice, the user can select the preferred solver to solve NLPs or MILPs,
exploiting their advantages. In our case, problems (P1) and (P1fix) are
solved using IPOPT [23]. Problem (P2) is solved by CPLEX [24] mod-
ified by a tabu list hooked up to the solver via the incumbent callback
function. This allows the user to define a function which is called during
execution whenever CPLEX finds a new integer feasible solution. The
tabu list is stored in a text file which is then exchanged between AMPL
and CPLEX. Every time CPLEX finds an integer feasible solution, the
specialized incumbent callback checks whether the new solution appears
in the tabu list. If this is the case, the solution is rejected, otherwise the
solution is accepted. CPLEX continues executing until the optimal solu-
tion (excluding those forbidden) is found or a time limit is reached. In
the case where an integer solution (x′, y′) found by CPLEX at the root
node appears in the tabu list, CPLEX stops and no new integer feasible
solution is passed to FP. In such a case, we amended problem (P2) with
a no-good cut [25] which excludes (x′, y′) and we call CPLEX again.

We also use a new solver/reformulator called ROSE (Reformulation
Optimization Software Engine, see [26]), of which we exploit the following
features.

1. Model analysis: getting information about nonlinearity and convexity
of the constraints and integrality requirements of the variables (nec-
essary to define (P1) and (P2)).

2. Solution feasibility analysis: necessary to verify feasibility of the pro-
vided solutions.

3. OA cut generation: necessary to update (P2).

We remark that some of the above features were added to ROSE within
the context of the present work. In order to determine whether a con-
straint is convex, ROSE performs a recursive analysis of its expression
tree [27] to determine whether it is an affine combination of convex func-
tions. We call such a function evidently convex [26]. Evident convexity is
a stricter notion than convexity: evidently convex functions are convex
but the converse may not hold. Thus, it might happen that a convex con-
straint is labelled nonconvex; the information provided is in any case safe
for our purposes, i.e., we generate OA cuts only from constraints which
are certified to be convex.

Experiments with a Feasibility Pump approach for nonconvex MINLPs 9

4 Computational Results

In this section we report the results of preliminary computational exper-
iments performed on an Intel Xeon 2.4 GHz with 8 GB RAM running
Linux. We present the results in Tables 1-3. The algorithm terminates
after the first MINLP feasible solution is found or a time limit is reached.
The parameters are set in the following way: time limit of 2 hours of
user CPU time, the absolute feasibility tolerance to evaluate constraints
is 1e-6, and the relative feasibility tolerance is 1e-3 (used if absolute fea-
sibility test fails). The NLP solver used is IPOPT 3.5 trunk [23]. As a
test set we use 243 instances taken from MINLPLib [28] (all those used
in [12] excluding oil and oil2 because the log10 function is not sup-
ported by ROSE). We found an MINLP feasible solution for 199 of the
instances as reported in Table 1. For each instance we report the CPU
time (in seconds) needed to find the (first) feasible solution (0 if it was
found in less than 1 second) and the objective function value of such a
solution. For 15 of the 199 solved instances, the algorithm found a fea-
sible solution whose value is equal to the best-known solution reported
in http://www.gamsworld.org/minlp/minlplib/ within a 0.1% toler-
ance. The names of these instances are marked in boldface in Table 1.
The instances for which the time limit is reached without finding any
MINLP feasible solution are 19 and their names are reported in Table 2.
The remaining 25 instances encounter some numerical problems during
the execution (see Table 3). In general, finding a MINLP feasible solution
for 199 of these 243 very difficult instances can be considered a very good
performance for our algorithm. Of course the algorithm can be highly im-
proved by taking into account the quality of the solution. First of all there
is the possibility of continuing the execution of the algorithm instead of
stopping it when the first feasible solution is found. Moreover, in most
of the subproblems we solve the original objective function is completely
neglected. Using it in some way, i.e., combining it with the objective func-
tions of subproblems (P1) and (P2) or adding a constraint which limits
the value of the objective function, might lead to an improvement of the
quality of the solutions obtained with the proposed algorithm. That would
be in the spirit of [4].

5 Conclusions

In this paper we presented a Feasibility Pump algorithm aimed at solving
nonconvex Mixed Integer Nonlinear Programming problems. The pro-
posed algorithm is tailored to limit the impact of the nonconvexities in

10 D’Ambrosio, Frangioni, Liberti, Lodi

Table 1. Instances for which a feasible solution was found within the time limit (199/243). The solution
found is also the best-known solution for the instances marked in boldface.

instance time value instance time value instance time value
alan 0 4.22 gear3 0 0.73 ortez 0 -0.39
batchdes 0 228,396.11 gear4 0 961,544.10 parallel 0 40,000,015,621.29
batch 0 352,742.98 gear 0 0.73 prob02 0 112,235.42
contvar 608 19,442,328.89 gkocis 0 0.00 prob03 0 10.00
csched1a 0 -25,153.48 hmittelman 0 21.00 prob10 0 4.79
csched1 0 -21,049.22 johnall 615 -201.29 procsel 0 0.00
csched2a 4 -102,867.73 m3 0 2,400,000.00 product 17 -1,777.15
csched2 203 -120,066.02 m6 0 6,480,000.00 qap 0 499,512.00
deb6 4 237.10 m7 ar2 1 1 7,880,028.40 qapw 610 460,118.00
deb7 13 369.83 m7 ar25 1 1 7,879,969.18 ravem 171 764,411.64
deb8 2 1,451,454.29 m7 ar3 1 0 7,880,033.30 ravempb 185 764,411.83
deb9 18 426.57 m7 ar4 1 0 7,880,035.06 risk2bpb 2 -10.19
detf1 128 15,976.03 m7 ar5 1 0 7,880,035.20 saa 2 169 15,976.03
du-opt5 0 9,782.47 m7 0 7,880,000.02 sep1 0 -361.23
du-opt 0 11,987.72 mbtd 5,058 98.53 space25a 134 650.69
eg all s 62 100,003.77 meanvarx 0 21.36 space25 446 650.69
eg disc2 s 7 100,004.34 no7 ar25 1 2,986 3,999,986.54 spectra2 0 304.79
eg disc s 9 100,005.46 no7 ar3 1 14 3,999,983.93 spring 1 1.31
elf 0 2,399,203.66 no7 ar4 1 138 3,999,989.85 st e13 0 2.60
eniplac 2 -102,094.64 no7 ar5 1 7 3,999,987.47 st e14 0 14.56
enpro48 609 1,642,171.14 nous1 0 2.11 st e15 0 8.48
enpro48pb 610 1,642,182.90 nous2 0 2.13 st e27 0 2.00
enpro56 607 707,302.79 nuclear14a 1,839 -1.11 st e29 0 -0.30
enpro56pb 607 707,302.97 nuclear14b 670 -1.10 st e31 1 -0.42
ex1221 0 8.48 nuclear14 647 -1.12 st e32 0 -1.43
ex1222 0 1.08 nuclear24a 1,826 -1.11 st e35 0 132,703.17
ex1223a 0 14.56 nuclear24b 668 -1.10 st e36 1 -166.44
ex1223b 0 14.56 nuclear24 830 -1.11 st e38 0 7,447.76
ex1223 0 14.56 nuclear25a 902 -1.09 st miqp1 0 281.00
ex1224 0 -0.30 nuclear25b 627 -1.08 st miqp2 0 7.00
ex1225 0 34.00 nuclear25 1,213 -1.11 st miqp3 0 0.00
ex1226 0 -6.12 nuclearva 132 -1.01 st miqp4 0 -0.19
ex1233 1 253,381.69 nuclearvb 111 -1.02 st miqp5 0 1,688.13
ex1243 0 168,497.80 nuclearvc 119 -0.99 stockcycle 5 218,209.57
ex1244 0 95,415.23 nuclearvd 424 -1.03 st test1 0 0.00
ex1263a 1 31.00 nuclearve 406 -1.03 st test2 0 0.00
ex1263 66 121.00 nuclearvf 373 -1.02 st test3 0 0.00
ex1264a 0 12.00 nvs01 0 491.99 st test4 0 7.00
ex1264 29 18.30 nvs02 0 7.08 st test5 0 -110.00
ex1265a 2 16.50 nvs03 0 16.00 st test6 0 567.00
ex1265 158 12.30 nvs04 0 10,039,769,362.12 st test8 0 24,728.00
ex1266a 0 10.30 nvs06 0 11.60 st testgr1 0 0.00
ex1266 628 34.60 nvs07 0 6.00 st testgr3 0 0.00
ex3 0 115.01 nvs08 0 24,119.23 st testph4 1 0.00
ex3pb 0 115.01 nvs09 0 12.97 synheat 0 248,723.92
ex4 0 2,556,587.28 nvs10 0 -102.40 synthes1 0 10.00
fac1 0 542,993,581.64 nvs11 0 -153.00 synthes2 0 136.08
fac2 1 1,951,965,123.38 nvs12 0 -188.00 synthes3 0 110.74
fac3 0 104,966,210.19 nvs13 0 -166.40 tln2 1 28.30
feedtray2 2 0.00 nvs14 0 -29,219.54 tln4 1 12.00
feedtray 0 -12.41 nvs15 0 1.00 tln5 0 16.50
fo7 2 11 1,200,000.00 nvs16 0 14.20 tln6 1 25.10
fo7 ar25 1 3,066 1,199,994.92 nvs17 0 -279.00 tln7 1,072 107.80
fo7 ar3 1 8 1,199,996.77 nvs18 0 -209.00 tloss 5 24.10
fo7 ar4 1 141 1,199,998.07 nvs19 0 -282.40 tls2 1 5.30
fo7 ar5 1 7 1,199,996.27 nvs20 0 138,691,481.67 tls4 22 10.00
fo8 ar4 1 430 1,399,992.82 nvs21 0 0.00 tls5 60 22.50
fo8 ar5 1 13 1,399,994.06 nvs23 1 -454.80 tltr 0 48.07
fo8 1,330 1,400,000.00 nvs24 1 -536.20 uselinear 51 1,951.37
fo9 ar3 1 417 1,599,990.33 o7 2 10 4,800,000.01 util 1 4,339.27
fo9 ar4 1 3,986 1,599,990.28 o7 ar25 1 2,987 4,799,982.00 var con10 10 463.17
fo9 ar5 1 15 1,599,993.97 o7 ar3 1 7 4,799,979.54 var con5 7 315.17
fo9 196 1,600,000.00 o7 ar4 1 136 4,799,985.92 water4 5 3,335,264.98
fuel 0 14,396.50 o7 ar5 1 8 4,799,985.91 waterx 0 3,336,240.83
gasnet 62 10,246,277.62 o8 ar4 1 622 8,199,969.73 waterz 3 3,355,464.09
gbd 0 3.73 o9 ar4 1 3,953 8,199,964.62
gear2 0 0.73 oaer 0 0.00

the MINLPs. These difficulties are extensively discussed. The preliminary

Experiments with a Feasibility Pump approach for nonconvex MINLPs 11

Table 2. Instances for which no feasible solution was found within the time limit (19/243)

deb10 fo9 ar2 1 lop97icx nuclear49 tls12
ex1252 fo9 ar25 1 nuclear10a product2 tls6
fo8 ar25 1 gastrans nuclear49a space960 tls7
fo8 ar3 1 lop97ic nuclear49b tln12

Table 3. Instances with numerical problems during the execution (25/243)

4stufen fo 7 ar 2 1 nuclear104 o7 super2
beuster fo7 nuclear10b pump super3
cecil 13 fo 8 ar 2 1 nvs05 risk2b super3t
eg int s minlphix nvs22 st e40 waste
ex1252a no 7 ar 2 1 o 7 ar 2 1 super1 windfac

results show that the algorithm behaves well with general problems on
instances taken from MINLPLib.

References

1. Glover, F., Kochenberger, G., eds.: Handbook of Metaheuristics. Kluwer Academic
Publishers, Dordrecht, The Netherlands (2003)

2. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Mathematical Program-
ming 104 (2004) 91–104

3. Bertacco, L., Fischetti, M., Lodi, A.: A feasibility pump heuristic for general
mixed-integer problems. Discrete Optimization 4 (2007) 63–76

4. Achterberg, T., Berthold, T.: Improving the feasibility pump. Discrete Optimiza-
tion 4 (2007) 77–86

5. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98 (2002)
23–47

6. Danna, E., Rothberg, E., Pape, C.L.: Exploiting relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming 102 (2005) 71–90

7. Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming 36(3) (1986) 307–339

8. Bonami, P., Cornuéjols, G., Lodi, A., Margot, F.: A feasibility pump for mixed
integer nonlinear programs. Mathematical Programming 119 (2009) 331–352

9. Abhishek, K.: Topics in Mixed Integer Nonlinear Programming. PhD thesis, Lehigh
University (2008)

10. Bonami, P., Gonçalves, J.: Primal heuristics for mixed integer nonlinear programs.
Technical report, IBM Research Report RC24639 (2008)

11. Vavasis, S.: Nonlinear Optimization: Complexity Issues. Oxford University Press,
Oxford (1991)

12. Liberti, L., Nannicini, G., Mladenovic, N.: A good recipe for solving MINLPs. In:
Matheuristics08 Proceedings. (2008)

13. Nannicini, G., Belotti, P., Liberti, L.: A local branching heuristic for MINLPs.
ArXiv, paper 0812.2188 (2009)

14. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer ap-
proximation. Mathematical Programming 66 (1994) 327–349

15. Fletcher, R., Leyffer, S.: Numerical experience with lower bounds for MIQP
branch-and-bound. SIAM Journal of Optimization 8(2) (1998) 604–616

16. Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization prob-
lems by cutting plane techniques. Optimization and Engineering 3 (2002) 235–280

12 D’Ambrosio, Frangioni, Liberti, Lodi

17. Westerlund, T.: Some transformation techniques in global optimization. In Lib-
erti, L., Maculan, N., eds.: Global Optimization: from Theory to Implementation.
Springer, Berlin (2006) 45–74

18. Consulting, A., Development: SBB Release Notes. (2002)
19. Abhishek, K., Leyffer, S., Linderoth, J.: FilMINT: An outer-approximation based

solver for nonlinear mixed-integer programs. Technical Report ANL/MCS-P1374-
0906, Argonne National Laboratory (2007)

20. Fischetti, M., Salvagnin, D.: Feasibility pump 2.0. Technical report, DEI, Univer-
sity of Padova (September 2008)

21. Schoen, F.: Two-phase methods for global optimization. [31] 151–177
22. Fourer, R., Gay, D., Kernighan, B.: AMPL: A Modeling Language for Mathe-

matical Programming. Second edn. Duxbury Press/Brooks/Cole Publishing Co.
(2003)

23. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Mathematical
Programming 106(1) (2006) 25–57

24. Ilog-Cplex. www.ilog.com/products/cplex (v. 11.0)
25. D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: On Interval-subgradient and

No-good Cuts. Technical Report DEIS - OR - 09 - 09, Dipartimento di Elettronica,
Informatica e Sistemistica, Università di Bologna (2009)

26. Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical program-
ming: a computational approach. In Abraham, A., Hassanien, A.E., Siarry, P.,
Engelbrecht, A., eds.: Foundations of Computational Intelligence Vol. 3. Number
203 in Studies in Computational Intelligence. Springer, Berlin (2009) 153–234

27. Liberti, L.: Writing global optimization software. [30] 211–262
28. Bussieck, M., Drud, A., Meeraus, A.: MINLPLib - a collection of test models for

mixed-integer nonlinear programming. INFORMS Journal on Computing 15(1)
(2003) 114–119

29. Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear
Programming. International Series of Numerical Mathematics, Birkhäuser Verlag
(2005)

30. Liberti, L., Maculan, N., eds.: Global Optimization: from Theory to Implementa-
tion. Springer, Berlin (2006)

31. Pardalos, P., Romeijn, H., eds.: Handbook of Global Optimization. Volume 2.
Kluwer Academic Publishers, Dordrecht (2002)

