
Journal name manuscript No.
(will be inserted by the editor)

Submodular maximization and its generalization through an
intersection cut lens

Liding Xu · Leo Liberti

November 2, 2023

Abstract We study a mixed-integer set S := {(x, t) ∈ {0, 1}n × R : f(x) ≥ t} arising in the
submodular maximization problem, where f is a submodular function defined over {0, 1}n. We
use intersection cuts to tighten a polyhedral outer approximation of S. We construct a continuous
extension F̄f of f , which is convex and defined over the entire space Rn. We show that the epigraph
epi(F̄f) of F̄f is an S-free set, and characterize maximal S-free sets containing epi(F̄f). We propose
a hybrid discrete Newton algorithm to compute an intersection cut efficiently and exactly. Our
results are generalized to the hypograph or the superlevel set of a submodular-supermodular
function over the Boolean hypercube, which is a model for discrete nonconvexity. A consequence
of these results is intersection cuts for Boolean multilinear constraints. We evaluate our techniques
on max cut, pseudo Boolean maximization, and Bayesian D-optimal design problems within a
MIP solver.

Keywords MINLP · submodular maximization · submodular-supermodular functions ·
intersection cuts · Boolean multilinear functions · D-optimal design

Mathematics Subject Classification (2000) MSC 90C10 · 90C26 · 90C57

1 Introduction

A function f : {0, 1}n → R is called submodular (over {0, 1}n), if for all x, x′ ∈ {0, 1}n, one has
f(x)+ f(x′) ≥ f(max(x, x′))+ f(min(x, x′)), where max and min are element-wise operators. We
consider the submodular maximization problem:

max
t∈R

t s.t. f(x) ≥ t, x ∈ {0, 1}n ∩ X . (1)

where X ⊆ Rn is a set describing additional constraints. We study valid inequalities for the
mixed-integer set hypo{0,1}n(f) := {(x, t) ∈ {0, 1}n × R : f(x) ≥ t}, which we call the hypograph
of f over the Boolean hypercube {0, 1}n (or, for brevity, the Boolean-hypograph of f).

The maximization of arbitrary submodular functions (i.e., Eq. (1)) can be reduced to a Mixed-
Integer Linear Program (MILP) with exponentially many linear inequalities [70]. No polynomial-
time algorithm is yet known to separate these inequalities. The Benders-like exact approach based
on a branch-and-cut algorithm proposed in [32] provides global dual bounds for primal solutions,
and achieves a finite convergence rate.

Many submodular maximization problems (e.g., max cut with positive edge weights [80], D-
optimal design [78], and utility maximization [5]) have natural MILP or Mixed-Integer Nonlinear
Programming (MINLP) formulations, which can be solved using general-purpose global opti-
mization solvers. The algorithm underlying these solvers is typically a branch-and-cut algorithm,

Liding Xu, Leo Liberti
LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91128, France
E-mail: liding.xu@polytechnique.edu, liberti@lix.polytechnique.fr

2 Xu et al.

which uses polyhedral outer approximations to construct LP relaxations [17,18,84]. For submod-
ular maximization problems with convex MINLP formulations, a state-of-the-art algorithm also
uses polyhedral outer approximations [26].

Intersection cuts can be used to strengthen polyhedral outer approximations of a nonconvex
set S that is considered hard to optimize over. This paper considers the following setting of
separating intersection cuts. There exists a point z̃ not in S, and we want to strengthen the outer
approximation of S by finding a hyperplane separating z̃. In order to do so, we should find two
key ingredients [28] for constructing intersection cuts: a simplicial cone containing S with apex z̃,
and an S-free set, which is a convex set that does not contain any interior point of S. Moreover,
(inclusion-wise) maximal S-free sets generate strong intersection cuts not dominated by other
intersection cuts.

Intersection cuts were initially devised in the continuous setting (the papers [87], cited in [54,
Ch. III], appeared before the classic paper [12]), where they could approximate the hypograph
S of a convex function over a polytope. There is a unique maximal S-free set: the epigraph of
that convex function. Later, intersection cuts were used in the discrete setting [12], where S is a
lattice. Several more families of lattice-free sets (e.g., splits, triangles, and spheres [28,60]) were
described later.

The submodular maximization problem plays an intermediate role between these settings. On
the one hand, the submodular function f is defined over the Boolean hypercube {0, 1}n. Therefore,
the graph of f projected on Rn is a subset of a lattice. On the other hand, as a discrete analogue to
convex functions, f has a convex (thus continuous) extension over the hypercube [0, 1]n, namely
the Lovász extension [62]. We can extend the Lovász extension to a convex function, which we
call F̄f , over the entire n-dimensional Euclidean space Rn. This (continuous) function F̄f inherits
a rich combinatorial structure from f .

A function over {0, 1}n is called a submodular-supermodular (SS) function, if it is the difference
of two submodular functions over {0, 1}n. SS functions generalize submodular functions, which
are also discrete analogs of difference-of-convex (DC) functions. The epigraphs/superlevel sets
of DC functions can represent various nonconvex sets, e.g., quadratic sets [67] and signomial-
term sets [90]. This representation facilitates the derivation of intersection cuts [81]. In fact, SS
functions may represent some discrete nonconvex functions arising in combinatorial optimization.
For example, we will show that any Boolean multilinear function is an SS function.

In this paper, we first consider S as the Boolean-hypograph of the submodular function f .
We use convex extensions of f in order to construct some S-free sets. The Boolean-hypograph
set hypo{0,1}n(f) is a specialization of the constraint set {(x, t) ∈ {0, 1}n×R : f1(x)−f2(x) ≥ ℓt},
where f1 and f2 are two submodular functions over {0, 1}n and ℓ ∈ {0, 1}. Then, we consider
S as this general constraint set and extend our results to handle this general case. Finally, we
propose an efficient algorithm to compute intersection cuts derived from S-free sets. To the best
of our knowledge, intersection cuts have not been applied directly to approximate problems with
submodular and/or supermodular structures.

We implement intersection cuts within the SCIP solver [17] and test them on max cut, pseudo
Boolean maximization, and Bayesian D-optimal design problems. We show the strengths and
weaknesses of intersection cuts under these different settings.

1.1 Contributions

Our primary contribution is the construction of S-free sets for S as Boolean-hypographs of sub-
modular functions. We show that a maximal S-free set C × R can be lifted from a maximal
{0, 1}n-free set. We also give an alternative construction of S-free sets by exploiting the submod-
ularity. We relate the analytical properties of F̄f to its combinatorial properties, which inherit
those of the Lovász extension. We show that the epigraph epi(F̄f) of F̄f is an S-free set that
is larger than the epigraph of the Lovász extension. However, unlike in the continuous setting,
epi(F̄f) is not maximally S-free. We give necessary and sufficient conditions on maximal S-free
sets that contain epi(F̄f).

The second contribution is the computation of intersection cuts. We reduce the intersection
cut separation problem to solving univariate nonlinear equations, which we achieve by a hybrid
discrete Newton algorithm like [49]. We show that facets of epi(F̄f) can be separated in strongly

Submodular maximization and its generalization through an intersection cut lens 3

polynomial time. This implies that the (sub)-gradients required by the Newton algorithm can
be computed in a strongly polynomial time. The hybrid discrete Newton algorithm finds a zero
point of a univariate nonlinear equation in a finite number of steps. By contrast, the conventional
bisection algorithm only guarantees ϵ-approximated solutions for ϵ > 0.

Lastly, we extend the previous findings to constraint sets involving SS functions. We show
that any Boolean multilinear function is an SS function. This result yields intersection cuts for
multilinear constraints in binary variables.

1.2 Literature review

The classical definition of submodular set functions [62] is equivalent to the definition of submod-
ular functions over the Boolean hypercube through Boolean indicator-characterization of subsets.
The latter definition is used in this paper, and it can be generalized over any Cartesian product of
subsets of R [85]. The work of Jack Edmonds [43] plays a prominent role in the study of the com-
binatorial properties of submodular functions. We refer to [80] for basic concepts and definitions.
The convex envelope of a submodular function f is its Lovász extension [11,62]. Submodular
functions are a subclass of discrete convex functions, and we refer to [68] for more details about
discrete convex analysis.

The base inequalities [70] are a class of valid linear inequalities for the Boolean-hypographs
of general submodular functions. For a class of special submodular functions, lifting procedures
[5,83] can strengthen the base inequalities. Given a point not in the Boolean-hypograph, the
base inequalities can be separated either using heuristics [5] or a Benders-like framework [32] if
the point to be separated is integer. The method defined in [11] combines valid inequalities for
the submodular and supermodular components of an SS function. We refer to [9,10,20,21,52,56,
74,82,90,91] for more details about the exploitation of submodular/supermodular functions in
mathematical programs. Supermodular polynomials in binary variables are defined and studied
in [20,74]. The submodularity of the D-optimal design problem is exploited in [77,82].

As already mentioned, intersection cuts generate valid inequalities for sets that are hard
to optimize over. Gomory introduced the corner polyhedron [50], and his celebrated mixed-
integer cuts [51] are special intersection cuts derived from split disjunctions [69]. The definition
of intersection cuts for arbitrary set S is due to [42,48]. We refer to [6,7,13,15,30,31,34,41,42,
75] for a more in-depth analysis. The method given in [86] can generate valid inequalities that
cut off points outside S-free sets. We refer to [7,16,58,59,64,65] for relevant recent developments
in mixed-integer conic programming.

For the cases where the nonconvexity of S is not just due to integer variables, we refer to
[45] for bilevel programs, [19] for outer-product sets, [67,66] for quadratic constraint sets, [90] for
signomial-term sets, and [46] for bilinear sets. The method given in [81] constructs intersection
cuts for sets arising from factorable programs that contain DC functions [55].

Next, we discuss valid inequalities for polynomial programming, because we use polynomial
programs in binary variables as a benchmark in our computational study. In [19], intersection
cuts approximate a nonconvex lifted set, namely the outer product set arising from the extended
formulation of a polynomial program. Lifted sets link decision variables to auxiliary variables
representing (graphs of) monomials up to a given degree. We remark that in most combinatorial
optimization problems, decision variables are binaries. The polynomial program of interest is then
a Boolean Multilinear Program (BMP). The corresponding lifted set is the Boolean multilinear set

[35,47], the convex hull of which is the so-called Boolean multilinear polytope. Valid inequalities
for the Boolean multilinear polytope may be stronger than those for the convex hull of the
outer product set. Various Gomory-Chvátal-based inequalities [37,38,39,40] are valid for the
multilinear polytope. The separation and strength of these inequalities depend on the hypergraph
representing the underlying sparsity pattern of the multilinear set.

We consider a constrained polynomial program, and assume that some of its constraints are
neither integrality constraints nor variable bound constraints. After lifting, those constraints
are linear and thus define a convex set S1. The lifted set S2 is nonconvex, and S1 ̸⊆ S2. The
polynomial program is then equivalent to linear optimization over conv(S1 ∩ S2). However, in
general, conv(S1 ∩ S2) ̸= S1 ∩ conv(S2), so the convexification of the lifted set may not yield an
equivalent convex problem. To address this issue, one attempt is to directly consider conv(S1 ∩

4 Xu et al.

S2) and generate valid inequalities for it. Some work in this sense exists for certain interesting
special cases, e.g. the intersection of multilinear sets with additional constraint sets such as
cardinality constraints [23]. Another attempt is to consider constraints in projected formulations,
e.g., in mixed-integer quadratically constrained quadratic programs [79]. Since the variables of
the projected formulation are fewer than those of the extended formulation, this approach is
also amenable to computation. In [24,67], intersection cuts for the set defined by a quadratic
constraint are derived. If additionally, some of the nonbasic variables of the LP relaxation need
to be integer, the monoidal technique [25] can strengthen such intersection cuts.

However, generating valid inequalities for Boolean multilinear constraints, and, more gener-
ally, constructing S-free sets for nonlinear constraints on discrete variables, remain problems of
considerable interest. In this paper, we look at these questions through a “submodularity lens”.

1.3 Notation

We let [n] := {1, . . . , n} for any positive integer n. We denote B := {0, 1}n, B̄ := [0, 1]n. We assume
that [n] is equipped with the natural number order. 1 denotes the all-one vector, 1j denotes the
j-th unit vector, and 0 denotes the all-zero vector. For S ⊆ [n], we denote by char(S) ∈ B the
characteristic vector of S. For vectors a, b, we let (a, b) be their concatenation, and extend this
notation naturally to the case where b is a scalar. Given a set D ⊆ Rn and a function g : D → R,
we adopt the usual notation epiD(g), graphD(g),hypoD(g) to denote the epigraph, graph and
hypograph of g over D, respectively. For example, graphD(g) := {(x, t) ∈ D × R : g(x) = t}.
When D is omitted in the subscript, it is assumed to be Rn. For any set S, we denote by bd(S),
ext(S), int(S) its boundary, extreme points, interior, respectively. When S is not full-dimensional,
relint(S) and relbd(S) denote its relative interior and relative boundary, respectively.

1.4 Outline

The rest of the paper is organized as follows. In Sect. 2, we recall some preliminaries for intersec-
tion cuts. In Sect. 3, we study extensions of submodular functions. In Sect. 4, we study the S-free
sets for the submodular function. In Sect. 5, we generalize the previous results for sets involving
SS functions. In Sect. 6, we consider applications for intersection cuts to Boolean multilinear
constraints and Bayesian D-optimal design. In Sect. 7, we propose the hybrid discrete Newton
algorithm for computing intersection cuts. In Sect. 8, we analyze the computational results.

2 Intersection cut preliminaries

In this section, we review the basic concept of intersection cuts. Given a nonconvex set S and a
point z̃ ̸∈ S, we show how to construct intersection cuts, which constitute a specific class of valid
linear inequalities for S that separate z̃.

The construction of intersection cuts [28] needs two components: a simplicial cone R contain-
ing S with apex z̃, and an S-free set C with z̃ ∈ int(C) defined as follows.

Definition 1 Given S ⊆ Rp, a closed set C is called (convex) S-free, if C is convex and int(C)∩S =
∅.

Then an intersection cut separates z̃ from conv (R∖ int(C)) (a set which, we note, contains
S) as follows. We write the half-space and ray representations of R:

R = {z ∈ Rp : A(z − z̃) ≤ 0} = {z ∈ Rp : ∃η ∈ Rp
+ z = z̃ +

p∑
j=1

ηjr
j}, (2)

where A ∈ Rp×p is an invertible matrix, and rj is the j-th column of −A−1 and an extreme ray
of R.

Define the step length

η∗j := sup
ηj≥0

{ηj : z̃ + ηjr
j ∈ C}. (3)

Submodular maximization and its generalization through an intersection cut lens 5

The point z̃ is separated by an intersection cut

p∑
j=1

1

η∗j
Aj(z − z̃) ≤ −1. (4)

Let C, C∗ be two S-free sets such that C ⊆ C∗. Then the intersection cut derived from C∗ dominates
the intersection cut derived from C, see Remark 3.2 of [31]. This makes deriving maximal S-free
sets desirable.

3 Extensions of submodular functions

In this section, we study continuous extensions of submodular functions. W.l.o.g., we assume in
the sequel that, for any submodular function f , f(0) = 0 holds (by a translation of a constant).
It is known that the Lovász extension [62] extends f from B to B̄. Based on this extension, we
construct another extension F̄f of f defined over the entire space Rn, and study its analytical
and combinatorial structures.

We first look at some polyhedra associated with the submodular function f [11,80]. Its extended
polymatroid is defined as

EPMf := {s ∈ Rn : ∀x ∈ B, sx ≤ f(x)}, (5)

and the convex hull of the Boolean-epigraph f over B is defined as

Qf := conv(epiB(f)).

Recall that ext(EPMf) are the vertices of EPMf . We further define the polyhedron

EEf := {(x, t) ∈ Rn+1 : ∀s ∈ ext(EPMf), sx ≤ t}. (6)

In fact, EEf contains Qf , because of the following lemma:

Lemma 1 ([11]) Qf = EEf ∩ (B̄ ×R).

Therefore, x ∈ B̄ defines trivial facets of Qf , and non-trivial facets of Qf are sx ≤ t, where s

is a vertex of EPMf .
These polyhedra in turn give rise to some functions associated with f . A convex function g is

a convex underestimating function of f over B, if for all x ∈ B, g(x) ≤ f(x). The convex envelope Ff
is defined as the maximal convex underestimating function of f over B. Since Qf is the epigraph
of Ff , by Lemma 1,

Ff : B̄ → R, x 7→ max
s∈ext(EPMf)

sx. (7)

We remark that Ff is equivalent to the Lovász extension of f [11]. We will show that the cardi-
nality | ext(EPMf)| is not polynomial in n. Thus, when computing Ff , it is inefficient to evaluate
all sx for s ∈ ext(EPMf). However, the value and the (sub)-gradients of Ff at points in B̄ can be
computed in a strongly polynomial time [11].

We define the envelope of f extended to Rn as

F̄f : Rn → R, x 7→ max
s∈ext(EPMf)

sx. (8)

We note that F̄f simply enlarges the domain of Ff from B̄ to Rn. This extension is algebraically
simple, but analytically less so. The analytical properties of F̄f outside B̄ will be studied in further
detail. We find that EEf is the epigraph of F̄f , i.e., EEf = epi(F̄f), so F̄f is a convex function. Since
every facet sx ≤ t of EEf is in one-to-one correspondence to a linear underestimator function sx

of F̄f , we call EEf the extended envelope epigraph.
The problem of efficiently evaluating F̄f and its associated sub-gradients at a point in Rn

is very important, because it is crucial in constructing intersection cuts. Regarding F̄f , one can
compute its value and sub-gradients at points in B̄ in a strongly polynomial time using a sorting
algorithm [11]. As the Lovász extension Ff is a restriction of F̄f to the hypercube B̄, this fact
implies that many properties of Ff may also hold for F̄f . In the following, we will show how we

6 Xu et al.

can reuse the sorting algorithm to compute F̄f over the entire space Rn. This extension requires
us to study the properties of F̄f and EEf .

We first look at the combinatorial structure associated with the facets of EEf . Recall that
a permutation π on [n] is a bijective map from [n] to itself. The map π(i) ∈ [n] is the image of
an element i ∈ [n] under this permutation. We denote by Sn the set of permutations on [n]. We
define the following sets and vectors related to permutations.

Definition 2 Given π ∈ Sn and i ∈ {0, . . . , n}, we define π([0]) := ∅, π([i]) := {π(1), . . . , π(i)},
and vi(π) := char(π([i])). We also define the map σ : Sn → Rn such that it satisfies σ(π)π(i) =

f(vi(π))− f(vi−1(π)) for all π ∈ Sn and for all i ∈ [n].

The set of vertices ext(EPMf) is the image of Sn under the map σ.

Lemma 2 ([43]) σ(Sn) = ext(EPMf).

Every permutation π ∈ Sn induces a vertex σ(π) of ext(EPMf) through the map σ, so the
cardinality of ext(EPMf) is n! (not polynomial in n). The above lemma shows that every facet
of EEf (a non-trivial facet of Qf) is given as σ(π)x ≤ t, and every linear underestimator of F̄f is
given as σ(π)x.

Proposition 1 Given a permutation π ∈ Sn, for all i ∈ [n]∪{0}, the facet-defining inequality σ(π)x ≤
t is supported by

(
vi(π), f(vi(π))

)
, i.e., σ(π)vi(π) = f(vi(π)).

Proof We have:

σ(π)vi(π) =
∑
j∈[i]

σ(π)π(j) =
∑
j∈[i]

(
f(vj(π))− f(vj−1(π))

)
= f(vi(π))− f(0) = f(vi(π)),

where the first equation follows from Defn. 2, the second from Lemma 2, and the last two from
the expansion of the sum. ⊓⊔

Conversely to Prop. 1, given a point in the graph of f , we can construct all the facets supported
by it.

Corollary 1 For a point v ∈ B, let ι be the number of ones in v. If a permutation π ∈ Sn satisfies

that v = vι(π), then (v, f(v)) supports the facet-defining inequality σ(π)x ≤ t of EEf .

By Lemma 1, one may observe that a facet of EEf includes and extends geometrically a facet
of Qf . This observation reveals the close relation between Ff in (7) and F̄f in (8). In order to
separate facets of EEf , we consider F̄f since EEf is its epigraph.

From a convex analysis perspective, the nonsmooth polyhedral function F̄f is the maximum
of a set of linear functions, so it is convex and positive homogeneous of degree 1. This means that
F̄f is subdifferentiable [53]. Moreover, F̄f has the following analytical properties.

Proposition 2 For all x′ ∈ Rn, ∂F̄f (x
′) = conv(argmaxs∈ext(EPMf)

sx′). Moreover, for all s ∈
∂F̄f (x

′), F̄f (x
′) = sx′ and F̄f (x) ≥ sx for any x ∈ Rn.

Proof As F̄f (x) = maxs∈ext(EPMf) sx, F̄f is convex. By Lemma 3.1.13 of [71], it follows that

∂F̄f (x
′) = conv(argmaxs∈ext(EPMf)

sx′). Since s ∈ ∂F̄f (x
′), this implies that s =

∑
i λis

i with

si ∈ ext(EPMf) and
∑

i λi = 1. Thus, sx′ =
∑

i λis
ix′ =

∑
i λiF̄f (x

′) = F̄f (x
′). By convexity of

F̄f , we have F̄f (x) ≥ F̄f (x
′) + s(x− x′) = sx′ + s(x− x′) = sx. ⊓⊔

Given x̃ ∈ Rn, the evaluation of F̄f (x̃) is called the extended polymatroid vertex maximization

problem, as by definition F̄f (x̃) equals

max
s∈ext(EPMf)

sx̃. (9)

By Prop. 2, any optimal solution s∗ of Eq. (9) is a subgradient of F̄f at x̃, i.e., s∗ ∈ ∂F̄f (x̃). By
Lemma 2, maxs∈ext(EPMf) sx̃ = maxπ∈Sn

σ(π)x̃, so (9) asks for a permutation π∗ that maximizes
σ(π∗)x̃. One of the main results of this section is an algorithm to solve (9).

Submodular maximization and its generalization through an intersection cut lens 7

To tackle (9), we look at a related relaxed problem, namely the extended polymatroid maxi-

mization problem:
max

s∈EPMf

sx̃. (10)

If x̃ ≥ 0, a strongly polynomial time sorting algorithm (a greedy algorithm, in fact) can be used
to solve the extended polymatroid maximization [43]. This algorithm first sorts the entries of
x̃ in an non-increasing order, then it finds a permutation π∗ ∈ Sn such that x̃π∗(1) ≥ · · · ≥
x̃π∗(n) ≥ 0; finally, it finds an optimal solution to (10) being the vector σ(π∗) = (f(v1(π∗)) −
f(v0(π∗)), . . . , f(vn(π∗))− f(vn−1(π∗))). See [43] for more details.

We note that the vertices ext(EPMf) are a finite set, so (9) is always bounded. Moreover, by
the Minkowski-Weyl theorem [29], EPMf is the Minkowski sum of the polytope conv(ext(EPMf))
and the recession cone of EPMf . By Proposition 3.15 of [29] and (5), the recession cone admits
the form {s ∈ Rn : ∀x ∈ B, sx ≤ 0}, so the cone is non-empty, and EPMf is unbounded. This
means that (10) may be unbounded.

Lemma 3 ([11,43]) When x̃ ≥ 0, the optimum of (10) is a vertex of EPMf (i.e., in ext(EPMf)),
and (9) is equivalent to (10); when x̃ has some negative entries, (9) is unbounded, and therefore not

equivalent to (10).

Even if (9) is not equivalent to (10) in general, we show that (9) can still be solved by the sorting
algorithm.

Proposition 3 The output of the sorting algorithm is an optimal solution of the extended polymatroid

vertex maximization problem (9).

Proof Let π∗ be the permutation found by the sorting algorithm. By Lemma 2, σ(π∗) is in
ext(EPMf) and hence a feasible solution to (9). Next, we prove the optimality of σ(π∗). Let the
scalar d := mini∈[n] x̃i. We can write x̃ as the sum of (x̃−d1) and d1, where the translated vector
x̃− d1 = (x̃i − d)i∈[n] has non-negative components. We find that the following inequalities hold:

σ(π∗)x̃ ≤ max
s∈ext(EPMf)

sx̃ = max
s∈ext(EPMf)

s(x̃− d1+ d1)

≤ max
s∈ext(EPMf)

s(x̃− d1) + max
s∈ext(EPMf)

s(d1),
(11)

where the first inequality follows from the fact given by Lemma 2 that σ(π∗) is in ext(EPMf),
the last inequality follows from the fact that maximum of the sum is at most the sum of maxima.
We next construct the optimal solutions to maxs∈ext(EPMf) s(x̃ − d1) and maxs∈ext(EPMf) s(d1),
respectively. First, since the permutation π∗ maps x̃ into a vector with non-increasing entries and
the entries of d1 are identical, we have that (x̃ − d1)π∗(1) ≥ · · · ≥ (x̃ − d1)π∗(n). Since x̃ − d1 is
constructed to be non-negative, by Lemma 3, maxs∈EPMf

s(x̃ − d1) = maxs∈ext(EPMf) s(x̃ − d1).
Moreover, since π∗ is also the permutation that sorts (x̃−d1) in a non-increasing order, it follows
again from Lemma 3 that σ(π∗) is an optimal solution to maxs∈EPMf

s(x̃ − d1). This implies
that σ(π∗) is also an optimal solution to maxs∈ext(EPMf) s(x̃ − d1). Secondly, for any π ∈ Sn,
it follows from Defn. 2 that vn(π) = 1. This implies that σ(π)vn(π) = σ(π)1 = f(1), where
the last equation follows from Prop. 1. In addition, by Lemma 2, argmaxs∈ext(EPMf)

s(d1) =

σ(argmaxπ∈Sn
σ(π)(d1)). Since all σ(π)(d1) are identically equal to df(1), we can pick σ(π∗) as

the optimal solution to maxs∈ext(EPMf) s(d1). Finally, we find that maxs∈ext(EPMf) s(x̃− d1) and
maxs∈ext(EPMf) s(d1) have a common optimal solution σ(π∗). This implies that the inequalities
in (11) become equations, because

σ(π∗)x̃ ≤ max
s∈ext(EPMf)

sx̃ ≤ σ(π∗)(x̃− d1) + σ(π∗)(d1) = σ(π∗)x̃.

Therefore, σ(π∗) is an optimal solution to maxs∈ext(EPMf) sx̃.
⊓⊔

Given x̃ ∈ Rn, the sorting algorithm outputs a permutation acting on the entries of x̃. The
sorting algorithm is also translation-invariant, i.e., translating each entry of x̃ by the same value
does not change the output permutation. A by-product of Prop. 3 is that F̄f is linear over specific
lines specified as follows.

8 Xu et al.

Corollary 2 Let x̃ ∈ Rn, then F̄f is linear on x̃+ λ1 w.r.t. λ ∈ R.

We look at the boundary of EEf . By Prop. 1 and Cor. 1, for all x ∈ B, the point (x, f(x))
supports some facets of EEf .

Theorem 1 EEf ∩ hypoB(f) = graphB(f) ⊆ bd(EEf).

Proof We consider a point v ∈ B and look at the line ℓ = {(v, t) : t ∈ R}. It can be separated into
the restricted epigraph ℓ+ := {(v, t) : f(v) ≤ t} and the restricted hypograph ℓ− := {(v, t) : f(v) ≥
t}, as ℓ+ ∩ ℓ− = (v, f(v)) and ℓ = ℓ+ ∪ ℓ−. First, we know that, by definition of Qf and Lemma 1,
ℓ+ ⊆ Qf ⊆ EEf . Second, by Prop. 1, the point (v, f(v)) supports some facets of EEf , so the point
(v, t) with t < f(v) is separated by these facets from EEf . Thereby, we know that ℓ− ∩ EEf =
{(v, f(v))}. To summarize, we know that EEf ∩ ℓ = ℓ+ and (v, f(v)) ∈ bd(EEf). As graphB(f) =⋃

v∈B{(v, f(v))}, we have that graphB(f) ⊆ bd(EEf). As the hypograph hypoB(f) =
⋃

v∈B{(v, t) :
f(v) ≥ t} (union of restricted hypographs), we have that EEf ∩ hypoB(f) = graphB(f). ⊓⊔

⊓⊔

As mentioned above, F̄f is convex and EEf = epi(F̄f), so F̄f is also a continuous extension of
f . As EEf contains Qf , F̄f further extends Ff (the Lovász extension).

We now understand enough of the facial structure of EEf . By Prop. 2, we can also compute
the value and subgradients of F̄f at any point in Rn, which are used in the construction of
intersection cuts.

4 S-free sets for submodular functions

We consider two types of S-free sets for the Boolean-hypograph of a given submodular function
f .

First, we show that one can lift a maximal B-free set into a maximal hypoB(f)-free set.

Theorem 2 Let f : B → R be an arbitrary function, and let K be a maximal B-free set in Rn. Then

C := K × R is a maximal hypoB(f)-free set.

Proof We note that int(C) = int(K)×R. Since int(C)∩hypoB(f) = ∅, C is hypoB(f)-free. Assume
that there exists a hypoB(f)-free set C′ containing C. Then the recession cone of C′ must contain
that of C, so C′ = K′×R for some closed convex set K′ containing K. Moreover, K′ must be a B-free
set, otherwise, there exists a point x ∈ B ∩ int(K′) such that (x, f(x)) ∈ int(K′) × R = int(C′).
However, since K is maximally B-free, this implies that K = K′. As a result, C = C′, so C is
maximal. ⊓⊔

This construction does not rely on any structure of f , as it just lifts a B-free set. For any
j ∈ [n], the simple lifted split {x ∈ Rn : 0 ≤ xj ≤ 1} × R is a maximal hypoB(f)-free set. We
next construct hypoB(f)-free sets using submodularity, for both theoretical and computational
interests. We show that both the extended epigraph EEf and its strict subset Qf are hypoB(f)-free
sets.

Proposition 4 EEf , Qf are hypoB(f)-free sets.

Proof Since graphB(f) ⊆ bd(EEf), we conclude that EEf ∩ hypoB(f) ⊆ bd(EEf) and hence
int(EEf) ∩ hypoB(f) = ∅. Additionally, EEf is convex and hence hypoB(f)-free. As Qf ⊆ EEf ,
Qf is hypoB(f)-free set. ⊓⊔

It is known that the maximal S-free set for S as the hypograph of a convex function is its
epigraph. We shall show, however, that the extended epigraph EEf of a submodular function f

is not a maximal hypoB(f)-free set. At a high-level, a possible way to test the maximality of
EEf is as follows. The set Qf is the convex hull of epiB(f). Geometrically, Qf is the “minimal”
convex set containing epiB(f). Intuitively, it is unlikely that a “minimal” set turns out to be a
good “maximal” hypoB(f)-free set. We therefore remove some facets from Qf in order to enlarge
this polyhedron. After removing trivial facets of Qf , the enlarged polyhedron is the extended
epigraph EEf of the envelope of f . However, this enlargement is still not sufficient. We therefore
look at a further enlargement of EEf .

The following fundamental theorem gives a sufficient and necessary condition on (maximal)
hypoB(f)-free sets containing EEf .

Submodular maximization and its generalization through an intersection cut lens 9

Theorem 3 Let C be a full-dimensional closed convex set in Rn+1 containing EEf . Then C is a

hypoB(f)-free set if and only if C is graphB(f)-free. Moreover, C is a maximal hypoB(f)-free set if

and only if C is a polyhedron and there is at least one point of graphB(f) in the relative interior of

each facet of C.

Proof We note that by Thm. 1, graphB(f) ⊆ bd(EEf) ⊆ EEf ⊆ C. Thereby, graphB(f)∩int(C) = ∅
(i.e., C is graphB(f)-free) if and only if graphB(f) ⊆ bd(C).

We consider the hypoB(f)-freeness first. We prove the forward direction. Assume that C is
a hypoB(f)-free set. Suppose, to aim at a contradiction, that there exists a point (v, f(v)) ∈
int(C) ∩ graphB(f). Then there exists a sufficiently small ϵ > 0 such that (v, f(v) − ϵ) ∈ int(C),
but (v, f(v) − ϵ) ∈ hypoB(f), which leads to a contradiction. We prove the reverse direction.
Assume that C is graphB(f)-free. Suppose, to aim at a contradiction, that there exists a point
(v, f(v)−δ) ∈ int(C) with v ∈ B and δ > 0. As, for some ϵ > 0, (v, f(v)+ϵ) ⊆ int(EEf) ⊆ int(C), by
convexity of C, (v, f(v)) ∈ int(C), which leads to a contradiction. This implies that C is hypoB(f)-
free if and only if graphB(f)-free (or graphB(f) ⊆ bd(C)).

We consider maximality next. The proof is similar to that [14] for the bounded maximal
lattice-free set. Let C be a maximal graphB(f)-free set. For each v ∈ graphB(f), it follows from
the separating hyperplane theorem that there exists a half-space {z : avz ≤ bv} containing C such
that avv = bv. As graphB(f) is a finite set, the set P := {z : ∀v ∈ graphB(f), a

vz ≤ bv} is a
polyhedron. By construction, P is graphB(f)-free and C ⊆ P , thus C = P by maximality of C.

We now show that there is at least one point of graphB(f) in the relative interior of each
facet of C. Assume C = {z : ∀i ∈ M,aiz ≤ bi}, where aiz ≤ bi, i ∈ M , are all distinct facet-
defining inequalities for C. Suppose, to aim at a contradiction, that the facet Ft = {z ∈ C :
atz = bt} does not contain any point of graphB(f) in its relative interior. Let ϵ > 0, enlarge
C to another polyhedron C′ := {z : ∀i ∈ M \ {t}, aiz ≤ bi, a

tz ≤ bt + ϵ}. As C ⊊ C′ and C
is maximally graphB(f)-free, C′ contains points of graphB(f) in its interior. Thus, the point
z′ := argminz∈int(C′)∩graphB(f) a

tz exists. It follows from z′ ∈ int(C′) that ∀i ∈ M \ {t}, aiz′ < bi,

and atz′ < bt + ϵ. Since Ft = {z : ∀i ∈ M \ {t}, aiz ≤ bi, a
tz = bt}, atz′ cannot equal bt, otherwise,

this implies that Ft contains z′ ∈ graphB(f) in its relative interior. Since C is graphB(f)-free,
atz′ cannot be strictly less than bt, otherwise, this implies that C contains z′ ∈ graphB(f) in its
interior. Then, it must be that atz′ > bt, and C∗ := {∀i ∈ M \ {t}, aiz ≤ bi, a

tz ≤ atz′} strictly
includes C. By construction, C∗ does not contain any point of graphB(f) in its interior. This
contradicts the maximality of C. ⊓⊔

⊓⊔

The above theorem is purely geometrical. Since submodular functions are combinatorial ob-
jects, we translate this theorem to a combinatorial language. We first define a combinatorial
object in the Boolean hypercube B.

Definition 3 Let x0, x1, . . . , xn be n + 1 distinct points of B. They are called monotone, if 0 =
x0 < x1 < · · · < xn = 1. We call the corresponding ordered set (x0, . . . , xn) ⊆ B a monotone chain

in B.

Therefore, we use a monotone chain to represent a set of monotone points. Recall that vi(π) =
char(π([i])) defined in Defn. 2 is the characteristic vector of the image of the set [i] = {1, . . . , i}
under the permutation π. We have the following observation.

Proposition 5 The set Sn of permutations is in one-to-one correspondence to the set of monotone

chains via the map V defined as follows: for all π ∈ Sn, V (π) := (vi(π) | i ∈ N ∪ {0}).

Proof It suffices to prove that, under the map, each permutation is mapped to a monotone
chain, and for each monotone chain, there exists a permutation mapped to it. By Prop. 1, since
∅ = π(∅) = π([0]) ⊊ · · · ⊊ π([n]) = [n], by Defn. 2, 0 = v0(π) < · · · < vn(π) = 1, so V (π) is a
monotone chain. Conversely, given a monotone chain (x0, . . . , xn), we construct π as follows: by
default, π(0) = 0; and for all i ∈ [n], π(i) is the index of the unique non-zero entry of xi − xi−1.
It follows that V (π) is the chain. ⊓⊔

We find that permutations and monotone chains are indeed equivalent. We note that any n+1
distinct points from graphB(f) are affinely independent in Rn+1 and hence support a hyperplane
in Rn+1. Thereby, we can infer from Prop. 1 and Prop. 5 that

10 Xu et al.

Corollary 3 If (x0, . . . , xn) is a monotone chain in B, then distinct points (x0, f(x0)), . . . , (xn, f(xn))
of graphB(f) define (or support) a facet of the extended envelope epigraph EEf .

We say that this monotone chain induces the facet. In fact, we find that facets of EEf , per-
mutations on [n], and monotone chains in B are in one-to-one correspondence. Therefore, we can
view them as the same objects. In particular, Prop. 5 relates permutations and monotone chains.
We give the following characterization of permutations on [n].

Definition 4 A subset S′
n of permutations of Sn is called a cover, if

⋃
π∈S′

n
V (π) = B; moreover,

S′
n is called a minimal cover if, additionally, for all π ∈ S′

n, V (π)∖
⋃

π′∈S′
n:π′ ̸=π V (π′) is not empty.

We want to enlarge EEf by removing its facets. This is equivalent to removing permutations
from Sn. Let S′

n be a subset of permutations of Sn, and C(S′
n) := {(x, t) : ∀π ∈ S′

n, σ(π)x ≤ t}
denotes the relaxation of the extended envelope epigraph induced by S′

n. It is obvious that EEf =
C(Sn) ⊆ C(S′

n) for any S′
n ⊆ Sn. The following corollary translates Thm. 3 to a combinatorial

language.

Corollary 4 Let S′
n be a subset of permutations of Sn. C(S′

n) is hypoB(f)-free if and only if S′
n is a

cover. C(S′
n) is maximally hypoB(f)-free if and only if S′

n is a minimal cover.

Proof First, we note that C(S′
n), as a relaxation of EEf contains graphB(f). Next, we assume

that S′
n is a cover. Then points of graphB(f) support facets of C(S′

n). By Thm. 3, C(S′
n) is

hypoB(f)-free if and only if it is a cover. Finally, S′
n is a minimal cover, if and only if then each

facet of C(S′
n) has a point of graphB(f) in its interior. By Thm. 3, the later is equivalent to that

C(S′
n) is maximally hypoB(f)-free. ⊓⊔

We can now disprove the maximality EEf by means of a counter-example. Thanks to Cor. 4,
we can use a counting argument to show that we can remove facets from EEf . This results in a
new enlarged hypoB(f)-free polyhedron.

Proposition 6 EEf is not maximally hypoB(f)-free.

Proof It suffices to find a counter-example. Consider n = 3, B = {0, 1}3, there are 6 permutations,
and 6 monotone chains (see Fig. 1). We assume that, in a non-degenerate case, the associated
extended envelope epigraph EEf has 6 facets induced by 6 chains respectively. The vertices (0, 0, 0)
and (1, 1, 1) are visited by all the chains, while the other vertices are visited twice each. Therefore,
a chain cannot “exclusively” visit a vertex, so the corresponding facet cannot contain one point of
graphB(f) in its relative interior. In fact, we can remove some facets from the extended envelope
epigraph. We keep three chains:

((0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)) ,

((0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1)) ,

((0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 1)) .

These chains induce 3 facets such that at least one point of graphB(f) is in the relative interior
of each facet and each point of B is in these 3 facets, so the polyhedron defined by these 3 facets
is a hypoB(f)-free set larger than EEf . ⊓⊔

We discuss why enlarging EEf is not a trivial feat. We build a bipartite graph G := (B∪Sn, E).
An edge e of E connects a vertex v ∈ B to a permutation π ∈ Sn if v ∈ V (π). Then, a minimal
cover is a subset S′

n of Sn such that: i) each vertex of B is incident to at least one permutation
in S′

n; ii) each permutation in S′
n is incident to a vertex of B that no other permutation in S′

n is
incident to. As |B| = 2n and |Sn| = n!, the size of such a graph is not polynomial in n. We need
additional information in order to enlarge EEf efficiently.

We relax the submodular maximization problem (1) through a polyhedral outer approxima-
tion P of hypoB(f). Let X be the orthogonal projection of P on x-space. We remark that, within
a branch-and-cut algorithm, X might be within a low-dimensional face of B̄. Let z̃ := (x̃, t̃) be an
optimal basic feasible solution to the LP relaxation max(x,t)∈P t, which corresponds to a vertex
of P. We assume that x̃ /∈ B, otherwise, x̃ is already an optimal solution to (1).

Submodular maximization and its generalization through an intersection cut lens 11

Fig. 1: a Boolean cube B = {0, 1}3 © [44]

As z̃ is the point that we want to separate from hypoB(f), we follow the method presented in
Sect. 2 to construct an intersection cut. According to [27,50], we can use a feasible basis of the
LP relaxation to create a simplicial cone R. This cone R can be easily obtained from the simplex
tableau associated with the chosen basis. In our case, we select the optimal basis defining z̃ so
that z̃ is the apex of the corresponding cone R. Moreover, we use EEf as hypoB(f)-free set. To
determine whether the linear inequality (4) separates z̃ from hypoB(f), we need to verify whether
z̃ ∈ int(EEf).

The polyhedral outer approximation P gives rise to a piece-wise linear concave overestimating
function of f over X: f̄(x) := max(x,t)∈P t, such that max(x,t)∈P t = maxx∈X f̄(x). This implies
that t̃ = f̄(x̃). We then have the following observation.

Proposition 7 Assume that f is not affine over X. If x̃ ∈ relint(X), then f̄(x̃) > F̄f (x̃), i.e.,

(x̃, f̄(x̃)) ∈ int(EEf).

Proof As f̄ is concave overestimator of f over X and F̄f is convex underestimator of f over X,
f̄ ≥ F̄f over X. Suppose, to aim at a contradiction, that f̄(x̃) = F̄f (x̃). Define a concave function
g := f̄ − F̄f , then for all x ∈ X, g(x) ≥ 0, and g(x̃) = 0. By its concavity, there exists an affine
overestimating function a of g, such that g(x̃) = a(x̃) = 0, and for all x ∈ X, 0 ≤ g(x) ≤ a(x). As
x̃ ∈ relint(X), the affinity of a implies that a = g = 0 over X, i.e., f̄ = F̄f over X. So f is concave
and convex over X and thus affine over X, which is a contradiction. ⊓⊔

The measure of the relative boundary relbd(X) is zero, so we can assume that a mild relative

interior condition that x̃ ∈ relint(X) holds with probability one. Under this assumption, the
relaxation point z̃ = (x̃, f̄(x̃)) is in the relative interior of the extended envelope epigraph with
probability one. In Sect. 8, we will empirically evaluate the effectiveness of these intersection cuts
for various submodular maximization problems.

Throughout the rest of this paper, we will encounter multiple nonconvex optimization prob-
lems. W.l.o.g., we will consider the simplicial cone defined by the simplex tableau associated with
an optimal feasible basis of their LP relaxations. Such simplicial cones are commonly employed in
computational implementations. For the sake of brevity, we refer to such cones as optimal tableau

cones.

5 Extensions to SS functions

This section considers Boolean-hypograph and Boolean-superlevel sets for an SS function f :=
f1 − f2, where f1 and f2 are two submodular functions. We extend our previous results on the
Boolean-hypograph set of submodular functions; thus one can generate intersection cuts for a
larger family of discrete nonconvex sets.

More specifically, we consider the following nonconvex set

S := {(x, t) ∈ B ×R : f(x) ≥ ℓt}, (12)

with ℓ ∈ {0, 1}. Given a relaxation point (x̃, t̃) /∈ S, we want to find cutting planes separating this
point from S.

Let F̄f1
:= maxs∈EPMf1

sx and F̄f2
:= maxs∈EPMf2

sx be extended envelopes of f1, f2, respec-

tively. As F̄f1
(resp. F̄f2

) is a convex extension of f1 (resp. f2), we have that S = {(x, t) ∈ B×R :

12 Xu et al.

F̄f1
(x) − F̄f2

(x) ≥ ℓt}. By relaxing B to Rn, a (nonconvex) continuous outer approximation of S
is

S̄ := {(x, t) ∈ Rn ×R : F̄f1
(x)− F̄f2

(x) ≥ ℓt}. (13)

Moreover, for all x ∈ B, (x, t) ∈ S̄ if and only if (x, t) ∈ S.
Special cases. When ℓ = 1, S is the Boolean-hypograph of the SS function f ; when ℓ = 0,

S is the 0-superlevel set of the SS function f over the Boolean hypercube. Setting f2 = 0 and
ℓ = 1, the set S becomes the Boolean-hypograph {(x, t) ∈ B × R : f1(x) ≥ t}, which is studied in
the previous section. Setting f1 = 0, the relaxed set S̄ becomes {(x, t) ∈ B × R : F̄f2

(x) ≤ −ℓt}.
Let (x̃, t̃) /∈ S̄. Since, by Prop. 2, F̄f2

(x) ≥ γ∗x and F̄f2
(x̃) = γ∗x̃ for any γ∗ ∈ ∂F̄f2

(x̃), then the
simple outer approximation cut γ∗x ≤ −ℓt is a valid inequality for S̄ (hence for S).

In general, we should separate intersection cuts specifically for SS functions. Let γ∗ ∈ ∂F̄f2
(x̃)

be a solution to (9) associated with f2, and we define the set

Cx̃ := {(x, t) ∈ Rn ×R : F̄f1
(x)− γ∗x ≤ ℓt}. (14)

The following proposition characterizes the S-free set Cx̃ for Eq. (13).

Proposition 8 The set Cx̃ in (14) is an S-free set. Moreover, if (x̃, t̃) /∈ S̄, then Cx̃ does not contain

x̃ in its interior.

Proof We first prove that Cx̃ is S̄-free. By definition, γ∗x ≤ F̄f2
(x), which implies that F̄f1

(x) −
γ∗x ≥ F̄f1

(x) − F̄f2
(x). Therefore, for (x, t) ∈ int(Cx̃), we have that ℓt > F̄f1

(x) − γ∗x ≥ F̄f1
(x) −

F̄f2
(x), which implies that (x, t) /∈ S̄. Hence, int(Cx̃)∩S̄ = ∅. Additionally, Cx̃ is convex. These two

facts imply that Cx̃ is S̄-free. Since S ⊆ S̄, Cx̃ is also an S-free set. Next, assume that (x̃, t̃) /∈ S̄,
then ℓt̃ > F̄f1

(x̃)− F̄f2
(x̃) ≤ F̄f1

(x̃)− γ∗x̃, so (x̃, t̃) ∈ int(Cx̃). ⊓⊔

In [67,81,90], the authors study the sub/superlevel sets of some DC functions. Their con-
struction of S-free sets relies on a common reverse-linearization technique: reverse the set S by
changing the sign of its defining inequality, and linearize one convex function.

In our case, f is an SS function, so we first need to extend the submodular and supermodular
components of f . After the extension, we obtain a DC function. We can then apply the reverse-
linearization technique to its continuous extension.

6 Application

In this section, we discuss the application of intersection cuts to BMP and D-optimal design. We
exploit the submodular structures in these two problems.

6.1 Boolean multilinear constraints

We consider the construction of S-free sets for Boolean multilinear constraints. Since x ∈ {0, 1} ⇔
x2 = x, one can reduce a polynomial function defined on binary variables to a multilinear function,
whose monomials do not include powers. For example, x21x

3
3 + x22 can be reduced to x1x3 + x2. A

Boolean multilinear function is sometimes called a pseudo Boolean function.
A similar case is the construction of S-free sets for continuous quadratic constraints [67]. We

call this construction the “continuous approach”. This approach applies eigenvalue decomposition
to factor the symmetric matrix representing quadratic terms in a quadratic constraint. Through
this factorization, the quadratic constraint is reformulated to a DC constraint, possibly intersected
with additional linear constraints. This reformulation is amenable to the reverse-linearization
technique. Applying the technique with possibly additional operations, one can construct the
so-called continuous-quadratic-free sets [67] 1. Multilinear terms, however, are represented by
tensors. High-order tensor decomposition is more complicated than matrix decomposition [57].

1 The construction is de facto discussed case by case. For some cases, the reverse-linearization technique
already suffices to produce continuous-quadratic-free sets. For other cases, one needs additional operations,
e.g., projecting out a lineality space. Notably, all cases require the eigenvalue decomposition and its resulting
DC constraint.

Submodular maximization and its generalization through an intersection cut lens 13

It is doubtful whether the continuous approach can be extended so as to produce DC functions
from tensors.

Here we consider an alternative discrete approach. It exploits the submodularity and the su-
permodularity of Boolean multilinear functions. In [20,70], a class of Boolean multilinear functions
is shown to be supermodular. We give a submodular-supermodular decomposition for general
Boolean multilinear functions in the following.

Proposition 9 Consider a Boolean multilinear function f : B → R, x 7→
∑

k∈[K] ak
∏

j∈Ak
xj with

K multilinear terms, where Ak ⊆ [n]. Let f = f1 − f2 where

f1(x) :=
∑
k∈[K]
ak<0

ak
∏

j∈Ak

xj (15)

f2(x) := −
∑
k∈[K]
ak>0

ak
∏

j∈Ak

xj . (16)

Then f1, f2 are submodular over B.

Proof It follows from Theorem 13.21 of [36] that f1, f2 are submodular functions over B. ⊓⊔

Since every Boolean multilinear function is an SS function, we can construct S-free sets for
the corresponding Boolean-superlevel set or Boolean-hypograph set.

Corollary 5 Consider a multilinear function f : B → R, where f(x) =
∑

k∈[K] ai
∏

j∈Ak
xj for

Ak ⊆ [n] as in Prop. 9, and f1(x), f2(x) as in Eq. (15)-(16). Let S, S, and Cx̃ be as (12), (13), (14),
respectively. Then, the set Cx̃ is an S-free set. Moreover, if x̃ /∈ S, then Cx̃ does not contain x̃ in its

interior.

Proof By Prop. 9, we know that both f1 and f2 are submodular. Hence, the result follows by
applying Prop. 8. ⊓⊔

Importing the notation in Prop. 9, a BMP problem has the following form:

max t (17a)∑
k∈K0

aik
∏

j∈Ak

xj ≥ t (17b)

∀i ∈ [m]
∑
k∈Ki

aik
∏

j∈Ak

xj ≥ 0 (17c)

∀j ∈ [n] xj ∈ {0, 1}, (17d)

where m is the number of constraints, K is the number of distinct multilinear terms in the BMP,
Ki ⊆ [K] is the index set of multilinear terms in the i-th constraint (0 for objective). Unconstrained
BMP has several synonyms: pseudo Boolean maximization or multilinear unconstrained

binary optimization (MUBO).
To construct S-free sets for Boolean multilinear constraints in the BMP, we need to write

them as the standard form (12). For all i ∈ [m] or i = 0, let

fi(x) :=
∑
k∈Ki

aik
∏

j∈Ak

xj ,

and write
fi(x) = fi1(x)− fi2(x),

where fi1 :=
∑

k∈Ki:aik<0 aik
∏

j∈Ak
xj and fi2 := −

∑
k∈Ki:aik>0 aik

∏
j∈Ak

xj are two submod-
ular functions.

The objective and constraints of (17) can be represented as

fi1(x)− fi2(x) ≥ ℓit

(for all i ∈ [m], ℓi = 0, and ℓ0 = 1), which, by Cor. 5, is in the standard form.

14 Xu et al.

Separating intersection cuts requires LP relaxations or simplicial cones. One can first lift
multilinear terms to obtain an extended formulation:

max t (18a)∑
k∈K0

a0kyk ≥ t (18b)

∀i ∈ [m]
∑
k∈Ki

aikyk ≥ 0 (18c)

k ∈ [K] yk =
∏

j∈Ak

xj (18d)

∀j ∈ [n] xj ∈ {0, 1} (18e)

The standard Boolean linearization technique [35] can reformulate a multilinear term
∏

j∈Ak
xj

by its underestimators and overestimators:

∀j ∈ Ak yk ≤ xj (19a)

yk ≥ |Ak|+ 1−
∑
j∈Ak

xj , (19b)

where |Ak| is the cardinality of Ak. Then, by linearizing each nonlinear constraint (18d) as linear
constraints in (19), one obtains a MILP reformulation of (18).

To construct LP relaxations, one can simply drop the integrality constraints xj ∈ {0, 1}. The
direct LP relaxation of the MILP reformulation is also an LP relaxation of the BMP (18). Follow-
ing the method at the end of Sect. 4, we can construct an optimal tableau cone in the extended
space (x, y, t). The S-free set belongs to a projected space (i.e., (x, t)-space). By extracting the
(x, t) entries of the rays of the optimal tableau cone, we project the optimal tableau cone into the
(x, t)-space. Given the projection of this optimal tableau cone, it is straightforward to construct
intersection cuts for the BMP: we separate the intersection cuts constructed by means of the
S-free sets given by Prop. 8.

As explained above, Boolean quadratic constraints belong to Boolean multilinear constraints,
and continuous quadratic constraints relax Boolean quadratic constraints. Both the continuous
and discrete approaches can construct valid S-free sets for Boolean quadratic constraints. We
remark that maximal continuous-quadratic-free sets are no longer maximally Boolean-quadratic-
free. It is easy to see that the discrete approach preserves the term-wise sparsity patterns of the
SS functions and requires no factorizations. Therefore, the discrete approach is computationally
amenable to ill-conditioned or sparse coefficient matrices.

6.2 D-optimal design

In statistical estimation, optimal designs are a class of experimental designs that are optimal
with respect to some statistical criteria. We derive an extended convex MINLP formulation for
the Bayesian D-optimal design problem. In this formulation, the problem is a cardinality-
constrained submodular maximization problem.

Let Sm denote the set of m-by-m symmetric matrices, and let Sm+ (resp. Sm++) denote the set
of m-by-m positive semi-definite (resp. positive definite) matrices. Given a set of full row-rank
matrices {Mj ∈ Rm×rk}j∈[n], an optimal design problem usually has the following form:

max Φ(
∑
j∈[n]

MjMj
⊤xj) (20a)

∑
j∈[n]

xj = k (20b)

∀j ∈ [n] xj ∈ {0, 1}, (20c)

where k is the size of the design and Φ : Sm → R is the design criterion. The matrix M(x) :=∑
j∈[n] MjMj

⊤xj is called the information matrix. For the D-optimal criterion [21,78], Φ is the
log determinant function log det.

Submodular maximization and its generalization through an intersection cut lens 15

People usually study Bayesian D-optimal design, where a statistical prior on the data
{Mi}i∈[n] adds a regularization term ϵI into the information matrix M(x). Thus, M(x) = ϵI +∑

j∈[n] MjMj
⊤xj . The additional term is also due to the well-posedness: when x = 0, we have

that log det(M(0)) = log det(ϵI) is well defined. Then, the submodular maximization version of
the Bayesian D-optimal design problem has the following formulation:

max log det

ϵI +
∑
j∈[n]

MjMj
⊤xj

 (21a)

∑
j∈[n]

xj = k (21b)

∀j ∈ [n] xj ∈ {0, 1}, (21c)

The log determinant function is concave and has a semi-definite programming (SDP) and
geometric programming representation [8]. The scalability of the mixed-integer log determinant
formulation above is limited by the current state of SDP solvers. Based on the second order cone
representation of the determinant function det(M(x)) [78], we give an extended formulation for
(21):

max t (22a)

t ≤
∑
i∈[m]

log(Jii) (22b)

∑
j∈[n]∪{0}

MjZj = J (22c)

J is lower triangular (22d)

j ∈ [n] ∪ {0} i ∈ [m] ∥Zjei∥2 ≤ ujixj (22e)

i ∈ [m]
∑

j∈[n]∪{0}

uji ≤ Jii (22f)

∑
j∈[n]

xj = k (22g)

x ∈ {1} × B (22h)

J ∈ Rm×m (22i)

j ∈ [n] ∪ {0} Zj ∈ Rrj×m (22j)

j ∈ [n] ∪ {0} i ∈ [m] uji ∈ Rrj×m
+ , (22k)

where M0 = ϵ1/2I is an auxiliary matrix. One can represent this formulation by low-dimensional
convex cones [8], e.g., (rotated) second-order cones, and exponential cones. Therefore, this ex-
tended formulation is amenable to computation.

Proposition 10 (22) is equivalent to (21), and the objective of (22) is submodular w.r.t. x.

Proof One can modify the original D-optimal design problem by adding a slack variable x0 = 1.
Applying the logarithmic transformation to results in [78], (22) is equivalent to (21). It follows
from [77,82] that (22) is submodular w.r.t. x. ⊓⊔

A global optimization solver like SCIP can linearize the constraints in the extended formulation
(22), and thus produces an LP relaxation in the extended space. We can obtain an optimal tableau
cone as the approach dealing with the BMP. Then, we can construct intersection cuts from S-free
sets.

16 Xu et al.

7 Separation problem

In this section, we consider the separation problem for an intersection cut derived from an S-free
set. Summarizing the previous sections, the S-free set is in the form of

C := {(x, t) ∈ Rn ×R : G(x) ≤ ℓt},

where G(x) = maxs∈ext(EPMg) sx is the extended envelope of some submodular function g over B
and ℓ ∈ {0, 1}. We remark that the extended envelope epigraph EEf in (6) is a special case with
ℓ = 1 and g = f ; the set Cx̃ in (14) is also a special case that g(x) = f1(x)− γ∗x.

Assume that z∗ := (x̃, t̃) is the vertex of an optimal tableau cone R, and z∗ ∈ int(C). Recalling
the cut coefficient formula in Sect. 2, the separation problem consists in computing the step length
along each ray rj :

η∗j = sup
ηj≥0

{ηj : z∗ + ηjr
j ∈ C}. (23)

This line search problem asks for the step length to the border of C along the ray rj from z∗

which, we recall, is an interior point of C. We denote by rjx, r
j
t the projection of rj on x- and t-

spaces. Looking at the function defining C, the intersection step length η∗j is the zero point of the
following function:

ζj : R+ → R, where ζj(ηj) = ℓ(t̃+ rjt ηj)− G(x̃+ rjxηj).

This function enjoys the following properties.

Proposition 11 ζj is a concave piece-wise linear function over [0,+∞] with ζj(0) > 0. If η∗j < ∞
and there exists an η′j > 0 with ζj(η′j) = 0, then η′j = η∗j , i.e., the solution η∗j must be unique.

For all s∗ ∈ argmaxs∈ext(EPMg)
s(x̃ + ηjr

j
x), ℓrjt − s∗rjx is a subgradient in ∂ζj(ηj). For ηj > η∗j ,

∂ζj(ηj) ≤ ∂ζj(η∗j).

Proof Since the extended envelope G is the maximum of linear functions, it is convex and piece-
wise linear, so ζj is concave and piece-wise linear. Since ζj(0) = ℓt̃ − G(x̃), it follows from the
assumption z∗ ∈ int(C) that ℓt̃ > G(x̃) and thus ζj(0) > 0. Since C is closed and convex, η′j = η∗j
if and only if z∗ + η′jr

j ∈ bd(C). That is G(rjxηj + x̃) = G(x̃) + rjt η
′
j , i.e., ζj(η′j) = 0. Since

s∗ ∈ ∂G(x̃+ rjxηj), by the chain rule, ℓrjt − s∗rjx is a subgradient of ζj . By the concavity of ζj , its
subgradients are non-increasing. ⊓⊔

By Prop. 11, the line search problem (23) is reduced to solving the univariate nonlinear
equation:

ζj(ηj) = 0. (24)

For each ray rj , solving (24) gives the unique zero point of the univariate function ζj , or certifies
that no such point exists.

To solve the univariate nonlinear equation (24), it is natural to deploy a Newton-like algorithm.
Therefore, we need the value and (sub)gradient information of ζj : the computation of ζj can then
be reduced to the computation of G. The value and subgradients of G are obtained by means of a
sorting algorithm (see Prop. 3). We note that these computations can be carried out in strongly
polynomial time.

Previous works [25,90] use the bisection algorithm, which guarantees finding the zero point
within a given tolerance. Our implementation, which we call hybrid discrete Newton algorithm, is
a combination of the discrete Newton algorithm [49] and the bisection algorithm. The role of the
bisection algorithm in Alg. 1 is to help find a starting point for the Newton algorithm. Thanks
to the piece-wise linearity of the univariate function ζj , our algorithm finds an exact zero point
in a finite time.

Proposition 12 The hybrid discrete Newton algorithm terminates in a finite number of steps and

finds the zero point η∗j .

Submodular maximization and its generalization through an intersection cut lens 17

Algorithm 1: Hybrid discrete Newton algorithm

1 Input: The univariate function ζj , (scalar) starting point ∆ > 0 (default: 0.2), a numeric η∞
representing +∞, and the maximum number I of search steps (default: 500);

2 Output: ηj > 0 such that ζj(ηj) = 0;
3 Let step number i = 0, and let step length ηj = ∆;

4 if ζj(η∞) > 0 then
5 ηj = η∞; ▷ safeguard
6 else
7 while i < I do

8 Let s∗ ∈ argmaxs∈ext(EPMg)
s(x̃+ rjxηj);

9 Compute a subgradient β = rjt − s∗rjx;

10 if ζj(ηj) = 0 then
11 break;
12 else if β < 0 then

13 ηj = ηj − ζj(ηj)

β
; ▷ Newton step

14 else
15 ηj = 2ηj ; ▷ bisection step

16 i = i+ 1;

Proof For all η ∈ R+, we assume that Algorithm 1 chooses and computes a unique subgradient
β at ηj , we denote it ∇ζj(ηj), and call it algorithmic gradient. The concavity of ζj implies that
its algorithmic gradient is monotone-decreasing w.r.t. ηj . There is a threshold η′j ≥ 0 such that,

for all ηj ∈ [0, η′j), the algorithmic gradient ∇ζj(ηj) > 0; for all ηj ∈ [η′j ,+∞] (called the Newton

step region), the algorithmic gradient ∇ζj(ηj) ≤ 0.
After a finite number of bisection steps (at most ⌈log(η′j/∆)⌉), the algorithm enters the Newton

step region [η′j ,+∞], where the algorithmic gradient is always negative. Then, we prove that the

algorithmic gradient ∇ζj(ηj) at step i is different from that at step i−1, and the algorithm stays
in the Newton step region. Since ζj is piece-wise linear (the number of its distinct algorithmic
gradients is finite), the algorithm must terminate in a finite number of steps.

If at step i− 1, ζj(ηj −
ζj(ηj)

∇ζj(ηj)
) = 0, then the algorithm terminates at this step and finds the

zero point. If at step i− 1, ζj(ηj −
ζj(ηj)

∇ζj(ηj)
) < 0, then we prove that ∇ζj(ηj −

ζj(ηj)

∇ζj(ηj)
) ̸= ∇ζj(ηj)

and ∇ζj(ηj −
ζj(ηj)

∇ζj(ηj)
) ≤ 0.

First, assume, to aim at a contradiction, that ∇ζj(ηj − ζj(ηj)

∇ζj(ηj)
) = ∇ζj(ηj). Knowing that

the algorithmic gradient is monotone-decreasing, the piece-wise linearity of ζj implies that this

algorithmic gradient is constant in the range [ηj−
ζj(ηj)

∇ζj(ηj)
, ηj]. It follows that for all δ ∈ [0,

ζj(ηj)

∇ζj(ηj)
],

ζj(ηj − δ) = ζj(ηj)− δ∇ζj(ηj). Hence, ζj(ηj −
ζj(ηj)

∇ζj(ηj)
) = 0, which leads to a contradiction.

Second, we show that ∇ζj(ηj − ζj(ηj)

∇ζj(ηj)
) ≤ 0. When

ζj(ηj)

∇ζj(ηj)
≤ 0, by the mononcity of ∇ζj ,

∇ζj(ηj −
ζj(ηj)

∇ζj(ηj)
) ≤ ∇ζj(ηj) < 0. When

ζj(ηj)

∇ζj(ηj)
> 0, as by assumption that ∇ζj(ηj) < 0, ζj(ηj)

must be negative. Then, by the concavity of ζj , ζj(ηj −
ζj(ηj)

∇ζj(ηj)
) ≤ ζj(ηj)−∇ζj(ηj)

ζj(ηj)

∇ζj(ηj)
= 0.

This implies that ∇ζj(ηj −
ζj(ηj)

∇ζj(ηj)
) ≤ 0. ⊓⊔

From Prop. 12, the hybrid discrete Newton algorithm first executes bisection steps with
increasing ηj and ζj(ηj). Then it enters into the Newton step region. After a single Newton step,
ζj(ηj) becomes negative, and then monotonically increases to zero in a finite number of steps.

The discrete Newton algorithm in [49] is applied to the line search problem for submodular
polyhedra, which are related to extended polymatroids. In that context, it runs in a strongly
polynomial time. In our case, C contains the extended polymatroid, but it is unbounded in
general. The corresponding line search problem may have no solutions, if the ray rj is contained
in the recession cone of C. Therefore, Algorithm 1 needs a safeguard step, where we evaluate ζj

at a user-defined infinity. One may also prove that Algorithm 1 runs in a strongly polynomial
time, but a careful analysis for the unbounded case is needed.

18 Xu et al.

8 Computational results

In this section, we conduct computational experiments to test the proposed cuts. The source code,
data, and detailed results can be found in our online repository: github.com/lidingxu/Subcut.

8.1 Setup and performance metrics

The experiments are conducted on a server with Intel Xeon W-2245 CPU @ 3.90GHz and 126GB
main memory. We use SCIP 8.0 [17] as a MINLP framework to solve the natural formulations
of test problems. SCIP is equipped with CPLEX 22.1 as an LP solver, and IPOPT 3.14 as an NLP
solver.

By Thm. 2, the simple lifted split Hj := {x ∈ Rn : 0 ≤ xj ≤ 1} × R is a maximal hypoB(f)-
free set for any function f defined over B, where the splitting variable xj is chosen as the most
fractional entry of the relaxation solution. We have three settings of cut separation routines (cut
separators). The submodular cut (resp. the split cut) setting adds intersection cuts derived from
S-free sets based on extensions (resp. splits), and the default setting does not add any intersection
cut. Our separators adhere to unified parameter settings that aim to maximize the likelihood of
SCIP invoking our separators. We refer to Appendix for detailed parameter settings.

SCIP has internal routines of higher authority than any individual cut separator. These rou-
tines can control whether to invoke a cut separator and whether to apply the cuts found by the
separator. Interfaces of these routines are not exposed publicly, but SCIP allows us to affect these
routines through the parameters of cut separators. Therefore, we conduct the above three settings
respectively in two distinct configurations: the standalone and the embedded configurations.

In the standalone configuration, we aim at measuring the performance of our cuts in a “clean”
environment without interacting with other cuts, so we deactivate all of SCIP’s internal cut
separators. In the embedded configuration, we aim at measuring the performance of our cuts in
a “real” environment. According to Example 6.10 of [29], our split cuts correspond to Gomory
mixed integer cuts. To ensure a fair comparison, we require an equal level of implementation of
intersection cuts, including the data structure and parameter settings. Hence, we replace SCIP’s
implementation of Gomory mixed integer cuts with our own implementation, thereby disabling
SCIP’s internal Gomory mixed integer cut separators in the embedded configuration.

We focus on the root node performance and measure the closed root gap. Let d1 be the value
of the first LP relaxation (without cuts added), let d2 be the dual bound after all the cuts are
added, and let p be a reference primal bound. The closed root gap (d2 − d1)/(p − d1) is the
closed gap improvement of d2 with respect to d1. We also record the number of added cuts, the
relative improvement to the default setting, and the total running time. For each configuration
and setting, we compute these statistics’ shifted geometric means (SGMs) with a shift of 1 over
our test sets.

For each of the following experiments, we present and analyze computational results in the
form of tables and scatter plots. The tables contain SGMs of the statistics, including the closed
root gap (abbreviated as “closed”), the total running time (abbreviated as “time”), and the
number of applied cuts (abbreviated as “cuts”). Moreover, the “relative” column displays the
relative value of the closed root gap of one configuration with our cuts to that of the default
configuration. Thus, the “relative improvement” due to our cuts is defined as the “relative”
minus one. The scatter plots compare the closed root gap of each instance between two different
settings. Furthermore, each scatter plot indicates the number of instances where one setting
outperforms the other, referred to as “win” instances.

8.2 Results and analysis

Experiment 1: max cut. Consider an undirected graph G = (V,E,w), where V is the set of
nodes, E is the set of edges, and w is a weight function over E. For a subset S of V , its associated
cut capacity is the sum of the weights of edges with one end node in S and the other end node
in V \ S. The max cut problem aims at finding a subset S ⊆ V with the maximum cut capacity.
Let V = [n], and we use a binary variable vector x ∈ B indicating whether vertices belong to S.

https://github.com/lidingxu/Subcut

Submodular maximization and its generalization through an intersection cut lens 19

The problem can be formulated as the following Quadratic Unconstrained Binary Optimization
(QUBO) problem:

max
x∈B

∑
{i,j}∈E

wij((1− xi)xj + xi(1− xj)).

When w is nonnegative, and the cut capacity function (the objective function) is submodular.
The Biq Mac library [89] offers a collection of max cut and QUBO instances of medium

size. Our benchmark consists of two sub-benchmarks with 30 “g05” and respectively 30 “pw”
max cut instances with nonnegative weights from the library. These instances are generated
randomly by Giovanni Rinaldi’s rudy code [73,76]. For each dimension n = 60, 80, 100, the “g05”
sub-benchmark consists of 10 unweighted graphs with edge probability 0.5. For each graph density
in {0.1, 0.5, 0.9}, the “pw” sub-benchmark consists of 10 graphs with integer edge weights chosen
from [0, 10].

The reference primal bounds are also from the Biq Mac library. We encode the hypograph
reformulation (1) of the QUBO. SCIP will automatically reformulate the problem into a MILP
via the reformulation-linearization technique (RLT) [4]. This MILP formulation is a special case
of the extended formulation (22) of a degree-2 BMP with m = 0.

For the standalone configuration, the relative improvement of submodular cuts is 342% com-
pared to 178% of split cuts. In this configuration, we can compare the “clean” strengths of
intersection cuts derived from different S-free sets. As observed from the scatter plots in Fig. 2,
the submodular cut setting outperforms the split cut setting in 42 instances under the standalone
configuration. Although split cuts are derived from maximal S-free sets and submodular cuts are
derived from non-maximal ones, the clean performance of split cuts is worse. Regarding the em-
bedded configuration, the relative improvement of submodular cuts is 85%, compared to 58% of
split cuts. The scatter plot shows that the submodular cut setting surpasses the split cut setting
in 34 instances under this configuration.

We observe that fewer split cuts are generated than submodular cuts. This means that the
efficiency of some split cuts does not satisfy SCIP’s internal criteria, so SCIP abandons more split
cuts than submodular cuts. As two types of cuts are derived using the same principle but from
different S-free sets, the distances between the relaxation points to the boundary of S-free sets
determine the cut efficiency. This observation suggests that relaxation points are further from
the boundary of the extended envelope epigraph than from the splits. The separation time of
split cuts is shorter than that of submodular cuts, particularly for the “pw” instances with a
high graph density (0.9). This is because separating submodular cuts requires solving nonlinear
equations that involve sorting and computing graph cuts, while the split cuts can be computed
in a closed form.

Configuration
Default Submodular cut Split cut

closed time closed relative time cuts closed relative time cuts
standalone 0.026 4.33 0.111 4.418 22.9 215.48 0.075 2.78 7.04 75.04
embedded 0.097 4.77 0.161 1.852 68.19 162.5 0.139 1.575 9.4 67.6

Table 1: Summary of max cut results

Experiment 2: pseudo Boolean maximization. As mentioned, pseudo Boolean maximization

is a MUBO problem, a generalization of QUBO. We can use techniques from Sect. 5 to generate
intersection cuts.

POLIP [72] is a library of polynomially constrained mixed-integer programming instances.
All MUBO instances in POLIP with degree higher than 2 are 41 “autocorr bern” instances,
which are also included in MINLPLib [22,88]. These instances arise from short ranged non-
disordered lattice spin model (the Bernasconi model) [61] in theoretical physics. The problem is
to determine a ground state in the Bernasconi model minimizing a degree-four energy polynomial:

n
n−r+1

∑n−r
i=0

1
r(r−1)

∑r−1
d=1(

∑i+r−1−d
j=i zjzj+d)

2, where z ∈ {−1, 1}n. The number n of variables

in these instances is chosen from 20 to 60, and the interaction range r is chosen from 3 to
6. The problem is reformulated into a degree-4 BMP with m = 0 in MINLPLib through the
transformation zj = 2xj − 1. SCIP constructs the extended formulation (22). We use the best-
known primal bound from MINLPLib as the reference primal bound.

20 Xu et al.

0.00 0.05 0.10 0.15 0.20
Submodular cut wins 60

0.00

0.05

0.10

0.15

0.20
De

fa
ul

t w
in

s 0

0.00 0.05 0.10 0.15
Split cut wins 60

0.00

0.05

0.10

0.15

De
fa

ul
t w

in
s 0

0.00 0.05 0.10 0.15 0.20
Submodular cut wins 51

0.00

0.05

0.10

0.15

0.20

Sp
lit

 c
ut

 w
in

s 9

0.0 0.1 0.2 0.3
Submodular cut wins 60

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
fa

ul
t w

in
s 0

0.0 0.1 0.2 0.3
Split cut wins 59

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
fa

ul
t w

in
s 1

0.0 0.1 0.2 0.3
Submodular cut wins 47

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Sp
lit

 c
ut

 w
in

s 1
3

Fig. 2: Closed root gaps of max cut instances in standalone (top) and embedded (bottom)
configurations

In Table 2, we report the computational results. For the standalone (resp. the embedded)
configuration, the relative improvement of submodular cuts is 504% compared to 117% of split
cuts. As indicated by the scatter plots in Fig. 3, the submodular cut setting outperforms the
split cut setting in 29 instances under the standalone configuration. Regarding the embedded
configuration, the relative improvement of submodular cuts is 98%, compared to 49% of split
cuts. As indicated by the scatter plots, the submodular cut setting wins in 31 more instances
than the spit cut setting under this configuration.

In both configurations, the submodular cuts are better than the split cuts in terms of the
closed root gap. Moreover, under the embedded configuration, the difference in the relative im-
provements between submodular cuts and split cuts is 48%. This is larger than 28% of max cut

benchmark under the same configuration. This divergence between degree-2 and degree-4 MUBO
suggests that the submodular cuts are suitable for high-order Boolean multilinear constraints.

We recall that to solve the nonlinear equations, the hybrid discrete Newton algorithm needs
oracle access to the value of the Boolean multilinear function. For some instances, a Boolean
multilinear function may consist of thousands of multilinear terms. After a code timing analysis,
we find that the separation of submodular cuts spends the most time computing the function
value. Therefore, this is the main time performance bottleneck, which needs to be optimized in
the future. Similar to max cut results, non-maximal S-free sets may yield stronger cuts. Thus,
the geometrical relation between the S-free sets and the optimal tableau cone matters.

In Sect. 8.3, we conduct a branch-and-bound test.

Configuration
Default Submodular cut Split cut

closed time closed relative time cuts closed relative time cuts
standalone 0.008 8.46 0.053 6.039 28.03 68.83 0.032 2.170 10.56 20.48
embedded 0.051 13.60 0.079 1.979 46.20 28.20 0.067 1.491 20.43 9.43

Table 2: Summary of pseudo Boolean maximization results

Experiment 3: Bayesian D-optimal design. As mentioned before, the Bayesian D-optimal

design problem has a submodular maximization form (21). In particular, we can encode it as an

Submodular maximization and its generalization through an intersection cut lens 21

0.00 0.05 0.10
Submodular cut wins 41

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
De

fa
ul

t w
in

s 0

0.00 0.05 0.10 0.15 0.20
Split cut wins 41

0.00

0.05

0.10

0.15

0.20

De
fa

ul
t w

in
s 0

0.00 0.05 0.10 0.15 0.20
Submodular cut wins 35

0.00

0.05

0.10

0.15

0.20

Sp
lit

 c
ut

 w
in

s 6

0.0 0.1 0.2 0.3
Submodular cut wins 39

0.0

0.1

0.2

0.3

De
fa

ul
t w

in
s 2

0.0 0.1 0.2 0.3
Split cut wins 33

0.0

0.1

0.2

0.3
De

fa
ul

t w
in

s 8

0.0 0.1 0.2 0.3
Submodular cut wins 36

0.0

0.1

0.2

0.3

Sp
lit

 c
ut

 w
in

s 5

Fig. 3: Closed root gaps of pseudo Boolean maximization instances in standalone (top) and
embedded (bottom) configurations

extended formulation (22) in SCIP. SCIP generates gradient cuts for this convex MINLP. Therefore,
we can obtain LP relaxations and simplicial conic relaxations.

Our benchmark consists of two sub-benchmarks. Recall that the binary vector x selects a
subset of {MjMj

⊤ ∈ Sm}j∈[n], and the information matrix M(x) in (21) is the sum of matrices
in the selected subset. Thus, the problem data of (21) are variable dimension n, matrix size m,
cardinality number k, and matrices MjMj

⊤. We next outline the procedure for generating them.

The first sub-benchmark consists of 15 block design instances. We follow the method in
[78] to generate these instances. Let x := (x1,2, x1,3, . . . , x1,m+1, . . . , xm,m+1) ∈ {0, 1}n, where
n = (m+1

2). Let H(x) be an undirected graph with m + 1 vertices. If xi,i′ = 1, there is an

edge between vertices i, i′; otherwise, no edge connects them. We have M(x) = PL(x)P⊤, where

L(x) :=
∑

i,i′ xi,i′(1i−1i′)(1i − 1i′)
⊤ ∈ Sm ⊆ Rm×m is the Laplacian of H(x), and P ∈ Rm×(m+1)

is the matrix that transforms an (m+1)-dimensional vector v to the vector obtained by keeping
the first m entries of v. In other words, M(x) is the submatrix of the Laplacian of H(x) obtained
by removing its last row and last column. Then an optimal solution to (20) corresponds to the
graph with n nodes and k edges that has a maximum number of spanning trees. Note that Mj =
P (1i − 1i′) ∈ Rm×1 is a single-column matrix, which is degenerated to an m-dimensional vector.
We generate a block design instance for each combination of m ∈ {10, 11, 12}, n = (m+1

2), k ∈
{m,m+ 1,m+ 2,m+ 3,m+ 4}. This results in a total of 15 combinations.

The second sub-benchmark consists of 30 random Gaussian instances. We generate a Guassian
instance for each combination of (n,m) ∈ {(50, 20), (50, 30), (60, 24), (60, 36), (70, 28), (70, 42)} and
k ∈ {m,m+1,m+2,m+3,m+4}. This results in a total of 30 combinations. We still let each Mj

be a single-column matrix (i.e., a vector), and its entries are drawn from a Gaussian distribution
with zero mean and a variance of 1/

√
n.

We set the regularization constant ϵ to 10−6. SCIP can find primal feasible solutions at the root
node using its internal heuristics. We select the best primal bound given by these solutions among
all settings as the reference primal bound. Since SCIP’s internal gradient cuts are important for
linearizing convex nonlinear constraints, we keep the gradient cuts but disable all integer-oriented
cuts (GMI cuts and mixed-integer rounding cuts etc.) in the standalone configuration.

In Table 3, we report the computational results. We divide the results of block design and
Gaussian random instances, since the density of matrices are different. Looking at the default
setting in different benchmarks, there is no difference between the standalone and embedded

22 Xu et al.

configurations in terms of the closed root gap. This means that integer-oriented cuts do not
improve the root node LP relaxations. We see the same problem for intersection cuts, which do
not close the root gap but increase the computing time. In particular, the number of separated
cuts is around one. Thereby, many intersection cuts are too weak to add to the cut pool.

We recall that intersection cuts and many integer-oriented cuts are LP-based cuts, i.e., derived
from an LP relaxation of the extended formulation (22). Therefore, their strengths depend on
the LP relaxation. Based on the types of MINLPs, there are two basic ways to construct initial
LP relaxations. For nonconvex MINLPs, one way usually uses the factorable programming and
term-wise envelopes [63]. Notable examples are Boolean multilinear constraints and continuous
quadratic constraints [67]. The McCormick envelopes or Boolean linearization techniques are
used to construct their LP relaxations, which have a finite number of constraints. In Fig. 4, the
scatter plots also show that there are nearly no instance-wise difference between configurations.

For convex MINLPs, the other way linearizes nonlinear constraints, and the number of con-
straints in the LP relaxation can grow to infinity. This is because a convex nonlinear constraint
is equivalent to an infinite number of linear constraints. Given that SCIP may incorporate numer-
ous gradient cuts to approximate the convex MINLP (22), we can better understand its behavior
in a simplified scenario. Consider a smooth convex body approximated by a polyhedral outer
approximation, where each vertex and its associated faces define one or several simplicial cones,
representing optimal tableau cones. As the polyhedron closely approximates the convex body,
the vertex comes closer to the convex body, and the simplicial cones approach its tangent space
at that vertex. Consequently, the cones become very flat, and in the most extreme case, they
turns into a hyperplane defining the tangent space. When a hyperplane intersects an S-free set,
this results in the hyperplane itself. Therefore, it is highly likely that our separators will generate
weak intersection cuts. In summary, the weakness of intersection cuts is due to the flatness of the
optimal tableau cone.

Benchmark Configuration
Default Submodular cut Split cut

closed time closed relative time cuts closed relative time cuts

Block design
standalone 0.59 20.46 0.59 1.0 18.71 1.84 0.59 1.0 11.62 1.77
embedded 0.59 21.44 0.59 1.0 19.0 1.84 0.59 1.0 12.41 1.77

Gaussian
standalone 0.83 213.13 0.83 1.0 415.07 1.45 0.83 1.0 214.17 1.45
embedded 0.83 214.77 0.83 1.0 426.33 1.45 0.83 1.0 214.14 1.45

All
standalone 0.75 98.47 0.75 1.0 149.54 1.57 0.75 1.0 82.6 1.55
embedded 0.75 100.47 0.75 1.0 153.01 1.57 0.75 1.0 84.31 1.55

Table 3: Summary of Bayesian D-optimal design results

8.3 Supplementary branch-and-bound computational results

We also have an additional branch-and-bound test for max cut problem instances. This test was
designed to assess the performance and properties of our cuts in a ”production-level” environment,
which presents more complex challenges compared to the root node experiment. As such, the
parameter settings and analysis in this test are more intricate and require a detailed explanation,
which we provide below.

We conducted our tests under the embedded configuration, where the branching rule, node
selection rule, and primal heuristics adhere to SCIP’s defaults. In addition to the parameters
mentioned in Appendix, we made adjustments to other parameters specifically to control the
behavior of our cut separators in the branch-and-bound algorithm. These parameters are as
follows:

– SEPA FREQ: the default frequency for separating cuts. We set it to 0, meaning that our cut
separators are called at the root node.

– SEPA NCUTSLIMITROOT: the limit for the number of cuts generated at the root node. We
set it to 60.

– SEPA MAXBOUNDDIST: the default maximal relative distance from the current node’s dual
bound to primal bound compared to the best node’s dual bound for applying separation. We
set it to 1, meaning that separation is applied at all search nodes.

Submodular maximization and its generalization through an intersection cut lens 23

0.0 0.2 0.4 0.6 0.8
Submodular cut wins 23

0.0

0.2

0.4

0.6

0.8
De

fa
ul

t w
in

s 2
2

0.0 0.2 0.4 0.6 0.8
Split cut wins 26

0.0

0.2

0.4

0.6

0.8

De
fa

ul
t w

in
s 1

9

0.0 0.2 0.4 0.6 0.8
Submodular cut wins 28

0.0

0.2

0.4

0.6

0.8

Sp
lit

 c
ut

 w
in

s 1
7

0.0 0.2 0.4 0.6 0.8
Submodular cut wins 24

0.0

0.2

0.4

0.6

0.8

De
fa

ul
t w

in
s 2

1

0.0 0.2 0.4 0.6 0.8
Split cut wins 26

0.0

0.2

0.4

0.6

0.8
De

fa
ul

t w
in

s 1
9

0.0 0.2 0.4 0.6 0.8
Submodular cut wins 28

0.0

0.2

0.4

0.6

0.8

Sp
lit

 c
ut

 w
in

s 1
7

Fig. 4: Closed root gaps of Bayesian D-optimal design instances in standalone (top) and em-
bedded (bottom) configurations

Due to the substantial number of parameter combinations, tuning the parameters for the
branch-and-bound test is more challenging compared to the root node experiment. For instance,
SCIP’s internal Gomory mixed-integer cut separator [1,33] is limited to applying at most 30 cuts
at the root node, while SCIP’s quadratic intersection cut separator [3,24] employs at most 20 cuts
at the root node and 2 cuts at each non-root node.

In a preliminary branch-and-bound test, we find that even the default setting can solve the
“pw” instances of density 0.1 within 100 seconds, while for all the other instances, all settings
time out (gaps are not closed after 3600 seconds). To have an unbiased result, we remove “pw”
instances of density 0.1 and create a sub-benchmark called max cut-sub.

For the following branch-and-bound test, we measure the closed duality gap (abbreviated as
gap), the relative improvement of the closed duality gap to the default setting, the number of
search nodes (abbreviated as nodes), and the number of applied cuts. The aggregated results are
summarized in Table 4.

Benchmark
Default Submodular cut Split cut

gap nodes gap relative nodes cuts gap relative nodes cuts
max cut-sub 0.605 231372 0.596 0.981 220176 59.87 0.618 1.026 207078 42.2

Table 4: Summary of max cut-sub results in the embedded branch-and-bound test

The results indicate that the submodular cut setting performs slightly worse than the default
setting, while the split cut setting performs marginally better than the default setting. As shown
in Fig. 5, the difference in closed duality gaps between the submodular/split cut and default
settings is no more than 2%. This shows that the optimization landscape of max cut problems
is very complicated. As for our parameter settings, intersection cuts cannot have a significant
impact on the branch-and-bound algorithm.

In contrast to the results in the root node experiment, we find that the split cut setting
outperforms the submodular cut setting in the branch-and-bound test. Detailed cut informa-
tion obtained during debugging reveals that the condition number of submodular cuts can be
thousands of times larger than that of split cuts, and the submodular cuts can be denser as

24 Xu et al.

well. Consequently, these numerical properties make the submodular cuts less stable and efficient
compared to the split cuts.

When considering the approximation of the Boolean-hypograph hypoB(g), where g represents
any function over B, we can deduce from Thm. 2 that the splits define a class of maximal S-
free sets. Although the split cuts are independent of the values of g, we can use the split cuts
to approximate the Boolean-hypograph of g. While one can find other S-free sets based on the
values of g, the resulting cuts will likely exhibit the same numerical properties as our submodular
cuts.

As a result, future research should consider this finding when exploring intersection cuts. How-
ever, it is also worthwhile to investigate the performance of submodular cuts in other problems
and algorithms, such as pseudo Boolean maximization problems and the diving heuristic.

0.00 0.25 0.50 0.75
Submodular cut wins 15

0.0

0.2

0.4

0.6

0.8

De
fa

ul
t w

in
s 2

5

0.00 0.25 0.50 0.75 1.00
Split cut wins 27

0.0

0.2

0.4

0.6

0.8

1.0

De
fa

ul
t w

in
s 1

3

0.00 0.25 0.50 0.75 1.00
Submodular cut wins 8

0.0

0.2

0.4

0.6

0.8

1.0

Sp
lit

 c
ut

 w
in

s 3
2

Fig. 5: Closed root gaps of max cut-sub instances in the embedded branch-and-bound test

9 Conclusion

We construct S-free sets for the Boolean-hypographs of submodular functions. Our construc-
tion relies on a new continuous extension of submodular functions. We characterize maximal
S-free sets, generalize our results to sets involving submodular-supermodular functions. These
yield intersection cuts for Boolean multilinear constraints. We exploit the submodular structure
in an extended formulation of the D-optimal design problem. We propose a hybrid discrete
Newton algorithm that can compute intersection cuts efficiently and exactly. The computational
results show that intersection cuts derived from the submodularity are better than those derived
from split cuts for max cut and pseudo Boolean maximization problems in the root-node ex-
periments. For convex MINLPs, our computational results on the Bayesian D-optimal design

problem suggest that simplicial conic relaxations given by gradient cuts can be flat, which makes
intersection cuts weak.

Acknowledgements

We thank Antonia Chmiela for information about the implementation of intersection cuts in
SCIP. We also thank two anonymous reviewers for many helpful comments.

Statements and Declarations

We have no conflict of interest with the journal or the funding agencies.

Submodular maximization and its generalization through an intersection cut lens 25

Appendix A Basic experimental settings

For all the test problems presented in Sect. 8, we have utilized a consistent set of parameters for
our cut separators. These parameters for the cut separators in SCIP are detailed in [2]. Notably,
during our experiments, we observed that the cut separators are predominantly influenced by the
following parameters:

– SEPA PRIORITY: the priority of the intersection cut separator. We set it to 100000 (the
separators are called in a predefined order, which is given by the priorities of the separators).

– SEPA DELAY: the default for whether the separation method should be delayed, if other
separators found cuts. We set it to TRUE, i.e., delayed. (If the separator’s separation method
is marked to be delayed, it is only executed after no other separator found a cut during the
price-and-cut loop).

– SEPA MINVIOL: the minimal violation a cut must fulfill such that the cut can be added. We
set it to 10−4.

– SEPA NCUTSLIMITROOT: the limit for the number of cuts generated at the root node. We
set it to -1, meaning that the separation is unlimited.

Most cut separators in SCIP have priorities lower than 15, leading us to assign the highest
priority to our cut separators. Consequently, SCIP calls our cut separators before the others during
the optimization process.

The proposed cuts in this paper are represented by the expression αx + µt ≤ β. When con-
structing a cut of this form to separate a point (x̃, t̃), it is considered numerically ill-conditioned,
if the condition number max(α, µ)/min(α, µ) becomes too large.

The objective of the proposed cuts is to approximate the constraint f(x) ≥ ℓt, where f

represents either a submodular function or an SS function. During our analysis, we observed that
the magnitude of f(x) can be significantly larger than 1. For submodular cuts, this leads to a
numerically ill-conditioned cut, where the magnitude of µ is much smaller than the magnitudes
of the entries in α.

A similar issue arises in the numerical optimization of finite sums of nonlinear functions,
such as problems of the form min g(x) := min

∑
j∈[k] gj(x). To enhance numerical stability during

optimization, it is more favorable to optimize the average g(x)/k rather than g(x) itself. Therefore,
we adopt a similar pre-processing step to scale our test problems.

Specifically, we scale the constraint f(x) ≥ ℓt into f(x)/χ ≥ ℓt, where χ represents a positive
scaling factor. The purpose of this step is to ensure that the magnitude of µ becomes similar to
that of α and β. The factor χ is selected as follows:

– For max cut problems, χ is the number of edges of the graph.
– For pseudo Boolean maximization problems, χ is the number of degree-4 monomials in the

polynomial.
– For D-optimal design problems, χ is 1.

References

1. SCIP Doxygen Documentation: examples/GMI/src/sepa gmi.c Source File (2023). URL https://scipopt.
org/doc-8.0.3/html/sepa__gmi_8c_source.php. [Online; accessed 11. Jul. 2023]

2. SCIP Doxygen Documentation: How to add separators (2023). URL https://www.scipopt.org/doc-8.0.
3/html/SEPA.php. [Online; accessed 6. Jul. 2023]

3. SCIP Doxygen Documentation: nlhdlr quadratic.c Source File (2023). URL https://www.scipopt.org/
doc-8.0.3/html/nlhdlr__quadratic_8c_source.php. [Online; accessed 14. Jul. 2023]

4. Adams, W.P., Sherali, H.D.: A tight linearization and an algorithm for zero-one quadratic programming
problems. Management Science 32(10), 1274–1290 (1986)

5. Ahmed, S., Atamtürk, A.: Maximizing a class of submodular utility functions. Mathematical programming
128(1), 149–169 (2011)

6. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear sets based on lattice point
free convex sets. Mathematics of Operations Research 35(1), 233–256 (2010)

7. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two rows of a simplex tableau.
In: M. Fischetti, D.P. Williamson (eds.) Integer Programming and Combinatorial Optimization, pp. 1–15.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

8. ApS, M.: Mosek modeling cookbook (2020)

https://scipopt.org/doc-8.0.3/html/sepa__gmi_8c_source.php
https://scipopt.org/doc-8.0.3/html/sepa__gmi_8c_source.php
https://www.scipopt.org/doc-8.0.3/html/SEPA.php
https://www.scipopt.org/doc-8.0.3/html/SEPA.php
https://www.scipopt.org/doc-8.0.3/html/nlhdlr__quadratic_8c_source.php
https://www.scipopt.org/doc-8.0.3/html/nlhdlr__quadratic_8c_source.php

26 Xu et al.

9. Atamtürk, A., Gómez, A.: Submodularity in conic quadratic mixed 0–1 optimization. Operations Research
68(2), 609–630 (2020)

10. Atamtürk, A., Gómez, A.: Supermodularity and valid inequalities for quadratic optimization with indica-
tors. Mathematical Programming pp. 1–44 (2022)

11. Atamtürk, A., Narayanan, V.: Submodular function minimization and polarity. Mathematical Programming
(2021)

12. Balas, E.: Intersection cuts—a new type of cutting planes for integer programming. Operations Research
19(1), 19–39 (1971)

13. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces.
Mathematics of Operations Research 35(3), 704–720 (2010)

14. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces.
Mathematics of Operations Research 35(3), 704–720 (2010)

15. Basu, A., Dey, S.S., Paat, J.: Nonunique lifting of integer variables in minimal inequalities. SIAM Journal
on Discrete Mathematics 33(2), 755–783 (2019)

16. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: A conic representation of the convex hull of
disjunctive sets and conic cuts for integer second order cone optimization. In: Numerical Analysis and
Optimization, pp. 1–35. Springer (2015)

17. Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L.,
Gaul, O., Gamrath, G., Gleixner, A., et al.: The scip optimization suite 8.0. arXiv preprint arXiv:2112.08872
(2021)

18. Bestuzheva, K., Chmiela, A., Müller, B., Serrano, F., Vigerske, S., Wegscheider, F.: Global optimization of
mixed-integer nonlinear programs with scip 8. arXiv preprint arXiv:2301.00587 (2023)

19. Bienstock, D., Chen, C., Munoz, G.: Outer-product-free sets for polynomial optimization and oracle-based
cuts. Mathematical Programming 183(1), 105–148 (2020)

20. Billionnet, A., Minoux, M.: Maximizing a supermodular pseudoboolean function: A polynomial algorithm
for supermodular cubic functions. Discrete Applied Mathematics 12(1), 1–11 (1985)

21. Bouhtou, M., Gaubert, S., Sagnol, G.: Submodularity and randomized rounding techniques for optimal
experimental design. Electronic Notes in Discrete Mathematics 36, 679–686 (2010)

22. Bussieck, M.R., Drud, A.S., Meeraus, A.: Minlplib—a collection of test models for mixed-integer nonlinear
programming. INFORMS Journal on Computing 15(1), 114–119 (2003)

23. Chen, R., Dash, S., Günlük, O.: Multilinear sets with two monomials and cardinality constraints. Discrete
Applied Mathematics 324, 67–79 (2023)

24. Chmiela, A., Muñoz, G., Serrano, F.: On the implementation and strengthening of intersection cuts for
qcqps. Mathematical Programming pp. 1–38 (2022)

25. Chmiela, A., Muñoz, G., Serrano, F.: Monoidal strengthening and unique lifting in miqcps. In: Integer Pro-
gramming and Combinatorial Optimization: 24th International Conference, IPCO 2023 (2023). Accepted
for publication

26. Coey, C., Lubin, M., Vielma, J.P.: Outer approximation with conic certificates for mixed-integer convex
problems. Mathematical Programming Computation 12(2), 249–293 (2020)

27. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy algorithm: tight worst-
case bounds and some generalizations of the rado-edmonds theorem. Discrete applied mathematics 7(3),
251–274 (1984)

28. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer programming. Springer International Publishing, Cham
(2014)

29. Conforti, M., Cornuéjols, G., Zambelli, G., et al.: Integer programming, vol. 271. Springer (2014)
30. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-Generating Functions and

S-Free Sets. Mathematics of Operations Research 40(2), 276–391 (2015). DOI 10.1287/moor.2014.0670
31. Conforti, M., Cornuéjols, G., Zambelli, G.: Corner polyhedron and intersection cuts. Surveys in Operations

Research and Management Science 16(2), 105–120 (2011)
32. Coniglio, S., Furini, F., Ljubić, I.: Submodular maximization of concave utility functions composed with a

set-union operator with applications to maximal covering location problems. Mathematical Programming
pp. 1–48 (2022)

33. Cornuéjols, G., Margot, F., Nannicini, G.: On the safety of gomory cut generators. Mathematical Program-
ming Computation 5, 345–395 (2013)

34. Cornuéjols, G., Wolsey, L., Yıldız, S.: Sufficiency of cut-generating functions. Mathematical Programming
152(1), 643–651 (2015)

35. Crama, Y.: Concave extensions for nonlinear 0–1 maximization problems. Mathematical Programming
61(1), 53–60 (1993)

36. Crama, Y., Hammer, P.L.: Boolean functions: Theory, algorithms, and applications. Cambridge University
Press (2011)

37. Del Pia, A., Khajavirad, A.: A polyhedral study of binary polynomial programs. Mathematics of Operations
Research 42(2), 389–410 (2017)

38. Del Pia, A., Khajavirad, A.: The multilinear polytope for acyclic hypergraphs. SIAM Journal on Opti-
mization 28(2), 1049–1076 (2018)

39. Del Pia, A., Khajavirad, A., Sahinidis, N.V.: On the impact of running intersection inequalities for globally
solving polynomial optimization problems. Mathematical programming computation 12(2), 165–191 (2020)

40. Del Pia, A., Walter, M.: Simple odd-cycle inequalities for binary polynomial optimization. In: International
Conference on Integer Programming and Combinatorial Optimization, pp. 181–194. Springer (2022)

41. Del Pia, A., Weismantel, R.: Relaxations of mixed integer sets from lattice-free polyhedra. 4OR 10(3),
221–244 (2012)

Submodular maximization and its generalization through an intersection cut lens 27

42. Dey, S.S., Wolsey, L.A.: Lifting integer variables in minimal inequalities corresponding to lattice-free trian-
gles. In: A. Lodi, A. Panconesi, G. Rinaldi (eds.) Integer Programming and Combinatorial Optimization,
pp. 463–475. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

43. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Combinatorial Optimiza-
tion—Eureka, You Shrink!, pp. 11–26. Springer (2003)

44. en:User:Cburnett: Hamming distance 3 bit binary (2007). URL https://commons.wikimedia.org/wiki/
File:Hamming_distance_3_bit_binary.svg. The image is licensed under CC BY-SA 3.0

45. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: On the use of intersection cuts for bilevel optimization.
Mathematical Programming 172(1), 77–103 (2018)

46. Fischetti, M., Monaci, M.: A branch-and-cut algorithm for mixed-integer bilinear programming. European
Journal of Operational Research 282(2), 506–514 (2020)

47. Fortet, R.: Applications de l’algebre de boole en recherche opérationelle. Revue Française de Recherche
Opérationelle 4(14), 17–26 (1960)

48. Glover, F.: Convexity cuts and cut search. Operations Research 21(1), 123–134 (1973). DOI 10.1287/opre.
21.1.123

49. Goemans, M.X., Gupta, S., Jaillet, P.: Discrete newton’s algorithm for parametric submodular function
minimization. In: F. Eisenbrand, J. Koenemann (eds.) Integer Programming and Combinatorial Optimiza-
tion, pp. 212–227. Springer International Publishing, Cham (2017)

50. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear algebra and its applications 2(4),
451–558 (1969)

51. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs and an algorithm for the
mixed integer problem. In: M. Jünger, T.M. Liebling, D. Naddef, G.L. Nemhauser, W.R. Pulleyblank,
G. Reinelt, G. Rinaldi, L.A. Wolsey (eds.) 50 Years of Integer Programming 1958-2008: From the Early
Years to the State-of-the-Art, pp. 77–103. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

52. Han, S., Gómez, A., Prokopyev, O.A.: Fractional 0–1 programming and submodularity. Journal of Global
Optimization pp. 1–17 (2022)

53. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of convex analysis. Springer Science & Business Media
(2004)

54. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1990)
55. Khamisov, O.: On optimization properties of functions, with a concave minorant. Journal of Global Opti-

mization 14(1), 79–101 (1999)
56. Kılınç-Karzan, F., Küçükyavuz, S., Lee, D.: Joint chance-constrained programs and the intersection of

mixing sets through a submodularity lens. Mathematical Programming pp. 1–44 (2021)
57. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM review 51(3), 455–500 (2009)
58. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. Mathematical Programming

154(1-2), 463–491 (2015)
59. Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs. Mathematics of Oper-

ations Research 41(2), 477–510 (2016). DOI 10.1287/moor.2015.0737
60. Liberti, L.: Spherical cuts for integer programming problems. International Transactions in Operational

Research 15(3), 283–294 (2008)
61. Liers, F., Marinari, E., Pagacz, U., Ricci-Tersenghi, F., Schmitz, V.: A non-disordered glassy model with

a tunable interaction range. Journal of Statistical Mechanics: Theory and Experiment 2010(05), L05003
(2010)

62. Lovász, L.: Submodular functions and convexity. In: Mathematical programming the state of the art, pp.
235–257. Springer (1983)

63. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part i—convex
underestimating problems. Mathematical programming 10(1), 147–175 (1976)

64. Modaresi, S., Kilinç, M.R., Vielma, J.P.: Split cuts and extended formulations for Mixed Integer Conic
Quadratic Programming. Operations Research Letters 43(1), 10–15 (2015)

65. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer programming: convexifica-
tion techniques for structured sets. Mathematical Programming 155(1-2), 575–611 (2016)

66. Muñoz, G., Paat, J., Serrano, F.: Towards a characterization of maximal quadratic-free sets. arXiv preprint
arXiv:2211.05185 (2022)

67. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. Mathematical Programming 192(1), 229–270 (2022)
68. Murota, K.: Discrete convex analysis. Mathematical Programming 83(1), 313–371 (1998)
69. Nemhauser, G., Wolsey, L.: Matroid and Submodular Function Optimization (1988)
70. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular

set functions—i. Mathematical programming 14(1), 265–294 (1978)
71. Nesterov, Y., et al.: Lectures on convex optimization, vol. 137. Springer (2018)
72. Pagacz, U.: POLIP: Library for polynomially constrained mixed-integer programming (2023). URL https:

//polip.zib.de/. Online accessed
73. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and poly-

hedral relaxations. Mathematical Programming 121, 307–335 (2010)
74. Rhys, J.M.: A selection problem of shared fixed costs and network flows. Management Science 17(3),

200–207 (1970)
75. Richard, J.P.P., Dey, S.S.: The group-theoretic approach in mixed integer programming. In: 50 Years of

Integer Programming 1958-2008, pp. 727–801. Springer (2010)
76. Rinaldi, G.: Rudy. http://www-user. tu-chemnitz. de/helmberg/rudy. tar. gz (1998)
77. Sagnol, G.: Approximation of a maximum-submodular-coverage problem involving spectral functions, with

application to experimental designs. Discrete Applied Mathematics 161(1-2), 258–276 (2013)
78. Sagnol, G., Harman, R.: Computing exact d-optimal designs by mixed integer second-order cone program-

ming. The Annals of Statistics 43(5), 2198–2224 (2015)

https://commons.wikimedia.org/wiki/File:Hamming_distance_3_bit_binary.svg
https://commons.wikimedia.org/wiki/File:Hamming_distance_3_bit_binary.svg
https://polip.zib.de/
https://polip.zib.de/

28 Xu et al.

79. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained
programs: projected formulations. Mathematical programming 130(2), 359–413 (2011)

80. Schrijver, A., et al.: Combinatorial optimization: polyhedra and efficiency, vol. 24. Springer (2003)
81. Serrano, F.: Intersection cuts for factorable MINLP. In: A. Lodi, V. Nagarajan (eds.) Integer Programming

and Combinatorial Optimization, pp. 385–398. Springer International Publishing, Cham (2019)
82. Shamaiah, M., Banerjee, S., Vikalo, H.: Greedy sensor selection: Leveraging submodularity. In: 49th IEEE

conference on decision and control (CDC), pp. 2572–2577. IEEE (2010)
83. Shi, X., Prokopyev, O.A., Zeng, B.: Sequence independent lifting for a set of submodular maximization

problems. Mathematical Programming pp. 1–46 (2022)
84. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Mathe-

matical programming 103(2), 225–249 (2005)
85. Topkis, D.M.: Supermodularity and complementarity. Princeton university press, Princeton (2011)
86. Towle, E., Luedtke, J.: Intersection disjunctions for reverse convex sets. Mathematics of Operations Re-

search 47(1), 297–319 (2022)
87. Tuy, H.: Concave programming under linear constraints. Soviet Mathematics 5, 1437–1440 (1964)
88. Vigerske, S.: MINLPLib: A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

(2022). URL https://www.minlplib.org/. Online accessed
89. Wiegele, A.: Biq mac library—a collection of max-cut and quadratic 0-1 programming instances of medium

size. Preprint 51 (2007)
90. Xu, L., D’Ambrosio, C., Liberti, L., Vanier, S.H.: On cutting planes for signomial programming (2022).

DOI 10.48550/ARXIV.2212.02857
91. Yu, Q., Küçükyavuz, S.: Strong valid inequalities for a class of concave submodular minimization problems

under cardinality constraints. Mathematical Programming pp. 1–59 (2023)

https://www.minlplib.org/

	Introduction
	Intersection cut preliminaries
	Extensions of submodular functions
	S-free sets for submodular functions
	Extensions to SS functions
	Application
	Separation problem
	Computational results
	Conclusion
	Basic experimental settings

