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I. INTRODUCTION

Clustering is an important chapter of data analysis and data mining with numerous applications in a

variety of fields. It aims at solving the following general problem: given a set of entities, find subsets, or

clusters, which are homogeneous and/or well-separated. As the concepts of homogeneity and of separation

can be made precise in many ways, there are a large variety of clustering problems [1–4]. These problems

in turn are solved by exact algorithms or, more often and particularly for large data sets, by heuristics.

An exact algorithm provides, hopefully in reasonable computing time, an optimal solution together with a

proof of its optimality. A heuristic provides, usually in moderate computing time, a near optimal solution

or sometimes an optimal solution but without proof of its optimality.

In the last decade, clustering on networks has been extensively studied, mostly in the physics and com-

puter science research communities. Rather than using the term cluster, the words module or community

are often adopted in the physics literature. Recall that a network, or graph, G = (V, E) is composed of a

set V of n vertices and a set E of m edges, which join pairs of vertices. A vertex vj is represented by a

point and an edge eij = {vi, vj} by a line joining its two end vertices vi and vj . The shape of this line does

not matter, only the presence or absence of an edge is important. In a simple graph, there is at most one

edge between any pair of vertices, otherwise one has a multigraph. With a slight abuse of set notation, a

loop eii = {vi, vi} is an edge for which both end vertices coincide. The degree ki of a vertex vi ∈ V is the

number of edges incident with vi. A subgraph GS = (S, ES) of a graph G = (V, E) induced by a set of

vertices S ⊆ V is a graph with vertex set S and edge set ES equal to all edges with both vertices in S. Such

a subgraph corresponds to a cluster (or module or community) and many heuristics aim at finding a partition

of V into pairwise disjoint nonempty subsets V1, V2, . . . , VN inducing subgraphs of G. Various objective

functions have been proposed for evaluating such a partition. Roughly speaking, one seeks modules which

contain more inner edges (with both vertices in the same module) than cut edges (with vertices in different

modules). The degree ki of the vertex vi can be split in two: the indegree kin
i or number of neighbors within

its community and the outdegree kout
i or number of neighbors outside its community. Several concepts of

community follow.

In 2004, Radicchi et al. [5] defined a community in the strong sense as a subgraph all vertices of which

have larger indegree than outdegree and a community in the weak sense as a subgraph for which the sum

of vertex indegrees is larger than the sum of vertex outdegrees. As an inner edge contributes by two to

the sum of the indegrees and a cut edge contributes by one to the sum of outdegrees, the number of inner

edges in a community in the weak sense must be at least as large as half the number of cut edges. As cut

edges contribute to the sum of degrees of two communities, this definition entails that for the network as
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a whole the number of inner edges is larger than the number of cut edges. Recently, several extensions of

the definition of the community in the weak sense have been proposed. One may consider the difference

for each community of the sum of indegrees and the sum of outdegrees. Then summing these contributions

for all communities gives a multiway cut problem. Another approach is to normalize the contribution of

each community by dividing it by its number of vertices [6]. The resulting function, to be maximized, is

called modularity density. Alternatively, contributions of communities may be divided by their number of

edges [7]. Finally, one may consider maximizing, in a divisive hierarchical method, the minimum ratio of

the number of edges in a community divided by the number of cut edges [8].

A different, and currently mainstream, approach was inaugurated by Newman and Girvan also in 2004

[9]. They propose to find a partition of V which maximizes the sum, over all modules, of the number of

inner edges minus the expected number of such edges assuming that they are drawn at random with the

same distribution of degrees as in G. In [9] the following precise definition of modularity is given:

Q =
∑

s

[as − es] , (1)

where as is the fraction of all edges that lie within module s and es is the expected value of the same

quantity in a graph in which the vertices have the same expected degrees but edges are placed at random.

A maximum value of Q near to 0 indicates that the network considered is close to a random one (barring

fluctuations), while a maximum value of Q near to 1 indicates strong community structure. Observe that

maximizing modularity gives an optimal partition together with the optimal number of modules.

The modularity maximization problem has been extensively studied both from the algorithmic and from

the applications viewpoints. Some papers discuss a few of its mathematical properties, among which are

the following.

(i) Even if the networks under study most of the time have no loops nor multiple edges, the expected

number of loops may be positive. Moreover, for some pairs of end vertices, their expected number

of edges may be greater than 1 [10].

(ii) Modularity maximization suffers from a resolution limit [11], i.e., when the network is large small

modules can be absorbed by larger ones even if they are very dense.

(iii) The partition with optimal or near optimal modularity may contain modules which are not commu-

nities in the weak sense, or even in the most weak sense [12] that twice the number of inner edges is

never less than the number of edges joining this module to another one.

Modification to the model and/or to heuristics have been proposed to address these problems. Chang-

ing slightly the null model (i.e. the value of es in Eq. (1)), by simulation [10] or by using an analytical
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formula [13] allows the removal of loops and multiple edges. A parameter can also be introduced to-

gether with multiresolution heuristics [14, 15]. Nevertheless, the original modularity maximization appears

presently to be much used. In this paper, we limit ourselves to this classical problem.

Brandes et al. [16] have shown that modularity maximization is NP-hard.

Numerous heuristics have been proposed to maximize modularity. They are based on divisive hierarchi-

cal clustering, agglomerative hierarchical clustering, partitioning, and hybrids. They rely upon various cri-

teria for agglomeration or division [17–21], simulated annealing [10, 22, 23], mean field annealing [24], ge-

netic search [25], extremal optimization [26], spectral clustering [27–29], linear programming followed by

randomized rounding [30], dynamical clustering [31], multilevel partitioning [32], contraction-dilation [33],

multistep greedy search [34], quantum mechanics [35] and other approaches [14, 21, 29, 36–38].

In contrast, papers proposing exact algorithms or using mathematical programming are rare for modu-

larity maximization. There are two approaches. In the first one, the original graph G = (V, E) is replaced

by a complete weighted graph Kn = (V, E′) of order n = |V | as G and such that for any pair of vertices

vi, vj ∈ G, Kn has an edge e′ij with a weight equal to the modularity of that edge. In addition to the com-

plexity result mentioned above, Brandes et al. [16] give an integer programming formulation for modularity

maximization and mention that the optimal solution of two test problems with 34 and with 105 entities were

determined. Their approach is in fact close to the work of Grötschel and Wakabayashi [39, 40] on clique

partitioning. It is discussed in the next section. The second approach works directly on the original graph

G = (V, E). Xu, Tsoka and Papageorgiou [41] propose a mixed integer convex quadratic programming

model, discussed below. They solve exactly four test problems with up to 104 entities.

The purpose of the present paper is to assess and advance the state of the art of algorithms for exact mod-

ularity maximization. To this effect, we discuss and compare four exact algorithms, two of which are new.

Two of these algorithms work on a reduction of modularity maximization to clique partitioning; the other

two work on the direct formulation. They are: (i) the row generation algorithm of [39], which subsumes the

algorithm of [16], (ii) a new stabilized column generation algorithm for clique partitioning which enhances

the efficiency of that approach, (iii) the mixed integer convex quadratic programming approach of [41], (iv)

another new stabilized column generation algorithm which enhances the efficiency of the second approach.

Column generation algorithms implicitly take into account all possible communities (or in other words

all subsets of the set of entities under study). They replace the problem of finding simultaneously all

communities in an optimal partition by a sequence of optimization problems for finding one community at

a time, or more precisely a community which improves the modularity of the current solution. So, problems

are solved much faster than with previous algorithms and larger instances can be tackled, the largest to date

having 512 entities.
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Clearly, in many applications of modularity maximization, instances are still larger and sometimes very

much larger, than those which can be solved exactly with the proposed algorithms. Nevertheless, it is our

belief that exact algorithms are worthy of study for several reasons.

(i) Instances which are more than toy problems can presently be solved exactly. As shown below, these

include many problems used to illustrate the performance of various heuristics.

(ii) As mentioned in several papers, finding the significance of the detected communities is difficult.

Indeed, various heuristics often lead to partitions that disagree on two or more of their communities.

Having an exact solution solves the problem of separating possible inadequacies of the model from

eventual errors resulting from the use of heuristics. Unsuspected communities may be interpreted

with more confidence and proposed to the user for a substantive analysis. This is one of the main

aims of clustering.

(iii) If solving a given instance proves to be too time consuming, the exact algorithmmay often be stopped

and the best solution found considered as a heuristic one. It is not uncommon that the optimal solution

is found at an early stage of the resolution. Then, the problem of maximizing modularity will, in fact,

be solved but without a proof of optimality.

(iv) An exact algorithm can provide a benchmark of exactly solved instances which can be used to com-

pare heuristics and fine tune them. More precisely, the comparison of the symmetric differences be-

tween the optimal solution and the heuristically obtained ones may suggest additional moves which

improve the heuristic under study. Iterating this approach with several heuristics may lead to per-

formant hybrids. As a rule of thumb, a sophisticated heuristic should be able to find quickly an

optimal solution for most or possibly all practical instances which can be solved exactly with a proof

of optimality.

(v) Using projection, i.e., fixing some of the communities found by a heuristic, an exact algorithm can

be applied to this reduced network in order to improve the heuristic solution [42].

(vi) Getting improved heuristics will in turn lead to more efficient exact algorithms. Indeed, there are

usually some steps in such algorithms which can be solved heuristically, always or most of the

time, without forfeiting the guarantee of optimality. In column generation algorithms, as discussed

below, knowledge of a good or possibly optimal initial solution enhances stabilization substantially.

Heuristics are also useful in solving the auxiliary problem.
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(vii) An exact algorithm can also be used as a tool for the theoretical study of maximum modularity

partitions, e.g., the fact that they satisfy or not conditions on the number of inner and of cut edges of

communities, or conditions of robustness [12].

(viii) With active research, regularly improved mathematical programming packages such as CPLEX [43]

and increasing computer power, the size of problems solved exactly is likely to increase substantially

with time. A comparison with a central problem of Operations Research, i.e., the traveling salesman

problem, illustrates this point. Given a set of cities and pairwise distances between them, the traveling

salesman problem is to find a minimum length tour visiting once and only once each city. In 1954,

Dantzig, Fulkerson, and Johnson [44] solved optimally an instance with 49 cities. In 2009, Applegate

et al. [45] were able to solve to optimality an instance with 85 900 cities.

II. MODULARITY MAXIMIZATION AS CLIQUE PARTITIONING

A. Row generation

The modularity function was expressed above as a sum of values over all communities. As shown

in [27], modularity can also be written as a sum of values over all edges of the complete graph Kn.

Q =
1

2m

∑

i,j∈V

(

aij −
kikj

2m

)

δ(ci, cj) (2)

where m corresponds to the cardinality of E, ki, kj are the degrees of vertices i and j, respectively, aij is

the ij component of the adjacency matrix of G, equal to 1 if vertices i and j are adjacent, and to 0 otherwise.

Finally, δ(ci, cj) is the Kronecker symbol equal to 1 if the communities ci and cj , to which i and j belong,

are the same, and to 0 otherwise. The quantity kikj

2m
is the expected number of edges between vertices i and

j in a null model where edges are placed at random, while the distribution of degrees remains the same.

Introducing binary variables xij equal to 1 if vertices i and j belong to the same module and 0 otherwise,

and setting

wij =
1

m

(

aij −
kikj

2m

)

, (3)

modularity maximization can be reformulated as a clique partitioning problem. Since Kn is complete, it is

a clique and any of its induced subgraphs are cliques also. Partitioning G is thus equivalent to partitioning

Kn into cliques. The resulting partition is an equivalence relation, i.e., reflexive, symmetric and transitive.

From reflexivity (or the fact that each entity is in the same module as itself) all xii = 1. Thus the sum of
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elements on the main diagonal is a constant for all partitions, equal to

−C = −
∑

i∈V

kiki

2m
. (4)

From symmetry, using xij = xji, one can eliminate variables corresponding to values of indices i > j. The

model can then be written, as in [39, 40],

max
∑

i<j∈V

wijxij − C

s.t. xij + xjk − xik ≤ 1 for all 1 ≤ i < j < k ≤ n,

xij − xjk + xik ≤ 1 for all 1 ≤ i < j < k ≤ n, (5)

− xij + xjk + xik ≤ 1 for all 1 ≤ i < j < k ≤ n,

xij ∈ {0, 1} for all 1 ≤ i < j ≤ n.

This model has n(n−1)
2 variables and 3

(

n
3

)

= n(n−1)(n−2)
2 = O(n3) constraints. The first three sets

of constraints express transitivity, i.e., if entities i and j are in the same module and entities j and k are in

the same module, then entities i and k must be in the same module. The fourth (and last) set of constraints

expresses integrality, i.e., edges are present in the solution entirely or not at all.

Problem (5) is a linear program in 0-1 variables and thus small instances may be solved by integer

linear programming packages such as CPLEX. In the solution process, the linear programming relaxation

obtained by replacing the constraints xij ∈ {0, 1} by xij ∈ [0, 1] is first solved. If the optimal solution of

this relaxation is in integers, which is often the case, it corresponds to a partition of maximum modularity.

Should the solution of the continuous relaxation be fractional, one can branch, or add one or several

cutting planes, i.e., additional linear constraints which cut off the current fractional solution but do not

eliminate any feasible integer solution. Branching is done by setting a fractional 0-1 variable xij to 1 or

0, i.e., imposing on the one hand that entities i and j belong to the same community and on the other

hand that they belong to different communities. Two linear programming subproblems are thus obtained

and their solution gives bounds valid for the former and the latter case respectively. These bounds are not

larger than the bound given by the solution of the subproblem on which branching took place. Branching

on a subproblem stops if the value of the corresponding bound is smaller than that of the best solution

known, or incumbent. As the possible number of branching choices is finite, the algorithm converges.

Choosing a variable xij with value closest to 1
2 balances improvement of both bounds. These rules and

others are discussed in [46]. In practice, branching is done by CPLEX. Several families of cutting planes

were obtained in [39, 40] and could be used as an alternative or complement to branching.
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Note that a similar formulation is presented in [16] but with constraints of the type xij +xjk −2xik ≤ 1

instead of xij +xjk −xik ≤ 1, and so forth. While this does not change the set of feasible solutions in 0−1

variables, the continuous relaxation in the algorithm of [16] will be less tight than that of (5). Consequently,

the algorithm is more time consuming than that of [39] as it is shown in our computational experiments (see

Section IV below).

Unfortunately, the number of constraints of problem (5) grows rapidly with n. Not all of these constraints

will be tight at the optimum. Those which are not could be deleted without changing the optimal solution

but it is not known a priori which ones they are. Grötschel and Wakabayashi [39] therefore proposed to add

the constraints progressively. More precisely, they add by batches of 300 those constraints which are most

violated by the current solution. In their experiments on a variety of clustering problems, they found that

only a small number of such constraints were tight at the optimum and that the solution of the continuous

relaxation was very often integer. Our computation experiments (see Section IV below) show this appears

also to be the case for modularity maximization.

B. Column generation

Column generation is a powerful technique of linear programming which allows the exact solution of

linear programs with a number of columns exponential in the size of the input (there may be billions of

them and, in some cases, much more). To this effect, it follows the usual steps of the simplex algorithm,

apart from finding an entering column with a positive reduced cost in case of maximization which is done

by solving an auxiliary problem. The precise form of this last problem depends on the type of problem

under study. It is often a combinatorial optimization or a global optimization problem. It can be solved

heuristically as long as a column with a reduced cost of the required sign can be found. When this is no

longer the case, an exact algorithm for the auxiliary problem must be applied either to find a column with

the adequate reduced cost sign, undetected by the heuristic, or to prove that there is no such column and

hence the linear programming relaxation is solved. Column generation has proven to be very useful in the

solution of large clustering problems, e.g., minimum sum-of-squares clustering [1, 47, 48].

For modularity maximization clustering, as for other clustering problems with an objective function

additive over the clusters, the columns correspond to all subsets of V , i.e., to all nonempty modules.

To express this problem, define ait = 1 if vertex i belongs to module t and to ait = 0 otherwise. One

can then write the model as
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max
∑

t∈T

ctzt − C (6)

s.t.
∑

t∈T

aitzt = 1 ∀i = 1, . . . , n (7)

zt ∈ {0, 1} ∀t ∈ T, (8)

where ct =
∑

i

∑

j>i wijaitajt, i.e., the value of the module indexed by t with t = 1 . . . 2n − 1.

The objective function (6) of the primal problem expresses that modularity is equal to the sum of mod-

ularities of all selected modules minus a constant corresponding to the diagonal terms. The first set of

constraints (7) expresses that each entity must belong to one and only one module and the second set of

constraints that modules must be selected entirely or not at all.

If the integrality constraints (8) are replaced by

zt ≥ 0,∀t ∈ T, (9)

the upper bound zt ≤ 1 being implied by constraint (7), one obtains a relaxation of (6) - (8) which is a

linear program.

Recall that to any primal linear program is associated another linear program called its dual. This dual

program has as many variables as the primal has constraints and as many constraints as the primal has

variables.

The dual of the relaxation of (6)-(7),(9) can be written

min
n

∑

i=1

λi − C (10)

s.t.
n

∑

i=1

aitλi ≥ ct ∀t ∈ T, (11)

λi ∈ R ∀i = 1 . . . n. (12)

The objective function (10) of the dual problem (10)-(12) is equal to the sum of all dual variables minus

a constant C. The constraints (11) express that the sum of dual variables associated with the entities of any

community must be at least as large as its modularity. Finally, the constraints (12) express the fact that the

dual variables are unrestricted in sign.

From the duality theorem of linear programming, the optimal solutions (z∗1 , z
∗
2 , . . . , z

∗
T ) of the primal

and (λ∗
1, λ

∗
2, . . . , λ

∗
n,) of the dual have the same value:

∑

t∈T

ctz
∗
t =

n
∑

i=1

λ∗
i . (13)
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Moreover, any feasible solution of the primal has smaller or equal value than any solution of the dual.

Geometrically, the sets of feasible solutions of the primal and dual are polyhedra. Finding the optimal

solution of the primal or of the dual amounts to finding an optimal vertex and the corresponding cone in

either of these polyhedra.

Problem (6)-(7),(9) is called the master problem. It is the relaxation of a partitioning problem which can

in principle be solved by a package such as CPLEX. However, as the number of columns is exponential,

this is possible only for very small n. To overcome these difficulties, one resorts to column generation.

Following that approach a reduced master problemwith considerably fewer columns is solved instead of the

full master problem (6)-(7),(9). As usual in the branch and bound approach to mixed integer programming,

one first solves the continuous relaxation of this restricted master problem. One begins with a relaxed

problem containing some feasible columns and possibly artificial variables. Then improving columns will

be added progressively. Finding such column(s) is the auxiliary problem whose role is to find a column

with positive (negative) reduced cost in case of maximization (minimization). For problem (6)-(7),(9), the

reduced cost associated with column t will be equal to ct −
∑

i λiait where the λi are the current values

of the dual variables of the continuous relaxation of problem (6)-(7),(9). Replacing the coefficients ait by

binary variables yi leads to the following expression of the auxiliary problem:

max
y∈Bn

∑

i

∑

j>i

wijyiyj −
∑

i

λiyi

This is a quadratic program in 0-1 variables with a 100% dense matrix of coefficients. Many algorithms

and numerous heuristics have been proposed to solve it. In our experiments, we use a Variable Neighbor-

hood Search (VNS) heuristic [49, 50] as long as it can find a column with positive reduced cost. VNS is a

metaheuristic, i.e., a framework for building heuristics, based on the idea of systematic change of neighbor-

hood during the search. It explores progressively larger neighborhoods of the incumbent (or best known)

solution in a probabilistic way. Therefore, often favorable characteristics of the incumbent will be kept and

used to obtain promising neighboring solutions. VNS applies a local search routine repeatedly to get from

these neighboring solutions to local optima.

When VNS fails to find an improving column, we use as exact method a simple branch and bound

algorithm [51] or a recent algorithm using bounds based on semidefinite programming [52].

It is well known that column generation algorithms suffer from slow convergence particularly when the

optimal solution is degenerate, i.e., when such a solution has many variables equal to 0, which is the case

for clustering problems. Column generation algorithms also suffer from the plateau effect, i.e., the optimal

solution keeps the same value for several or many iterations [53].

To alleviate these defects, one can use a variant of the stabilization methods for column generation due
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to du Merle et al. [54], which we call focussed column generation.

The principle is to identify, from a heuristic solution, a small region in the space of dual variables

hopefully containing the optimal solution (λ∗
1, λ

∗
2, . . . , λ

∗
n,). Then departures from this zone are penalized.

To that effect, we first seek a good heuristic solution of the modularity maximization problem. Recently,

Noack and Rotta [55] compared experimentally codes for eight heuristics. We used the SS+ML heuristic

which is the best according to their experiments, i.e., Single-Step Greedy coarsening by Significance with

Multi-Level Fast Greedy refinement (SS+ML). This heuristic solution can be further improved by a local

application of modularity maximization to each pair of modules at a time. Then, a dual solution is derived

from this last heuristic primal solution, and intervals hopefully containing the optimal values are determined.

This is done by computing the increase (resp. the decrease) of the objective function value if a vertex

is duplicated (resp. removed). Penalties for getting out of these intervals are imposed and progressively

diminished until they get down to 0. Details on this method are given in [54].

III. MODULARITY MAXIMIZATION BY MIXED 0-1 QUADRATIC PROGRAMMING

A. Direct formulation

Maximizing modularity by the clique partitioning approach discussed in section II has a drawback:

it replaces a usually sparse matrix of coefficients by a 100% dense one. An alternative approach is to

work directly with a graph G = (V, E) instead of the complete graph Kn. This was done by Xu, Tsoka

and Papageorgiou [41] and leads to a 0-1 mixed integer quadratic problem whose continuous relaxation is

convex, and which can therefore be solved by CPLEX.We next recall the main elements of Xu et al.’s model

as they provide the necessary background for a new column generation algorithm described in the second

part of this section. Considering again the definition of Q as a sum over modules of their modularities

rewrite Q as

Q =
∑

s

[as − es] =
∑

s

[

ms

m
−

(

Ds

2m

)2
]

(14)

where ms denotes the number of edges in module s, i.e., the subgraph induced by Vs and Ds denotes the

sum of degrees ki of the vertices of module s. Binary variables are then used to identify the modules to

which each vertex and each edge belongs. To this effect, list all edges with a single index r = 1, 2, . . . , m.

Then, introduce the following variables,

Xrs =







1 if edge r belongs to module s

0 otherwise
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for r = 1, 2, . . .m and s = 1, 2, . . .M and

Yis =







1 if vertex i belongs to module s

0 otherwise.

The number of edges and sum of vertex degrees can then be expressed as:

ms =
∑

r

Xrs

and

Ds =
∑

i

kiYis.

A second series of constraints express that each vertex belongs to exactly one module:

∑

s

Yis = 1 ∀i = 1, 2, . . . n.

A third series of constraints express that any edge r = {vi, vj} with end vertices indiced by i and j can

only belong to module s if both of those end vertices belong to that module.

Xrs ≤ Yis ∀r = {vi, vj} ∈ E

Xrs ≤ Yjs ∀r = {vi, vj} ∈ E

Note that these constraints are part of Fortet’s [56] linearization of quadratic 0-1 programs. They impose

that Xrs = 0 if either Yis or Yjs or both are equal to 0. They do not impose that Xis is equal to 1 is

Yis = Yjs = 1. Although the constraints Xrs ≥ Yis + Yjs − 1 could be added to impose that, this is not

necessary as adding an edge between vertices i and j when they are in the same module increases ms and

hence Q.

The number of modules is a priori unknown; indicator variables us = 1 if module s is nonempty and

us = 0 otherwise are used. Then constraints

us ≤ us−1 ∀s ∈ 2, 3, . . . S,

where S is an upper bound on the number of modules, are added and express that module s can be nonempty

only if module s − 1 is so.
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Consequently,

∑

r

Xrs ≥ us

and

∑

r

Xrs ≤ (n − s + 1)us.

The value n− s+1 in the latter constraints is due to the fact that each of the modules 1, 2, . . . s− 1 must be

nonempty. In fact, Xu et al. use more general parametric formulae which allow imposing lower and upper

bounds on the cardinality of the modules.

It is well-known that for any given solution to a clustering problem, alternative equivalent solutions

can be obtained by simply re-indexing clusters. For an optimal solution with M modules, M ! equivalent

solutions exist. Symmetry-breaking constraints for clustering problems can be found in the literature [57–

59], and were used in [41]. Such symmetry breaking constraints notwithstanding, this problem has M(n +

m) binary variables and M continuous variables, subject to M(1 + 2m + 2n) linear constraints.

B. Column generation reformulation

Once again, a linear programming master problem will be solved by the simplex algorithm where the

entering column will be determined by solving an auxiliary problem. The master problem will be the same

as in the previous column generation algorithm, i.e., its equations are given in (6)-(7),(9) of Subsect. II B.

The auxiliary problem will be different from the quadratic 0-1 program used in the clique partitioning

formulation. It will be close to the formulation of Xu et al. [41] described in Subsect. III A, but much

simpler. As a single community is to be determined at a time, it can be written as follows:

max
x∈Bn,D∈R

∑

r

xr

m
−

(

D

2m

)2

−
∑

i

λiyi

s.t. D =
∑

i

kiyi

xr ≤ yi ∀r = {i, j} ∈ E

xr ≤ yj ∀r = {i, j} ∈ E.

As before, edges are indexed by r and vertices by i (or j). Variable xr is equal to 1 if edge r belongs to

the community which maximizes the objective function and to 0 otherwise. Similarly, yi is equal to 1 if the

ith vertex belongs to the community and 0 otherwise. The objective function is equal to the modularity of

the community to be determined minus the scalar product of the current value λi of the dual variables times

the indicator variable yi. Observe that this last term is the same as in the objective function of the auxiliary



14

Problem ID Name n m

1 Zachary’s karate club 34 78

2 Dolphins social network 62 159

3 Les Misérables 77 254

4 A00_main 83 135

5 protein p53 104 226

6 Books about US politics 105 441

7 American College Football 115 613

8 A01_main 249 635

9 USAir97 332 2126

10 netscience_main 379 914

11 Electronic Circuit (s838) 512 819

Table I. Order and size of 11 test problems

problem for clique partitioning. This is a mixed integer quadratic problem with n + m binary variables

and 1 continuous variable, in the objective function, subject to 2m + 1 linear constraints. In the objective

function there is a single concave nonlinear term. Clearly, the size of this auxiliary problem is much smaller

than that of the direct formulation described in Sect. III A, particularly for large number of communities M .

This auxiliary problem is first solved with a VNS heuristic as long as a column with a positive reduced cost

can be found. When this is no more the case, CPLEX is called to find such a column or prove that there are

no more.

IV. COMPUTATIONAL COMPARISON

To compare the four algorithms described in the previous sections, we selected 11 test problems from

the modularity maximization literature. Their names, orders and sizes are given in table I.

The data of these test problems can be found in various databases mentioned in a recent paper from

Noack and Rotta. Note that we always assume unit edge weights.

Results are given in Table II. The first column gives the problem ID as in Table I, the next six columns

give the modularity value (Q) and the number of modules (M ) for: (a) the solution obtained by Noack-

Rotta’s heuristic (NR Sol); (b) the improved solution obtained from Noack-Rotta’s solution (Imp Sol); (c)

the optimal solution (Opt Sol).

The remaining columns summarize the performance of the different exact algorithms:

• CPRG: clique partitioning row generation of [39];
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• CPCG-HJM: clique partitioning column generation with the exact method of [51] for the auxiliary

problem;

• CPCG-BE: clique partitioning column generation with the exact method of [52] for the auxiliary

problem; 0-1 mixed integer programming formulation of [41];

• 0-1 MICG: 0-1 mixed integer column generation.

For CPRG column, the CPU time is reported when possible or an "OM" is used to indicate that the

program reaches the memory limit. The formulation of [39] is implemented in AMPL [60] and solved

using the “lazy constraints” feature of CPLEX. We do not present the results for the formulation of [16] as

it is much more time consuming. For example, the solution of Problem 1 takes 674 seconds instead of 0.23

second.

For the 0-1 MIQP column, we give the CPU time reported in [41] or indicate by "NA" the problem not

considered in [41]. It was not possible for us to obtain comparable computing time as the parameters setting

used to obtain these results were not detailed in the paper.

For the column generation algorithms, the table contains CPU time as well as, in parentheses, the number

of calls for the exact algorithm for the auxiliary problem followed by the number of calls to the heuristic.

The term "OT" means that the optimal solution could not be found after more than 100 000 seconds.

All results are in seconds of CPU. Except for 0-1 MIQP, all results were obtained on a dual processor

computer Intel Pentium computer with 3.20 GHz, 2 Mb cache memory, 3 GB RAM running under Linux.

ILOG CPLEX 10.110 was used for the linear programming part of all algorithms.

From Table II, it appears that:

• surprisingly, in view of the many heuristics proposed for modularity maximization, those applied

here seldom reach the optimal value: in 2 cases out of 11 of Noack and Rotta and 5 cases out of 11

for the improved heuristic;

• both row-generation and column-generation algorithm based on reformulation of modularity maxi-

mization as a clique partitioning problem are competitive for small instances, but become too time

or memory consuming for larger ones due to the rapid increase in the number of variables and con-

straints;

• for the largest instances, the 0-1 MICG algorithm appears to be the only one able to find an optimal

solution;
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Pb. NR Sol Imp Sol Opt Sol CPRG CPCG- 0-1 MIQP 0-1 MICG

ID Q M Q M Q M HJM BE

1 0.4198 4 0.4198 4 0.4198 4 0.23 0.18 (3/7) 0.73 (3/7) 1.03 0.34 (3/8)

2 0.5238 4 0.5285 5 0.5285 5 9.70 7.49 (1/13) 18.69 (1/13) 197.89 7.75 (1/13)

3 0.5600 6 0.5600 6 0.5600 6 5.07 6.89 (1/13) 12.92 (1/13) 55.58 7.26 (1/13)

4 0.56749 9 0.5283 9 0.5309 9 17.09 3.57 (1/26) 262.13 (1/26) NA 3.66 (1/26)

5 0.5322 7 0.5350 6 0.5351 7 4164.15 11.33 (1/44) 351.87 (1/44) 1844.31 11.60 (1/44)

6 0.5269 4 0.5272 5 0.5272 5 663.05 318.99 (2/13) 32287.23 (2/13) NA 45.65 (2/13)

7 0.6002 10 0.6046 10 0.6046 10 282.58 OT 593.01 (1/8) NA 249.41 (1/8)

8 0.6203 12 0.6203 12 0.6329 14 OM OT OT NA 1014.48 (12/145)

9 0.3658 6 0.3660 6 0.3682 6 OM OT OT NA 16216.77 (3/104)

10 0.8474 19 0.8485 19 0.8486 19 OM OT OT NA 1615.14 (12/66)

11 0.8162 16 0.8166 16 0.8194 12 OM OT OT NA 7655.56 (140/225)

Table II. Results of the comparison between algorithms for modularity maximization

• the reduction in resolution times in comparison of the results of [41] are very substantial: the use of

0-1 MICG algorithm divides these times by a factor of 3 to 159;

• the size of the largest problem solved is raised from 105 entities to 512 entities.

In summary, the column generation algorithm reformulated from [41] direct formulation (0-1 MICG)

appears to be the best choice since its computing time is comparable for small instances, lower for medium

instances and is the only algorithm able to solve large instances to optimality.

V. CONCLUSIONS

In this paper, we have studied exact maximization of the modularity of a network according to the def-

inition of Newman and Girvan. Two approaches were proposed previous to this work: on the one hand the

row generation algorithm of [39] to which modularity maximization can be reduced and on the other hand

the direct formulation of Xu et al.[41]. We have proposed column generation algorithms based on these

two approaches and performed a computation comparison on a series of well-known problems from the

literature. These results show that: (i) while row generation is fast for small problems, it is outperformed by

column generation for larger ones; (ii) the column generation algorithm based on direction formulation per-

forms best for the larger problems; (iii) Size of the larger problems has substantially augmented: the largest

problem solved to date has 512 entities versus 105 entities before; (iv) computation times are substantially
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reduced. While it would of course be desirable to solve exactly larger problems, the results obtained by the

proposed algorithm already appear to be useful for the several reasons detailed in the introduction.

It is easy to see that the first two approaches can also be applied to several variants of the standard

modularity definition, i.e., weighted networks, directed networks, and networks which are both directed and

weighted [61]. Moreover, the column generation framework is easily adaptable to yield exact algorithms

for other definitions of communities than those of Newman and Girvan, allowing comparison which do not

depend on the specific heuristic used.

Among topics for future research are (i) the design of better heuristics, (ii) the use of cutting planes

in the solution of the master problem and/or the auxiliary problem, (iii) a further study of the properties

of the auxiliary problem which might lead to improvements in its resolution. The importance of this last

point stems from the fact that the proportion of the resolution time devoted to the resolution of the auxiliary

problem tends to increase with problem size.

We also note that the first two approaches apply to generalizations of the standard modularity definition,

i.e., weighted networks, directed networks and networks which are both directed and weighted.
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