
The learnability of Business Rules

Olivier Wang1,2, Changhai Ke1, Leo Liberti2, Christian de Sainte Marie1

1 IBM France, 9 Rue de Verdun, 94250 Gentilly, France
2 CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

olivier.wang@polytechnique.edu

Abstract.

Among programming languages, a popular one in corporate environments
is Business Rules. These are conditional statements which can be seen as a sort
of “programming for non-programmers”, since they remove loops and function
calls, which are typically the most difficult programming constructs to master
by laypeople. A Business Rules program consists of a sequence of “IF condition
THEN actions” statements. Conditions are verified over a set of variables, and
actions assign new values to the variables. Medium-sized to large corporations
often enforce, document and define their business processes by means of Busi-
ness Rules programs. Such programs are executed in a special purpose virtual
machine which verifies conditions and executes actions in an implicit loop. A
problem of extreme interest in business environments is enforcing high-level
strategic decisions by configuring the parameters of Business Rules programs
so that they behave in a certain prescribed way on average. In this paper we
show that Business Rules are Turing-complete. As a consequence, we argue
that there can exist no algorithm for configuring the average behaviour of all
possible Business Rules programs.

1 Introduction

Business Rules (BR) are used in corporate environments to define business pro-
cesses. Since not every employee is a computer programmer, the BR language is
conceived as a “programming language for non-programmers”. Typically, laypeo-
ple understand conditions and assignments much better than function calls and
loops. Therefore, BR programs consist of sequences of conditional statements of
the form

IF

condition
THEN

actions

where the condition is enforced on a vector of BR program variables x =
(x1, . . . , xn), and the actions are assignments of the form

x← f(x),

2

for some function f specified with the usual arithmetic operators and transcen-
dental functions found in any standard mathematical library. Currently, there
exist software packages called business rules management systems for creating,
verifying, storing, retrieving, managing and executing BR programs, such as
e.g. IBM’s Operational Decision Management (ODM) [5], once known as ILOG’s
JRules.

A typical example is provided by a bank which defines the process of deciding
whether to grant a loan to a customer. The conditions will verify anagraphical,
work-related and credit ranking type information about the customer: since there
may be dependency relationship in such information, it makes sense to break
down this verification as a set of BRs, some of which might depend on the
preceding ones. The action triggered by a BR might, through the assignment
of a binary value to a Boolean variable or a scoring value to a scalar variable,
switch on or off the activation of subsequent BRs. Finally, the output of this BR
program will be an assignment of a binary value to a Boolean variable linked
to whether the loan will be granted or not. The BRs will be initially written
by employees on the basis of policies, regulations and personal work experience,
and then modified to take the evolution of the business process into account.

Banks, however, come under political scrutiny, and they might be required
to prove to the legislators that they grant a certain percentage of all demanded
loans. Accordingly, banks ask their technical staff that their business processes,
encoded as BR programs, be configured so as to behave as required on average.
The average mentioned here refers to all possible requests to come; banks would
probably interpret it over “average over all requests received so far”, and their
technical staff would likely pick an appropriate sample and run a supervised Ma-
chine Leaning (ML) algorithm to learn the BR program configuration parameter
values on this sample used as a training set.

This begs the question: does there exist an algorithm for the task? More
precisely, is there an algorithm such that, given a configurable BR program and
a training set as input, would provide parameter values as output that conform
to an accepted learning paradigm? This sounds like a philosophical rather than
scientific question, but if we fix the learning paradigm to some concrete example
thereof, such as Probably Approximately Correct (PAC) learning [10], then the
question can be answered.

The objective of this paper is precisely to answer this question: and, unfortu-
nately, it turns out that the answer is negative. We prove that the BR language
is universal, meaning that interpreting BR programs in their natural computa-
tional environment is Turing-complete [7]. This means that any program can be
written in the BR language, including, e.g. the implementation of certain types
of pseudorandom functions. Such functions are known to be PAC unlearnable
[3,6], which proves our result. Of course, our general negative result does not
prevent the existence of learning algorithms which work on restricted classes of
instances. Although such algorithms will not be discussed in this paper, some
can be devised by means of mathematical programming [11].

3

2 How Business Rules work

As already mentioned, BR consist of IF . . . THEN constructs. For simplicity,
they do away with function calls and loops. On the other hand, this removal is
only apparent, as BR replace function calls with meta-variables and loops with
their execution environment.

Meta-variables and variables are stored in different symbol tables. Whereas
the variables’ symbol table simply matches variable symbols to variables, the
meta-variables’ symbol table matches meta-variable symbols to variable symbols.
Every time a condition or an action in a BR refers to a meta-variable, the BR
is instantiated for every variable symbol corresponding to the meta-variable,
creating a matching number of IF . . . THEN code fragments. This is akin to
calling a function with a given parameter.

BR programs consist of a sequence of BRs. The execution environment is
set up as an implicit loop which keeps scanning and executing rules until a
termination condition is achieved, at which point the loop ends and the return
variable – a Boolean in our example – is passed back to the calling process .Such
a condition is usually that every rule condition is evaluated to FALSE.

2.1 Definitions and notation

A BR program consists in a set of type declarations and a set of rules. A type
declaration consists of either the creation of a type (create new type(type)) or
the assignment of a type to a variable (type(var)← type), where var can be either
a variable or a meta-variable. A rule is defined as follows. Given α the typed
meta-variables and x the typed variables, a rule is written:

if T (α, x) then
α← A(α, x)
x← B(α, x)

end if

where T is the condition and the couple (A,B) describes the action. The action
can be modifying the value of some fixed variable (function B) or the value of
the variable matched to a meta-variable (function A), or both. In the first case,
that action will be the same across all rule instances made from this rule; while
in the second case the action will be different depending on the instance. For
example, with variables x1 and x2 and meta-variable α1, all of type int we might
have the following rule:

if α1 = 13 then
α1 ← α1 + 3

end if

in which case we have an action that has only A: A(α, x) = α+ 3 ; B(α, x) = x.
The rule instance matching α1 to x1 would modify x1, and the rule instance
matching α1 to x2 would modify x2. If the rule was instead:

if α1 = 13 then
x1 ← x1 + 2

4

x2 ← 30
end if

we would have an action with only B: A(α, x) = α ; B(α, x) = (x1 + 2, 30). The
rule instance matching α1 to x1 and the rule instance matching α1 to x2 would
execute the same action under different conditions. At least one of the variables,
say x1 without loss of generality, is selected to be the output of the BR program.

The first part of a BR program interpreter is to compile the rule instances
derived from each rule. At compile time, α is replaced by every type-feasible
reordering of the x input variable vector. For x ∈ X ⊆ Rn, the explicit set of
rule instances compiled from this rule is the type-feasible part of the following
code fragments, using (σj | j ∈ {1, . . . , n!}) the permutations of {1, . . . , n}:

if T ((xσ1(1), . . . , xσ1(n)), (x1, . . . , xn)) then
(xσ1(1), . . . , xσ1(n))← A((xσ1(1), . . . , xσ1(n)), (x1, . . . , xn))
(x1, . . . , xn)← B((xσ1(1), . . . , xσ1(n)), (x1, . . . , xn))

end if
. . .
if T ((xσn(1), . . . , xσn(n)), (x1, . . . , xn)) then

(xσn(1), . . . , xσn(n))← A((xσn(1), . . . , xσn(n)), (x1, . . . , xn))
(x1, . . . , xn)← B((xσn(1), . . . , xσn(n)), (x1, . . . , xn))

end if

The size of this set varies. The typing of the variables and meta-variables mat-
ters, and depending on T , A and B some of these operations might also be
computationally equivalent. The number of rule instances compiled from a given
rule can be 0 for an invalid rule (T (α, x) = False), 1 for a static rule (T (α, x)
and B(α, x) do not vary with α, and A(α, x) = α), and up to n! for some rules
if every variable has the same typing.

2.2 The BR interpreter

The “implicit loop” referred to above can be considered as a BR interpreter: it
takes a BR program and turns it into a computational process which provides
an output corresponding to a given input.

Any common interpreter for a BR program is algorithmically equivalent to
creating all rule instances as a first step, and as a second step continuously
verifying the given conditions, executing one assignment action corresponding
to a condition which is True at each iteration of the loop, until either every
condition evaluates to False or a user-defined termination condition becomes
active. Although there exist many such interpreters, such as [2], for the purpose
of this paper we only consider the most basic interpreter I0 which follows the
simple algorithm below.

1. Match variables to type-appropriate meta-variables in rules to create all
possible rule instances

2. Select the rule instances for which the condition is true, using the current
values of the variables

5

3. Execute the action of the first rule instance in the current selection or stop
if there is no such rule instance

4. Restart from step 2.

The order of rule instances used in Step 3 is defined by the order induced by a
predefined order on the rules in the BR program and on the input variables.

We expect any more complicated ones to be able to simulate the most basic,
so that BR executed using any interpreter are at least as powerful as what our
study concludes. We also expect that I0 is able to simulate other interpreters,
by using additional variables. This expectation comes from the idea that the
difference with our interpreter will come from Step 3. The conflict resolution
strategy, i.e. the strategy for selecting which rule among the ones obtained in
Step 2 is to be executed, is what characterizes BR interpreters. Our algorithm
has a simple conflict resolution strategy: whenever more than one rule instance
could be executed, the choice is obtained from a given (fixed) total order on
rule instances. An example of the execution of such an algorithm is described in
Fig. 1.

The most common conflict resolution strategies combine one or more of the
following three elements [2]:

– Refraction which prevents a rule instance from firing (being selected by the
conflict resolution algorithm) again unless its condition clause has been reset.

– Priority which is a kind of partial order on rules, leading of course to a
partial order on rule instances.

– Recency which orders rule instances in decreasing order of continued validity
duration (when rule instances are created at run time, it is often expressed
as increasing order of rule instance creation time).

These elements can be simulated by the basic interpreter by adding more types,
variables or rules, in broad strokes:

– Refraction results in the use of an additional boolean variable needsReset per
rule per variable permutation (ie per rule instance), an additional test clause
in each rule and an additional rule (if needsResetx,r = true ∧ Tr(α, x) =
false then needsResetx,r = false) per rule r.

– Priority results in one additional integer variable p, an additional test clause
in each rule (p = πr), an additional action clause in each rule (p ← pmax) ,
and two additional rules that come dead last in the predefined order on rules
(if p > 0 then p = p− 1; if p = 0 then Stop).

– Recency is the most complicated. A possible simulation could involve an
additional integer variable validityStart per rule instance, an additional
integer variable timer, an additional action clause in each rule (timer ←
timer + 1) and a similar setup to the one suggested for priority, using an
integer variable priorV alidity which would this time start at 0 and end at
timer.

6

The Rules (in order)
R1 :

if (α1 ≥ 1 ∧ α2 = 2)
then (α1 ← 0, α2 ← 0)

R2 :
if (α3 = 1)
then (α3 ← α3 + 1)

The typed Variables (in order)
int x ← 1
int age ← 90

The typed Meta-variables
int α1

int α2

int α3

The Rule Instances
In the total order considered by the algorithm,
they are:
r1 :

if (x ≥ 1∧age = 2)
then (x ← 0,age ← 0)

r′1 :
if (age ≥ 1∧x = 2)
then (age ← 0,x ← 0)

r2 :
if (x = 1)
then (x ←x+1)

r′2 :
if (age = 1)
then (age ←age+1)

The Execution
Iteration 1:
Truth value of conditions:
t(r1) = False
t(r′1) = False
t(r2) = True
t(r′2) = False
Rule instances selected (in order): r2
Rule executed: r2
Variable values:
x = 2
age = 90

Iteration 2:
t(r1) = False
t(r′1) = True
t(r2) = False
t(r′2) = False
Rules selected: r′1
Rule executed: r′1
Variable values:
x = 0
age = 0

Iteration 3:
t(r1) = False
t(r′1) = False
t(r2) = False
t(r′2) = False
Rules selected: None
Rule executed: None

END

Fig. 1. Example illustrating the execution algorithm

3 Turing completeness of business rules

Since a BR program is executed in a loop construct as discussed in Sect. 2.2,
which only terminates when all conditions evaluate to False, a fundamental ques-
tion is whether we can decide if the execution terminates at all. Asking the same
question of any programming language amounts to asking whether the Halt-
ing Problem (halt) can be solved on the class of Turing Machines (TM) that
the programming language is able to describe. Since it is well known that halt
cannot be solved for Universal TMs (UTMs), the question is whether BRs can
describe a UTM. In this section prove that this is indeed the case. In other words,
we prove that BRs are Turing complete.

For our original question, i.e. whether there is an algorithm A for arbitrarily
changing a BR program so it statistically behaves according to a given target,
Turing completeness shows that we cannot hope to ever find an algorithm A
which works on all BR programs. At the very least, we shall have to limit our
attention to all terminating BR programs.

Our proof of Turing completeness for BR programs consists in spelling out
a BR program U which takes as input any TM description with its own input.
When executed U , simulates the TM acting on its input.

7

A UTM is a TM which can simulate any other TM on arbitrary input [8,9].
It does that by taking as input a description T of any TM as well as its input
x. We use the usual definition of a Turing Machine [4]. We note the states of
a TM q1, . . . , qQ, its tape symbols s1, . . . , sS , its blank symbol sb, its transition
function (qi, si) → (qf , sf , act) where act ∈ {“left”, “right”, “stay”}, its initial
state q0, and its accepting states Ter. An initial tape T0 is said to be accepted
by a TM if the TM reading this tape stops and has a final state in Ter.

A BR program which simulates a UTM by being able to simulate any TM
is described in Fig. 2. It uses the same notations, with initial values of q = q0;
of T a truncated T 0 containing a finite number of symbols, containing T 0

0 and
containing all non-blank symbols of T 0; of l = size(T); and of p = 0.

We suppose the variables include the following:
– many (static) state objects of type ”state”: q1, . . . , qQ
– many (static) symbol objects of type ”symbol”: s1, . . . , sS
– a (static) finite set of terminal states of type ”terminal”: Ter

– a (static) blank symbol of type ”symbol”: sb
– a (static) set of Turing rules of type ”rules”, of the form

(stateinitial, symbolinitial, right|left|stay, statenext, symbolwritten):
R = {(qir, sir, actr, qfr , sfr) | actr ∈ {”left”, ”right”, ”stay”}}r

– the current state of type ”state”: q
– the length of the visible tape data, of type ”length”: l
– the current visible tape data of type ”tape”: T = {(i, si) | i ∈ N, 0 ≤ i ≤ l − 1}

where l is the length of the visible tape data
– the current place on the tape of type ”position”: p

We use the following meta-variables in the BR program that simulates a UTM:
– αqf of type ”state”
– αsf of type ”symbol”

The rule set to simulate a UTM is then written in a compact form:
R1:
if

(q, T (p), act, αqf , αsf) ∈ R
then
q ← αqf

T ← (T \ {(p, T (p))}) ∪ {(p, αsf)}
p← p± 1(Depending on the value of act)
l← l ± 1(Depending on the respective values of act, p and l)

R2:
if

(q ∈ Ter)
then

Stop;

Fig. 2. A BR program which describes a UTM.

8

Some simplifications have been made for the sake of clarity: R1 should clearly
be at least three different rules each replacing act with one of “left”, “right”,
“stay”. The complete formally correct form would in fact have two more rules,
in order to increase the length of the tape as needed, using the variable sb.

Theorem 1. the BR program described in Fig.2 simulates any TM given an
accepted tape. The final value of the tape and the final symbol of the TM will be
identical to the final values of T and q.

Proof. We prove that the simulation is correct by induction over the number of
steps n taken by the TM.

Before the TM takes any step (n = 0), its tape is identical to the value of T
in the BR program before it executes any rule, as that tape is given to the BR
as an input value. Similarly, the place on the tape at that point is the value of
p and the state of the TM is equal to the value of q.

Assume that the tape, the position on it, and the state of the TM after step
n are accurately represented by the BR program after n rule executions. We call
TTM the sequence representing the tape, pTM the current place on the tape,
and qTM the current state of the TM.

If the TM halts, that means ∀(act, qf , sf), (qTM , TTMpTM , act, q
f , sf) /∈ R. Thus,

the BR does not execute R1. Further, as the initial tape is accepted by the
TM, we have qTM ∈ Ter, which fulfills the condition for R2. The BR program
terminates at the same time as the TM, and its output is correct as R2 does not
modify values.

Otherwise, the TM will follow a rule in R. Let us call it

r = (qTM , TTMpTM , act, q
f , sf).

In this case, the next BR executed will be R1, and the only member of R to
match will be r. In other words, the only relevant rule instance is:

R1:

if (q, T (p), act, qf , sf) ∈ R
then q ← qf

T ← (T \ {(p, T (p))}) ∪ {(p, sf)}
p← p± 1(Depending on the value of act)

l← l ± 1(Depending on the respective values of act, p and l)

because q = qTM and T (p) = TTMpTM . As the action on this BR instance corre-
sponds exactly to the modifications to the state and tape of the TM, the values
stored on the tape of the TM after n + 1 steps will again be the same as the
values in the BR program. ut

4 Unlearnability

Let us go back once more to the original question: is there an algorithm for
arbitrarily changing a BR program so it statistically behaves according to a

9

given target? By Sect. 3, we know that this algorithm cannot exist in the most
general terms, since BR programs might not even terminate in finite time. But
what if we just look at those BR programs which do terminate? The question
can be considered as a learnability problem: Does there exist an algorithm A
which taking a class Pp of terminating BR programs parametrized over p, a
data distribution D over its input domain X and a goal g for the value of the
average output ED(Pp), efficiently and weakly learns p? In other words, is p
learnable in this context?

We limit ourselves to the well-studied and powerful family of algorithms
known as Probably Approximately Correct (PAC) learning algorithms intro-
duced in [10]. In this section we use a class of pseudorandom functions to provide
a negative answer to the question, when posed in these very general terms. Of
course, it may still be possible to achieve our stated purpose for less general, but
still useful classes of BR programs.

4.1 Background

Pseudorandom functions (PRF), introduced by Goldreich, Goldwasser and Mi-
cali ([3]), are indexed families of functions Fp for which there exists a polynomial-
time algorithm to evaluate Fp(x), but no probabilistic polynomial-time algorithm
can distinguish the function from a truly random function Frand without knowing
p, even if allowed access to an oracle.

A PAC learning algorithm identifies a concept (i.e. a function X → {0, 1})
among a concept class C (i.e. a family of concepts). For a concept f ∈ C and a
list S of data points in X of length λ, an algorithm A is an (ε, δ)-PAC learning
algorithm for C if for all sufficiently large λ:

P[A(f) = h | h is an ε-approximation to f] ≥ 1− δ

where A has access to an oracle for f .

– A is said to be efficient if the time complexity of A and h are polynomial in
1/ε; 1/δ; and λ.

– A is said to weakly learn C if there exist some polynomials pε(λ); pδ(λ) for
which ε ≤ 1

2 −
1

pε(λ)
and δ ≤ 1− 1

pδ(λ)
.

– We say a concept class is PAC learnable if it is both efficiently and weakly
learnable. Otherwise, it is unlearnable.

It is known that PRF are unlearnable using PAC algorithms ([3,6]). In the
rest of this section, we consider Fp such a PRF, and note Evalp,x(Fp(x)) the
complexity of evaluating Fp(x).

4.2 Unlearnability Result

We call (Pp)p∈π a class of terminating BR programs indexed by p, S a list of
items from the input domain X with |S| = λ, and g a goal for the value of the
average output ES(Pp). We consider C the concept class whose members are
f : (Pp)p∈π → {0, 1}.

10

Theorem 2. The concept class C is unlearnable: specifically, the concept h ∈ C
defined as h(p) = 1 iff ES(Pp) = g cannot be learned using a PAC learning
algorithm in the general case.

In other words, there is no practically viable algorithm that can learn a BR
program out of a class of BR programs in the general case, even with access to
a perfect oracle. This is a consequence of both the Turing-completeness of BR
programs and the unlearnability of PRF.

Proof. As BR programs are Turing-complete, we choose the family (Pp)p∈π to
be a PRF. Any algorithm that leans C also learns (1f (p))p ⊂ C, where 1f (p) = 1
iff Pp = f . Learning the latter is trivially the same as learning a PRF, which is
proven to be impossible. ut

The specific example mentioned in the theorem answers our original question.
Even if the concept we wish to learn is described more broadly than by providing
an oracle for a specific BR program, it is impossible to adjust the statistical
behavior of BR programs according to a predefined goal.

4.3 Complete Unlearnability

We have used the fact that PRFs are not PAC learnable in the sense that no
PAC algorithm can efficiently and weakly learn a PRF. We now demonstrate
an example of a concept class that cannot be learned by PAC algorithms at all.
This example is based on the intuition that chaos cannot be predicted, and so
cannot be learned.

We use a known chaotic map, the logistic map fn+1(x) = afn(x)(1− fn(x)),
f0(x) = x, with the parameter a = 4. Some of its properties are presented by
Berliner [1]. We call Cn(x) the concept class such that Cn(x) = 1 iff fn(x) ≥ 0.5
and Cx(n) = 0 otherwise, where x ∈ [0, 1] follows the arcsine distribution, i.e. the
probability density function is p(x) = 1

π
√
x(1−x)

, and with n ∈ N following the

uniform distribution.

Theorem 3. The concept class Cn(x) cannot be learned with any accuracy. To
be precise, for all algorithms A calling the oracle Cn(x) a finite number of times,
we have:

Pn∈N(Px∈X(A(Cn)(x) 6= Cn(x)) = 0.5) = 1

Proof. The proof relies heavily on Berliner’s paper [1]. From it, we know that as
the logistic map is chaotic, each sequence (fn(x))n is either eventually periodic
or is dense in [0, 1]. We also know that as X follows the arcsine distribution, the
Cn(X) are i.i.d. Bernoulli random variables, such that Px∈X(Cn(x) = 1) = 0.5.

Suppose A calls Cn(x) for values of x ∈ {x1, . . . , xk}. We call n0 the value
such that A(Cn) = Cn0 . As Px∈X(Cn0(x) = 1) = 0.5 does not depend on n0,
and the Cn(X) are i.i.d., we have Px∈X(Cn0(x) 6= Cn(x)) = 0.5 iff n0 6= n
and Px∈X(Cn0(x) 6= Cn(x)) = 0 otherwise. The theorem is thus the same as
saying that A almost certainly (in the probabilistic sense) cannot match n0 to

11

the exact value of n. We now prove that there almost always exists n1 6= n which
is indistinguishable from n by A, i.e. Cn1(x1) = Cn(x1), . . . , Cn1(xk) = Cn(xk).

Let us call Y 1
i = Ci(x1), . . . , Y ki = Ci(xl) with i ∈ N. Some of the sequences

Y j are periodic after some rank, and some are not. Without loss of generality,
we assume Y 1, . . . , Y k1 are periodic, and Y k1+1, . . . , Y k are not. Almost cer-
tainly, (Y 1)i≥n, . . . , (Y

k1)i≥n are periodic (n is big enough). Using P ∈ N to
denote the smaller common multiple of those sequences’ periods, we notice that
Cn+Pi(x

1) = Cn(x1), . . . , Cn+Pi(x
k1) = Cn(xk1). We note yi = n+ Pi.

As the sequences Y k1+1, . . . , Y k are not eventually periodic, we know that
each sequence (fn(xk1+1))n, . . . , (fn(xk))n is dense in [0, 1]. Consequently, for
any sequence of k−k1 bits, there exists a countable number of n1 ∈ (Yi)i∈N such
that it is equal to Y k1+1, . . . , Y k. In particular, if this sequence is Cn(xk1+1), . . . ,
Cn(xk), any of those n1 different from n proves the theorem. ut

It must be noted that no practical application would ever try to learn this
type of concept class. A key part of the proof is allowing the concept class
to be infinite and indexed by a natural number, without bounding that index
at all. This is unlikely to happen for computational reasons, the usual way to
represent a natural number being with integer or long typed variables. Another
difficulty is representing and computing real numbers, which can be done using
Real RAM machines, to compute fn(x1), . . . , fn(xl). In the case of the logistic
map with parameter a = 4, the task is made slightly easier by the existence
of an exact solution, but other chaotic maps would require expensive recursive
computations.

The existence of such extreme cases of unlearnability is nevertheless some-
thing to be careful of. It must be noted that none of the aforementioned compu-
tational difficulties are impossibilities, and that such unlearnable concepts are
thus possible problems for BR programs, among other Turing-Complete pro-
gramming languages.

5 Conclusion

Business Rules seem simple enough, repeatedly treating data according to a
simple algorithm. The complexity of BR programs actually comes from the in-
terpreters. In particular, almost any interpreter that uses a looping algorithm
can make BR programs Turing complete, as is the case with the simplistic al-
gorithm we have presented in this paper. The proof of such is simple, yet it is a
result that has been overlooked so far (to the best of our knowledge). The Tur-
ing completeness of BR programs can have important theoretical implications:
it links the usual Rules research on Inference Rules and ontologies with more
traditional research on programming languages and computability.

The second part of our paper studies shows another theoretical implication
of this result. As a Turing-complete language, no PAC algorithm can adjust the
parameters in a BR program for a specific statistical behavior, even with a perfect
oracle. This impossibility has practical implications. In particular, BR programs

12

are often used to model business processes, which companies might want to
optimize over an average output. That there exists no such algorithm in the
general case means that algorithms working on a specific class of BR programs
are their only way of automatically modifying a BR program with such an aim.
Furthermore, we demonstrate that learning at all is not always possible, and so
general learning algorithms for Turing-Complete programming languages cannot
exist as such. Learning heuristics are thus not only computationally efficient, but
necessary for trying to treat the full generality of the learning problem.

Acknowledgments

The first author (OW) is supported by an IBM France/ANRT CIFRE Ph.D. the-
sis award.

References

1. L. Berliner. Statistics, probability and chaos. Statistical Science, 7(1):69–90, 1992.
2. C. de Sainte Marie, G. Hallmark, and A. Paschke. Rif production rule dialect

(second edition). W3C Recommendation, 2013.
3. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.

Journal of the ACM, 33(4):792–807, 1986.
4. J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and com-

putation. Addison-Wesley, Reading, MA, 1979.
5. IBM Corporation. Operational Decision Manager 8.8, 2015.
6. M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae

and finite automata. Journal of the ACM, 41(1):67–95, 1994.
7. L. Liberti and F. Marinelli. Mathematical programming: Turing completeness

and applications to software analysis. Journal of Combinatorial Optimization,
28(1):82–104, 2014.

8. C. Shannon. A universal Turing machine with two internal states. In C. Shannon
and J. McCarthy, editors, Automata Studies, volume 34 of Annals of Mathematics
Studies, pages 157–165, Princeton, 1956. Princeton University Press.

9. A. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 42(1):230–265, 1937.

10. L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

11. O. Wang, C. Ke, L. Liberti, and C. de Sainte Marie. Controlling the average
behaviour of business rules programs. Technical report, Ecole Polytechnique and
IBM France, 2016.

	The learnability of Business Rules

