
Fast paths in large-scale dynamic road networks

Giacomo Nannicini1,2, Philippe Baptiste1, Gilles Barbier2, Daniel Krob1, Leo Liberti1

1 LIX, École Polytechnique, F-91128 Palaiseau, France

Email:{giacomon,baptiste,dk,liberti}@lix.polytechnique.fr
2 Mediamobile, 10 rue d’Oradour sur Glane, Paris, France

Email:{giacomo.nannicini,gilles.barbier,contact}@v-trafic.com

August 29, 2007

Abstract

Efficiently computing fast paths in large-scale dynamic road networks (where dynamic traffic
information is known over a part of the network) is a practical problem faced by several traffic infor-
mation service providers who wish to offer a realistic fast path computation to GPS terminal enabled
vehicles. The heuristic solution method we propose is based on a highway hierarchy-based shortest
path algorithm for static large-scale networks; we maintain a static highway hierarchy and perform
each query on the dynamically evaluated network, using a simple algorithm to propagate available
dynamic traffic information over a larger part of the road network. We provide computational results
that show the efficacy of our approach.

1 Introduction

Several cars are now fitted with a Global Positioning System (GPS) terminal which gives the exact
geographic location of the vehicle on the surface of the earth. All of these GPS terminals are now endowed
with detailed road network databases which allow them to compute the shortest path (in terms of distance)
between the current vehicle location (source) and another location given by the driver (destination).
Naturally, drivers are more interested in the source-destination fastest path (i.e. shortest in terms of
travelling time). The greatest difficulty to overcome is that the travelling time depends heavily on the
amount of traffic on the chosen road. Currently, some state agencies as well as commercial enterprises
are charged with monitoring the traffic situation in certain pre-determined strategic places. Furthermore,
traffic reports are collected from police cars as well as some taxi services. The dynamic traffic information,
however, is as yet limited to a small proportion of the whole road network.

The problem faced by traffic information providers is currently that of offering GPS terminal enabled
drivers a source-destination path subject to the following constraints: (a) the path should be fast in terms
of travelling time subject to dynamic traffic information being available on part of the road network; (b)
traffic information data are updated approximately each minute; (c) answers to path queries should be
computed in real time. Given the data communication time and other overheads, constraint (c) practically
asks for a shortest path computation time of no more than 1 second. Constraint (b) poses a serious
problem, because it implies that the fastest source-destination path may change each minute, giving
an on-line dimension to the problem. A source-destination query spanning several hundred kilometers,
which would take several hours to travel, would need a system recomputing the fastest path each minute;
this in turn would mean keeping track of each query for potentially several hours. As the estimated
computational cost of this requirement is superior to the resources usually devoted to the task, a system
based on dynamic traffic information will not, in practice, ever compute the on-line fastest path. As a
typical national road network for a large European country usually counts several million junctions and
road segments, constraint (c) implies that a straight Dijkstra’s algorithm is not a viable option. In view of
constraint (a), in our solution method fast paths can be efficiently computed by means of a point-to-point

1 INTRODUCTION 2

hierarchy-based shortest path algorithm for static large-scale networks, where the hierarchy is built using
static information and each query is answered on the dynamically evaluated network.

This paper makes three original scientific contributions (i) We extend a known hierarchy-based shortest
path algorithm for static large-scale undirected graphs (the Highway Hierarchies algorithm [SS05]) to
the directed case. The method has been developed and tested on real road network data taken from
the TeleAtlas France database [NV05]. We note that the original authors of [SS05] have extended the
algorithm to work on directed graphs in a slightly different way than ours (see [SS06]). (ii) We model
the problem taking into account the propagation of the partial traffic information on a subset of the
road segments to the rest of the network. (iii) We propose a method for efficiently finding fast paths on
a large-scale dynamic road network where arc travelling times are updated in quasi real-time (meaning
very often but not continuously).

In the rest of this section, we discuss the state of the art as regards shortest path algorithms in dynamic
and large-scale networks, and we describe the proposed solution. The rest of the paper is organized as
follows. In Section 2 we discuss the propagation of the partial dynamic traffic information to a larger
part of the road network. In Section 3 we briefly review the highway hierarchy-based shortest path
algorithm for static large-scale networks, which is one of the important building blocks of our method,
and discuss the extension of the existing shortest-path algorithm to the directed case. Section 4 discusses
the computational results, and Section 5 concludes the paper.

1.1 Shortest path algorithms in road networks

The problem of computing fastest paths in graphs whose arc weights change over time is termed the
Dynamic Shortest Path Problem (DSPP) [BRTed]. The work that laid the foundations for solving
the DSPP is [CH66] (a good review of this paper can be found in [Dre69], p. 407): Dijkstra’s algorithm
is extended to the dynamic case through a recursion formula based on the assumption that the network
G = (V,A) has the FIFO property: for each pair of time instants t, t′ with t < t′:

∀ (u, v) ∈ A τuv(t) + t ≤ τuv(t′) + t′,

where τuv(t) is the travelling time on the arc (u, v) starting from u at time t. The FIFO property
is also called the non-overtaking property, because it basically says that if A leaves u at time t and
B at time t′ > t, B cannot arrive at v before A using the arc (u, v). The shortest path problem in
dynamic FIFO networks is therefore polynomially solvable [Cha98], even in the presence of traffic lights
[AOPS03]. Dijkstra’s algorithm applied to dynamic FIFO networks has been optimized in various ways
[BRTed, Cha98]; the A∗ one-to-one shortest path algorithm has also been extended to dynamic networks
[CS02]. The DSPP is NP-hard in non-FIFO networks [Dea04].

Although in this paper we do not assume any knowledge about the statistical distribution of the arc
weights in time, it is worth mentioning that a considerable amount of work has been carried out for
computing shortest paths in stochastic networks. A good review is [FHK+05].

The computation of exact shortest paths in large-scale static networks has received a good deal of
attention [CZ01]. The established practice is to delegate a considerable amount of computation to a
preprocessing phase (which may be very slow) and then perform fast source-destination shortest path
queries on the pre-processed data. Recently, the concept of highway hierarchy was proposed in [SS05,
Sch05, SS06]. A highway hierarchy of L levels of a graph G = (V,A) is a sequence of graphs G =
G0, . . . , GL with vertex sets V 0 = V, V 1 ⊇ . . . ⊇ V L and arc sets A0 = A,A1 ⊇ . . . ⊇ AL; each arc has
maximum hierarchy level (the maximum i such that it belongs to Ai) such that for all pairs of vertices
there exists between them a shortest path (a1, . . . , ak), where ai are the consecutive path arcs, whose
search level first increases and then decreases, and each arc’s search level is not greater than its maximum
hierarchy level. A more precise description is given in Section 3. The A∗ algorithm has also been extended
to use a concept, reach, which has turned out to be closely related to highway hierarchies (see [GKW05]).

2 PROPAGATION OF DYNAMIC TRAFFIC INFORMATION 3

1.2 Description of the solution method

The solution method we propose in this paper efficiently finds fast paths by deploying Dijkstra-like
queries on a highway hierarchy built using the static arc weights found in the road network database, but
used with the dynamic arc weights reflecting quasi real-time traffic observations. This implies using two
main building blocks: highway hierarchy construction (the Highway Hierarchies1 algorithm extended to
directed graphs), and the query algorithm applied to real-time and propagated traffic information.

• Highway hierarchy. Apply the directed graph extension of the HH algorithm (see Section 3) to
construct a highway hierarchy using the static road network information. In particular, arc travelling
times are average estimations found in the database. This is a preprocessing step that has to be
performed only when the topology of the road network changes. The CPU time taken for this step
is not an issue.

• Propagation of dynamic traffic information. Every minute, the travelling times of a subset D of the
arcs A are updated with dynamic traffic information. Propagate the dynamic travelling times on D
to a larger arc subset D̄ ⊇ D using an algorithm which first computes a congestion index for each
arc where real-time information is available, and then propagates this information on adjacent arcs
(see Section 2.2). This algorithm is carried out every minute, and its running time must be limited
to a few seconds at worst.

• Efficient path queries. Efficiently address source-destination fast path requests by employing a
multi-level bidirectional Dijkstra’s algorithm on the dynamically evaluated graph using the highway
hierarchy structure constructed during preprocessing. This algorithm is carried out each time a path
request is issued; its running time must be as fast as possible, in any case not over 1 second.

2 Propagation of dynamic traffic information

The problem of finding fast paths in large-scale dynamically changing road networks is naturally modelled
by a digraph G = (V,A) describing the network topology, weighted by an arc cost function τ : A → R

associating each arc to the time taken to travel on the arc. In order to express the fact that the network
changes dynamically in quasi real-time, τ also depends on time: we shall thus call τuv(t) the time interval
taken to travel the arc (u, v) ∈ A at time t, or simply τuv whenever the time instant t is clear from
the context. Ideally, given a point-to-point path query one would like to compute the shortest (fastest)
path between the given nodes in a low time — less than one second, in any case; however, as this may
not always be possible due to the difficulty of this problem when traffic information changes frequently,
finding a path which connects the two nodes and has a real-time cost very close to the optimal solution
is good enough for practical applications. One issue complicates the matters: at each time t, there is a
proper subset D(t) ⊂ A of arcs over which the travelling time function τ(t) is known (in practice, |D(t)| is
considerably smaller than |A|): for the rest of the arcs in A r D(t), the corresponding dynamic travelling
time is unknown, the only known quantity being a static travelling time function σ : A → R contained
in the road network database.

Since only a subset of arcs travelling times is updated with quasi real-time traffic data, we need
to propagate this information to the rest of the graph in a consistent way; to this end, we developed
a simple propagation algorithm which stems from practical considerations. For all matters regarding
dynamic travelling times propagation we have ignored all arcs that correspond to minor roads; this
decision is based on the observation of real data and on common knowledge, in particular the fact that
traffic in small roads can be subject to local instability and is much less related to the traffic situation
in a neighbourhood than traffic on highways and national roads. Intuitively, the algorithm computes a
congestion index for each arc where real-time information is available, comparing dynamic travelling time

1From now on, simply HH.

2 PROPAGATION OF DYNAMIC TRAFFIC INFORMATION 4

and reference time, and then propagates this information to all adjacent arcs in a breadth-first manner.
We point out that our first approach to this problem was based on a flow model, where each arc had an
associated traffic flow whose value was proportional to an estimation of the number of vehicules on that
arc and their speed (see [Ker04]), and flows were propagated using the flow conservation laws; however,
this approach wasn’t effective in practice, and we obtained better results with the heuristic approach
described below. This is probably due to the fact that we do not know the true number of vehicles on a
road, and our rough estimations could have been subject to severe errors.

2.1 A heuristic model

Given a directed graph G = (V,A), for v ∈ V we let δ−(v) ⊂ A be the backward star and δ+(v) ⊂ A
be the forward star of v; we let δ̄−(v) ⊂ V be the backward vertex star and δ̄+(v) ⊂ V be the forward
vertex star. For each node u ∈ V such that ∃v ∈ V : (u, v) ∈ D(t)∨ (v, u) ∈ D(t) we define its congestion
index C(u) as

C(u) =

∑

a∈(δ+(u)∪δ−(u))∩D(t)

λaC(a)

∑

a∈(δ+(u)∪δ−(u))∩D(t)

λa

,

where λa is a measure of arc a’s relative importance, and C(a) is the congestion index of arc a. The main
idea, here, is that a node (that is, a junction between two or more roads) is congested if incident arcs are
congested; in order to properly take into account different road types we weight each arc’s contribution
by a value which synthetizes that arc’s importance. Again, we remark that this model has originated
from the practical considerations; a very simple and intuitive way to model λa and C(a) is:

• λa = number of lanes of arc a,

• C(a) = min{ τa

σa

, 1},

where τa is the dynamic (real-time) travelling time on arc a, and σa is its reference time, i.e. the static
travelling time. The min function in the definition of C(a) helps avoiding unrealistic results due to noise
or to vehicles cruising at a speed above the maximum allowed speed on that road’s type.

2.2 The propagation algorithm

After having defined a measure of congestion for each node incident to one or more arcs with dynamic
information, we now propagate that information using a simple model. This model is based on the
assumption that if a junction is congested then incident arcs are likely to be congested too; this, combined
with the previous definition of node congestion, results in the assumption that if some arcs (and especially
those corresponding to large roads, i.e. with many lanes) incident on a node experience a traffic increase
then all other arcs incident on that node are subject to traffic increase.

At each propagation step i, let Di−1 be the set of arcs with dynamic information, with D0 = D(t), and
let Ni−1 be the set of nodes incident to at least one arc in Di−1, that is Ni−1 = {u|(u, v) ∈ Di−1∨(v, u) ∈
Di−1}; we want to calculate Di, where Di = Di−1 ∪D∗

i for some D∗
i ⊂ A r D(t). The algorithm at step

i works as follows:

1. Compute congestion index for each arc (u, v) ∈ Di−1

2. Compute congestion index for each node u ∈ Ni−1

3 HIGHWAY HIERARCHIES ALGORITHM ON DYNAMIC DIRECTED GRAPHS 5

3. Given positive constants wb, wf ≤ 1 such that wb + wf = 1, for each arc (u, v) ∈ A r (Di−1) such
that u ∈ Ni−1 ∨ v ∈ Ni−1 let

C((u, v)) =







C(u) if v /∈ Ni−1

C(v) ifu /∈ Ni−1

wfC(u) + wbC(v) otherwise

4. Given a positive constant p ≤ 1, for each arc (u, v) ∈ A r (Di−1) for which we computed C((u, v))
at the previous step, we compute its propagated travelling time

τuv = pi−1σuvC((u, v)) + (1 − pi−1)σuv

and add (u, v) to D∗
i

5. Di = Di−1 ∪ D∗
i ; if some terminating condition is not met, increment i and go to line 1.

For this algorithm we have used a few constants: wb, wf ≤ 1 such that wb + wf = 1 measure the
relative importance of information propagated, respectively, backwards or forwards on arcs, while p ≤ 1
is a measure of confidence in the information propagated at each step after the first, i.e. the relative
importance of propagated travelling times and reference times. As a stopping condition we simply put a
limit on the number of iteration steps. This algorithm was shown to perform well in practice, allowing
fast propagation of dynamic times. To validate our algorithm, we built a benchmark as follows: we kept
a subset B ⊂ D(t) for validation, propagated travelling times using only arcs in D(t) r B, and then
compared propagated travelling times on arcs in B with the real values, computing for each arc the
relative absolute error

|τprop − τreal|

τreal
.

Over several days of validation and different values of the parameters, we recorded an average error of
23% with a variance of 0.92, obtained with parameters wb = 0.75, p = 0.75 and 2 propagation steps
(i.e. two iterations of the propagation algorithm); for comparison, using no propagation at all (that is,
using static times regardless of traffic situation) yields an average error of 50% with a variance of 0.03,
while a flow model recorded an average error of 177% with a variance of 96.47. Also, our heuristic model
performs in all situations better than using no dynamic travelling times propagation at all, and thus
seems a reasonable choice in practice.

3 Highway Hierarchies algorithm on dynamic directed graphs

The Highway Hierarchies algorithm [SS05, Sch05] is a fast, hierarchy-based shortest paths algorithm
which works on static undirected graphs. HH algorithm is specially suited to efficiently finding shortest
paths in large-scale networks. Since the HH algorithm is one of our main building blocks, we briefly
review the necessary concepts.

The Highway Hierarchies algorithm is heavily based on Dijkstra’s algorithm [Dij59], which finds the
tree of all shortest paths from a root vertex r to all other vertices v ∈ V of a weighted digraph G = (V,A)
by maintaining a heap H of reached (or explored) vertices u with their associated (current) shortest path
length c(u) (elements of the heap are denoted by [u, c(u)]). Vertices which have not yet entered the heap
(i.e. which are still unvisited) are unreached, and vertices which have already exited the heap (i.e. for
which a shortest path has already been found) are settled. Dijkstra’s algorithm is as follows.

1. Let H = {[r, 0]}, c(v) = ∞∀v ∈ V r {r}.

2. If H = ∅, terminate.

3. Let u be the vertex in H with minimum associated path length c(u).

3 HIGHWAY HIERARCHIES ALGORITHM ON DYNAMIC DIRECTED GRAPHS 6

4. Let H = H r {u}.

5. For all v ∈ δ̄+(u), if c(u) + τuv < c(v) then let H = (H r {[v, c(v)]}) ∪ {[v, c(u) + τuv]}.

6. Go to 2.

A bidirectional Dijkstra algorithm works by keeping track of two Dijkstra search scopes: one from the
source, and one from the destination working on the reverse graph. When the two search scopes meet
it can be shown that the shortest path passes through a vertex that has been reached from both nodes
([Sch05], p. 30). A set of shortest paths is canonical2 if, for any shortest path p = 〈u1, . . . , ui, . . . , uj . . . , uk〉
in the set, the canonical shortest path between ui and uj is a subpath of p.

The HH algorithm works in two stages: a time-consuming pre-processing stage to be carried out only
once, and a fast query stage to be executed at each shortest path request. Let G0 = G. During the first
stage, a highway hierarchy is constructed, where each hierarchy level Gl, for l ≤ L, is a modified subgraph
of the previous level graph Gl−1 such that no canonical shortest path in Gl−1 lies entirely outside the
current level for all sufficiently distant path endpoints: this ensures that all queries between far endpoints
on level l−1 are mostly carried out on level l, which is smaller, thus speeding up the search. Each shortest
path query is executed by a multi-level bidirectional Dijkstra algorithm: two searches are started from the
source and from the destination, and the query is completed shortly after the search scopes have met; at
no time do the search scopes decrease hierarchical level. Intuitively, path optimality is due to the fact that
by hierarchy construction there exist no canonical shortest path of the form 〈a1, . . . , ai, . . . , aj . . . , ak . . .〉,
where ai, aj , ak ∈ A and the search level of aj is lower than the level of both ai, ak; besides, each arc’s
search level is always lower or equal to that arc’s maximum level, which is computed during the hierarchy
construction phase and is equal to the maximum level l such that the arc belongs to Gl. The speed of
the query is due to the fact that the search scopes occur mostly on a high hierarchy level, with fewer arcs
and nodes than in the original graph.

3.1 Highway hierarchy

As the construction of the highway hierarchy is the most complicated part of HH algorithm, we endeavour
to explain its main traits in more detail. Given a local extensionality parameter H (which measures
the degree at which shortest path queries are satisfied without stepping up hierarchical levels) and the
maximum number of hierarchy levels L, the iterative method to build the next highway level l+1 starting
from a given level graph Gl is as follows:

1. For each v ∈ V , build the neighbourhood N l
H(v) of all vertices reached from v with a simple Dijkstra

search in the l-th level graph up to and including the H-st settled vertex. This defines the local
extensionality of each vertex, i.e. the extent to which the query “stays on level l”.

2. For each v ∈ V :

(a) Build a partial shortest path tree B(v) from v, assigning a status to each vertex. The initial
status for v is “active”. The vertex status is inherited from the parent vertex whenever a
vertex is reached or settled. A vertex w which is settled on the shortest path 〈v, u, . . . , w〉
(where v 6= u 6= w) becomes “passive” if

|N l
H(u) ∩ N l

H(w)| ≤ 1. (1)

The partial shortest path tree is complete when there are no more active reached but unsettled
vertices left.

2Dijkstra’s algorithm can easily be modified to output a canonical shortest paths tree (see [Sch05], Appendix A.1 — can
be downloaded from http://algo2.iti.uka.de/schultes/hwy/).

3 HIGHWAY HIERARCHIES ALGORITHM ON DYNAMIC DIRECTED GRAPHS 7

(b) From each leaf t of B(v), iterate backwards along the branch from t to v: all arcs (u,w) such
that u 6∈ N l

H(t) and w 6∈ N l
H(v), as well as their adjacent vertices u,w, are raised to the next

hierarchy level l + 1.

3. Select a set of bypassable nodes on level l + 1; intuitively, these nodes have low degree, so that the
benefit of skipping them during a search outweights the drawbacks (i.e., the fact that we have to
add shortcuts to preserve the algorithm’s correctness). Specifically, for a given set Bl+1 ⊂ Vl+1

of bypassable nodes, we define the set Sl+1 of shortcut edges that bypass the nodes in Bl+1: for
each path p = (s, b1, b2, . . . , bk, t) with s, t ∈ Vl+1 r Bl and bi ∈ Bl+1, 1 ≤ i ≤ k, the set Sl+1

contains an edge (s, t) with c(s, t) = c(p). The core G′
l+1 = (V ′

l+1, E
′
l+1) of level l + 1 is defined as:

V ′
l+1 = Vl+1 r Bl+1, E′

l+1 = (El+1 ∩ (V ′
l+1 × V ′

l+1)) ∪ Sl+1.

The result of the contraction is the contracted highway network G′
l+1, which can be used as input for

the following iteration of the construction procedure. It is worth noting that higher level graphs may be
disconnected even though the original graph is connected.

3.1 Example

Take the directed graph G = (V,A) given in Fig. 1 (above). We are going to construct a road hierarchy
with H = 3 and L = 1 on G. First we compute N0

3 (v) for all v ∈ V = {v0, . . . , v6}.

v N0
3 (v)

v0, v1, v2 {0, 1, 2}
v3, v4, v5 {3, 4, 5}
v6 {3, 5, 6}

Next, we compute B(v) for all v ∈ V and raise the hierarchy level of the relevant arcs from the leaves to
B(v) to v. We only discuss the computation of B(v0) in detail as the others are similar.

1. Vertex v0 is initialized as an active vertex.

2. Dijkstra’s algorithm is started.

(a) v0 is settled (cost 0) on the empty path, so the passivity condition (1) does not apply;

(b) v1 and v2 are reached from v0 with costs resp. 1 and 2, and inherit its active status;

(c) v1 is settled (cost 1) on the path 〈v0, v1〉 and condition (1) does not apply;

(d) v6 is reached from v1 with cost 1 + 4 = 5 and set to active;

(e) v2 (cost 2) is settled on 〈v0, v2〉;

(f) v4 is reached from 2 with cost 2 + 6 = 8 and set to active;

(g) v6 (cost 5) is settled on the path 〈v0, v1, v6〉: since N0
3 (v1) ∩ N0

3 (v6) = ∅, condition (1) is
verified, and v6 is labeled passive;

(h) v3 is reached from v6 with cost 1 + 4 + 4 = 9 and set to passive.

(i) v4 (cost 8) is settled on the path 〈v0, v2, v4〉: since N0
3 (v2) ∩ N0

3 (v4) = ∅, condition (1) is
verified, and v4 is labeled passive;

(j) v5 is reached from v4 with cost 2 + 6 + 2 = 10 and set to passive;

(k) the only unsettled vertices are v3 and v5. Since both are reached and passive, the search
terminates.

3. The leaf vertices of B(v0) are v4 and v6.

(a) From t = v4, we iterate backwards along the arcs on the path 〈v0, v2, v4〉: the arc (v2, v4) has
the property that v2 6∈ N0

3 (v4) and v4 6∈ N0
3 (v2), so its hierarchy level is raised to l + 1 = 1

(the other arc on the path, (v0, v2), stays at level l = 0);

3 HIGHWAY HIERARCHIES ALGORITHM ON DYNAMIC DIRECTED GRAPHS 8

(b) from t = v6, we iterate backwards along the arcs on the path 〈v0, v1, v6〉: the arc (v1, v6) has
the property that v1 6∈ N0

3 (v6) and v6 6∈ N0
3 (v1), so its hierarchy level is raised to 1 (the other

arc on the path stays at level 0).

Fig. 1 shows the hierarchy at level 1.

1 0
1

2

3

6

4

1

2
3

2

4
6

5
3

12

5

1

3
2

3

7
7 4

1 0
1

2

3

6

4

1

2
3

2

4
6

5
3

12

5

1

3
2

3

7
7 4

Figure 1: The graph of Example 3.1 (left) and its highway hierarchy for H = 3, L = 1 (right): the dashed
lines indicate arcs at level 0, the solid lines indicate arcs at level 1.

3.2 Extension to directed graphs

The original description of the HH algorithm [SS05] applies to undirected graphs only; in this section we
provide an extension to the directed case. It should be noted that the HH algorithm was extended to the
directed case by the authors (see [SS06]) in a way which is very similar to that described here. However,
we believe our slightly different exposition helps to clarify these ideas considerably.

The algorithm for hierarchy construction, as explained in Section 3.1, works with both undirected and
directed graphs. However, storing all neighbourhoods N l

H(v) for each v and l has prohibitive memory
requirements. Thus, the original HH implementation for checking whether a vertex v is in N l

H(u) is
based on comparing the distance d(u, v) with the “distance-to-border” (also called slack) from u to the
border of its neighbourhood N l

H(u). The “distance-to-border” dl
H(u) is a measure of a neighbourhood’s

radius, and is defined as the distance d(u, v) where v is the farthest node in N l
H(u), i.e. the cost of the

shortest path from u to the H-th settled node when applying Dijkstra’s algorithm on node u at level l.
This is the basis of the slack-based method in [Sch05], p. 19 (from which we draw our notation). In the
partial shortest paths tree B(s0) computed in Step 2a of the algorithm in Section 3.1, the slack ∆(u) is
recursively computed for all u ∈ B(s0) starting from the leaves t0 of B(s0), as follows.

1. Initialise a FIFO queue Q to contain all nodes u of B(s0), ordering them from the farthest one to
the nearest one with respect to s0.

2. Set ∆(u) = dl
H(u) for u a leaf of B(s0) and +∞ otherwise.

3. If Q is empty, terminate.

4. Remove u from Q, and let p be its predecessor in B(s0).

5. If ∆(p) = +∞ and p 6∈ N l
H(s0), p is added to Q.

6. Let ∆(p) = min(∆(p),∆(u) − d(p, u)).

3 HIGHWAY HIERARCHIES ALGORITHM ON DYNAMIC DIRECTED GRAPHS 9

7. If ∆(p) < 0, the edge (p, u) is lifted to the higher hierarchical level.

8. Return to Step 3.

The algorithm works because Thm. 2 in [Sch05] proves that condition ∆(p) < 0 is equivalent to the
condition of Step 2b of the algorithm in Section 3.1. The cited theorem is based on the following
assumption:

∀u ∈ V (u 6∈ N l
H(t0) → dl

H(t0) − d(u, t0) < 0). (2)

This condition may fail to hold for directed graphs, since d(u, t0) 6= d(t0, u).

To make Assumption 2 hold, we have to consider a neighbourhood radius computed on the reverse
graph, that is the graph G = (V,A) such that (u, v) ∈ A ⇔ (v, u) ∈ A. Thus, we modified the original

implementation to compute, for each node, a reverse neighbourhood N
l

H(v) (see Figure 2), so that we

are able to store the corresponding reverse neighbourhood radius d
l

H(u)∀u ∈ V . We replace Step 2 in
the algorithm above by:

2a. Set ∆(u) = d
l

H(u) for u a leaf of B(s0) and +∞ otherwise.

We are now going to prove our key lemma.

3.2 Lemma

Let u, s ∈ V and t a leaf in B(s). If u 6∈ N
l

H(t) then d
l

H(t) − d(u, t) < 0.

Proof. Suppose d(u, t) ≤ d
l

H(t). By definition, this means that there is a shortest path in N
l

H(t) which

connects u to t. Therefore, u ∈ N
l

H(t) against the hypothesis. 2

It is now straightforward to amend Thm. 2 in [Sch05] to hold in the directed case; all other theorems

in [Sch05] need similar modifications, replacing N l
H(t) with N

l

H(t) and dl
H(t) with d

l

H(t) whenever t is
target node or is “on the right side” of a path - it will always be clear from the context. The query

algorithm must me modified to cope with these differences, using d
l

H(t) instead of dl
H(t) whenever we are

searching in the backwards direction.

Figure 2: An example which shows neighbourhoods and reverse neighbourhoods with H = 3; only solid
arcs are lifted to a higher level in the hierarchy. Note that arcs (p, t) and (p′, t) are not lifted even if

p, p′ /∈ N l
H(t); this is because p, p′ ∈ N

l

H(t), and for target node we consider the reverse neighbourhood.

Interestingly, the problem with the slack-based method was first detected when our original imple-
mentation of the HH algorithm failed to construct a correct hierarchy for the Paris urban area. This
shows that the extension of the algorithm to the directed case actually arises from real needs.

3 HIGHWAY HIERARCHIES ALGORITHM ON DYNAMIC DIRECTED GRAPHS 10

3.3 Heuristic application to dynamic networks

The original Highway Hierarchies algorithm, as described above, finds shortest paths in networks whose
arc weights do not change in time. By forsaking the optimality guarantee, we adapt the algorithm to the
case of networks whose arc weights are updated in quasi real-time. Whereas the highway hierarchy is
constructed using the static arc travelling times from the road network database, each point-to-point path
query is deployed on a dynamically evaluated version of the highway hierarchy where the arcs are weighted
using the quasi real-time traffic information. In particular, in all tests that involved a comparison with
neighbourhood radius we use the static arc travelling times, while for all evaluations of path lengths or
of node distances we use the real-time (dynamic) travelling times. This means that the static travelling
times are used to determine neighbourhood’s crossings, and thus to determine when to switch to a higher
level in the hierarchy, while the key for the priority queue for HH algorithm is computed using only
dynamic travelling times. We can prove that this approach yields correct paths, although it does not
guarantee to find the shortest path.

3.3 Proposition

Given source and target nodes s, t ∈ V , if a s → t path exists in the original graph then the modified
algorithm applied on a dynamic network finds an s → t path.

Proof. Let p = (s = v0, . . . , vn = t) be the shortest s → t path in the original (static) graph as
computed by the original HH algorithm; by correctness of the HH algorithm, this path exists. An
entrance point is defined as a node where, during the multilevel bidirectional query, the search is switched
to a higher level in the hierarchy or it enters the core of the current level (see [Sch05, SS06]); let h and
k be the number of entrance points on p for, respectively, the forward and backward search, and let
respectively f0 = s, f1, . . . , fh and bk, . . . , b1, b0 = t be those entrance points . Path p is then of the form
p = (s = f0, . . . , f1, . . . , fh, . . . , bk, . . . , b1, . . . , b0 = t). Let ℓ(u) be the hierarchy level at which node u is
explored.

We have that fi+1 ∈ N
ℓ(fi)
H (fi)∀i = 0, . . . , h− 1 and bi+1 ∈ N

ℓ(bi)

H (bi)∀i = 0, . . . , k − 1; besides, there

exists a node m ∈ N
ℓ(fh)
H (fh)∩N

ℓ(bk)

H (bk). Since the modified algorithm uses static arc weights and static
neighbourhood radii to determine whether a node belongs to a given neighbourhood, then the whole

neighbourhood N
ℓ(f0)
H (f0) = N0

H(f0) is explored, which means that f1 added to the search queue (its
status becomes reached). The same argument holds to prove that, unless a shorter s → t path is found,
each of the nodes f1, . . . , fh,m becomes reached in the forward search and each of the nodes b1, . . . , bk,m
becomes reached in the backward search; thus a valid s → t path is eventually found by the modified
algorithm applied on a dynamic network. 2

Let c be the static cost function, i.e. the function that uses the original arc weights, and let c′ be the
dynamic cost function, i.e. the function that uses the quasi real-time arc weights; we can prove a weak
result on the solution quality.

3.4 Proposition

Given source and target nodes s, t ∈ V , let p be the shortest s → t path on the static graph as computed
by the original HH algorithm. Then the modified algorithm computes a path q such that c′(q) ≤ c′(p).

Proof. Let f0, . . . , fh,m, bk, . . . , b0 ∈ p be as in the proof of Prop. 3.3. If the forward search does not
explore all fi for i = 0, . . . , h then the modified algorithm has found a path q such that c′(q) ≤ c′(p),

and Prop. 3.4 is true; otherwise, it explores all neighbourhoods N
ℓ(fi)
H (fi) for i = 0, . . . , h. For i =

0, . . . , h − 1 let p|fi→fi+1
be the subpath of p from fi to fi+1, and r|fi→fi+1

be the best path from fi

to fi+1 as computed by the modified algorithm when applied to s and t; since the modified algorithm
uses the real-time cost function c′ to apply Dijkstra’s algorithm in each neighbourhood, we have that

c′(r|fi→fi+1
) ≤ c′(p|fi→fi+1

) because r|fi→fi+1
is optimal within N

ℓ(fi)
H (fi). The same reasoning applies to

prove that c′(r|fh→m) ≤ c′(p|fh→m), and for the backward search. Thus c′(r|f0→f1
) + · · · + c′(r|fh→m) +

4 COMPUTATIONAL RESULTS 11

c′(r|m→bk
) + · · · + c′(r|b1→b0) ≤ c′(p|f0→f1

) + · · · + c′(p|fh→m) + c′(p|m→bk
) + · · · + c′(p|b1→b0) = c′(p),

which completes the proof. 2

Prop. 3.4 states that the modified algorithm applied on a dynamic network performs no worse than
the naive idea of computing the shortest path on the static graph and then applying dynamic arc weights,
without modifying the solution; we have no guarantees, however, that it will perform better, although it
sounds reasonable because within each neighbourhood the modified algorithm computes locally optimal
shortest path with respect to the dynamic weights.

4 Computational results

In this section we discuss the computational results obtained by our implementation. As there seems
to be no other readily available software with equivalent functionality, the computational results are not
comparative. However, we establish the quality of the heuristic solutions by comparing them against
the fastest paths found by a plain Dijkstra’s algorithm. We mention here two different approaches:
dynamic highway-node routing ([SS07]), which uses a selection of nodes operated by the HH algorithm to
build an overlay graph (see [HSW06]), and dynamic ALT ([DW07]), which is a dynamic landmark-based
implementation of A∗. Both approaches, however, although very performing with respect to query times,
require a computationally heavy update phase (which takes time in the order of minutes), and thus are
not suitable for our scenario, where, supposedly, each arc can have its cost changed every 2 minutes
(roughly).

We performed the tests on the entire road network of France, using a highway hierarchy with H = 65
and L = 9. The original network has 7778913 junctions and 17154042 road segments; the number of
nodes and arcs in each level is as follows.

level 0 1 2 3 4 5 6 7 8 9
nodes 7778913 1517291 433286 182474 91888 53376 34116 23338 16445 11790
arcs 17154042 3461385 1283000 583380 308249 183659 119524 81170 57235 41092

We show the results for queries on the full graph without dynamic travelling times in Table 1; in
this case, all paths computed with the HH algorithm are fastest paths. In Table 2, instead, we record
our results on a graph with dynamic travelling times; we also report the relative distance of the solution
found with our heuristic version of the HH algorithm and the fastest path computed with Dijkstra, and,
for comparative reasons, the results of the naive approach which consists in computing the traffic-free
optimal solution with the HH algorithm (i.e., on the static graph) and then applying dynamic times on
the so-found solution. Dynamic travelling times were taken choosing, for each query, one out of five sets
of values recorded in different times of the day for each of the 29384 arcs with dynamic information.
reading both true real-time and propagated costs, with the propagation algorithm in Section 2.2 with3

6 propagation iterations, wb = 0.75 and p = 1; on average4, we started with 6947 dynamic arcs with
real-time traffic information, and propagated another 22437.

Although this number is small with respect to the total number of arcs in the graph, it should be
noted that most of these arcs correspond to very important road segments (highways and national roads).
All arcs (i, j) that did not have a dynamic travelling time were assigned a different weight at each query,
chosen at random with a uniform distribution over [τij , 15τij], where τij is the reference time for arc (i, j).
This choice has been made in order to recreate a difficult scenario for the query algorithm: even if the

3Parameters used in this section are not optimized with respect to the minimization of the validation error; however,
they allow us to propagate dynamic information on a great number of arcs, thus providing realistic data.

4Dynamic information comes from different sources, so the number of dynamically evaluated travelling times is time-
dependent.

5 CONCLUSION 12

number of arcs with real traffic information is still small, it is going to increase rapidly as the means for
obtaining dynamic information increase (e.g. number of road cameras, etc.), and thus, to simulate an
instance where most arcs have their travelling time changed several times per hour, we generated each
arc’s cost at random. The interval [τij , 15τij] is simply a rough estimation of a likely cost interval, based
on the analysis of historical data. All tables report average values over 5000 queries. All computational
results in Table 1 and 2 have been obtained using one CPU of a multiprocessor Intel Xeon 2.6 GHz with
8GB RAM running Microsoft Windows Server 2003, compiling with Miscrosoft Visual Studio 2005 and
optimization level 2.

Computational results show that, although with no guarantee of optimality, our heuristic version
of the algorithm works well in practice, with 0.55% average deviation from the optimal solution and a
recorded maximum deviation of 17.59%; query times do not seem to be influenced by our changes with
respect to the original version of the algorithm. The naive approach of computing the shortest path
on the static graph, and then applying dynamic times, records an average error of 2%, but it has a
much higher variance, and a maximum error of 27.95%; although the average error is not high, it’s still
almost 4 times the average error of the more sofisticated approach, and the high variance suggests lack of
stability in the solution’s quality. The low value recorded for the average error with the naive approach (in
absolute terms) can be explained as a consequence of the following two facts: travelling times generated
at random on arcs without real-time traffic information cannot simulate real traffic situation, because
they lack spatial coherence (i.e. they do not simulate congested nearby zones) and traffic behaviour
information (i.e. the fact that during peak hours important road segments are likely to be congested,
while less important roads are not), thus making the task of finding a fast path easier; besides, the
average query on such a large graph corresponds to a very long path (296 minutes on the traffic-free
graph, 2356 minutes on the dynamic graph), and on long paths it is usually necessary to use highways
or national roads regardless of their congestion status - which is exactly what the HH algorithm does.
This last sentence is supported by the fact that, if we consider only the 500 shortest queries in terms of
path length, the average error of the naive approach increases to 3.60%, while the average error of the
heuristic version increases to 0.97%; this is in accord with the fact that on short paths the influence of
traffic is greater, because alternative routes that do not use highways are more appealing, while on long
paths using highways is often a necessary step. However, in relative terms, the heuristic version of the
HH algorithm performs significantly better than the naive approach proposed for comparison, and we
expect the difference to increase (in favour of the heuristic algorithm) if applied to a graph fully covered
with real traffic information.

Figure 3 shows how the optimal and the heuristic path may differ; since the hierarchy built on the
static graph emphasizes important roads, the heuristic algorithm applied on the dynamically weighted
graph still tends to use highways and national roads even when they are congested (up to a certain
degree), thus sometimes losing optimality.

Dijkstra’s algorithm HH algorithm

settled nodes 2275563 18966
explored nodes 2587112 36200
query time [sec] 11.830 0.099

Table 1: Computational results on the static graph: average values

5 Conclusion

We present a heuristic algorithm for efficiently finding fast paths in large-scale partially dynamically
weighted road networks, and benchmark its application on real-world data. The proposed solution is based
on fast multi-level bidirectional Dijkstra queries on a highway hierarchy built on the statically weighted
version of the network using the Highway Hierarchies algorithm, and deployed using the dynamic arc

5 CONCLUSION 13

Dijkstra’s algorithm HH algorithm HH algorithm

naive approach heuristic version

settled nodes 2280872 19174 19099
explored nodes 2594361 36581 36492
query time [sec] 11.917 0.100 0.099
distance from optimum (variance) 0% 2.00% (5.00) 0.55% (0.45)

Table 2: Computational results on the graph with dynamic times: average values

Figure 3: Fast paths calculated with different algorithms; each number identifies a path, paths are par-
tially overlapping. 1: Dijkstra’s algorithm (optimal solution) with real-time arc costs; dynamic travelling
time: 24 minutes and 6 seconds. 2: HH algorithm (heuristic solution) with real-time arc costs; dynamic
travelling time: 25 minutes and 5 seconds. 3: HH algorithm without real-time arc costs (traffic-free
optimal solution); dynamic travelling time: 37 minutes and 5 seconds.

weights. As the dynamic information covers a (small) subset of the whole road network, we also discuss
the propagation of the dynamic information through an algorithm based on practical considerations which
has shown to perform well. Computational results show that, although with no guarantee of optimality,
the proposed solution works well in practice, computing near-optimal fast paths quickly enough for our
purposes.

REFERENCES 14

Figure 4: Highway hierarchy near the Champs Elysées, Paris; colour intensity and line width increase
with hierarchy level, in that order (a wide line with a lighter colour has a higher hierarchy level than a
thin line with dark colour).

Acknowledgements

We are grateful to Ms. Annabel Chevaux, Mr. Benjamin Simon and Mr. Benjamin Becquet for invaluable
practical help with Oracle and the real data, and to the rest of the Mediamobile’s energetic and youthful
staff for being always friendly and helpful.

References

[AOPS03] R.K. Ahuja, J.B. Orlin, S. Pallottino, and M.G. Scutellà. Dynamic shortest paths minimizing
travel times and costs. Networks, 41(4):197–205, 2003.

[BRTed] L.S. Buriol, M.G.C. Resende, and M. Thorup. Speeding up dynamic shortest path algorithms.
INFORMS Journal on Computing, submitted.

[CH66] K.L. Cooke and E. Halsey. The shortest route through a network with time-dependent intern-
odal transit times. Journal of Mathematical Analysis and Applications, 14:493–498, 1966.

[Cha98] I. Chabini. Discrete dynamic shortest path problems in transportation applications: complex-
ity and algorithms with optimal run time. Transportation Research Records, 1645:170–175,
1998.

[CS02] I. Chabini and L. Shan. Adaptations of the A∗ algorithm for the computation of fastest
paths in deterministic discrete-time dynamic networks. IEEE Transactions on Intelligent

Transportation Systems, 3(1):60–74, 2002.

[CZ01] E.P.F. Chan and N. Zhang. Finding shortest paths in large network systems. In GIS ’01:

Proceedings of the 9th ACM international symposium on Advances in geographic information

systems, pages 160–166, New York, NY, USA, 2001. ACM Press.

REFERENCES 15

[Dea04] B.C. Dean. Shortest paths in fifo time-dependent networks: theory and algorithms. Technical
report, MIT, Cambridge MA, 2004.

[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[Dre69] S.E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research, 17(3):395–
412, 1969.

[DW07] D. Delling and D. Wagner. Landmark-based routing in dynamic graphs. In WEA 2007, volume
4525 of Lecture Notes in Computer Science. Springer, 2007.

[FHK+05] T. Flatberg, G. Hasle, O. Kloster, E.J. Nilssen, and A. Riise. Dynamic and stochastic aspects
in vehicle routing – a literature survey. Technical Report STF90A05413, SINTEF, Oslo,
Norway, 2005.

[GKW05] A.V. Goldberg, H. Kaplan, and R.F. Werneck. Reach for A∗: Efficient point-to-point shortest
path algorithms. Technical Report MSR-TR-2005-132, Microsoft Research, 2005.

[HSW06] M. Holzer, F. Schulz, and D. Wagner. Engineering multi-level overlay graphs for shortest-path
queries. In SIAM, volume 129 of Lecture Notes in Computer Science, pages 156–170. Springer,
2006.

[Ker04] B. S. Kerner. The Physics of Traffic. Springer, Berlin, 2004.

[NV05] TeleAtlas NV. Tele Atlas Multinet ShapeFile 4.3.1 Format Specifications. TeleAtlas NV, May
2005.

[Sch05] D. Schultes. Fast and exact shortest path queries using highway hierarchies. Master Thesis,

Informatik, Universität des Saarlandes, June 2005.

[SS05] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path queries. In
G. Stølting Brodal and S. Leonardi, editors, ESA, volume 3669 of Lecture Notes in Computer

Science, pages 568–579. Springer, 2005.

[SS06] P. Sanders and D. Schultes. Engineering highway hierarchies. In ESA 2006, volume 4168 of
Lecture Notes in Computer Science, pages 804–816. Springer, 2006.

[SS07] P. Sanders and D. Schultes. Dynamic highway-node routing. In WEA 2007, volume 4525 of
Lecture Notes in Computer Science, pages 66–79. Springer, 2007.

