
Mathematical Programming manuscript No.

(will be inserted by the editor)

Reformulations in mathematical programming: Automatic

symmetry detection and exploitation

Leo Liberti

March 7, 2010

Abstract If a mathematical program has many symmetric optima, solving it via Branch-

and-Bound techniques often yields search trees of disproportionate sizes; thus, finding and

exploiting symmetries is an important task. We propose a method for automatically finding

the formulation group of any given Mixed-Integer Nonlinear Program, and for reformulat-

ing the problem by means of static symmetry breaking constraints. The reformulated prob-

lem — which is likely to have fewer symmetric optima — can then be solved via standard

Branch-and-Bound codes such as CPLEX (for linear programs) and COUENNE (for nonlin-

ear programs). Our computational results include formulation group tables for the MIPLib3,

MIPLib2003, GlobalLib and MINLPLib instance libraries and solution tables for some in-

stances in the aforementioned libraries.

Keywords group · symmetry · mixed integer nonlinear programming · branch and bound

1 Introduction

We consider Mixed-Integer Nonlinear Programs (MINLPs) in the following general form:

min
x∈Rn

f (x)

g(x) ≤ b

x ∈ [xL,xU]
∀i ∈ Z xi ∈ Z,

(1)

where f : R
n→ R, g : R

n→ R
m, b ∈ R

m, xL,xU ∈ R
n and Z ⊆ {1, . . . ,n}. Throughout the

paper, elements of groups are represented by means of permutations of either the column

or the row space; permutations on the row space are denoted by left multiplication, and

permutations on the column space by right multiplication. For a mathematical program P

we let F (P) be its feasible region and G (P) be the set of its global optima. For x ∈ R
n

and B ⊆ {1, . . . ,n}, we let x[B] = (x j | j ∈ B) be the partial vector of x restricted to the

components in B. If X ⊆ R
n, then X [B] = {x[B] ∈ R

|B| | x ∈ X}.

Leo Liberti

LIX, École Polytechnique, 91128 Palaiseau, France

E-mail: liberti@lix.polytechnique.fr

2

Problems (1), be they linear or nonlinear, may be solved either heuristically or exactly.

The most widely used technique for solving (1) exactly is the Branch-and-Bound (BB) al-

gorithm. BB is a tree-based search in the variable space where each node represents a sub-

problem of (1) whose feasible region is a subset of the feasible region of (1). A node is

pruned when one of the following holds: (a) a global optimum for the node was found; (b)

the node was proved to be infeasible; (c) a lower bound for the problem at the node has

higher value than the value of the objective function evaluated at the current best solution

(the incumbent). In all other cases, the node is branched into two or more subnodes the

union of whose feasible regions is the same as the feasible region of the parent node. For

Mixed-Integer Linear Programs (MILPs), branching occurs on the integer variables only,

and BB terminates finitely [54]. Finite termination also occurs with some nonlinear prob-

lems [1,9], although in general BB applied to MINLPs — called spatial BB (sBB) — can

only terminate finitely with an ε-approximate optimum for a given ε > 0.

BB usually converges slowly on problems (1) whose solution set has many symmetries

because many leaf nodes in the BB tree may contain (symmetric) global optima: hence, no

node in the paths leading from the root to these leaf nodes can ever be pruned. So, in general,

we expect symmetric problems to yield larger BB trees. It is worth pointing out, however,

that we carried out a few experiments using other solution methods than BB: these provided

evidence to the effect that local-search based heuristics usually find optima faster if there

are many of them — so it may not be worth breaking symmetries when using a heuristic

method.

In this paper we describe methods to speed up the BB solution process applied to sym-

metric MILPs and MINLPs via a reformulation of the narrowing type [31].

Definition 1 Given a problem P, a narrowing Q of P is such that (a) there is a function

η : F (Q)→F (P) for which η(G (Q))⊆ G (P), and (b) Q is infeasible only if P is.

The proposed narrowing rests on adjoining some static symmetry breaking inequalities (SS-

BIs) [38] to the original formulation, i.e. inequalities that are designed to cut some of the

symmetric solutions while keeping at least one optimal one. The reformulated problem is

then solved by standard software packages such as CPLEX [22] (for MILPs) and COUENNE

[4] (for MINLPs, replaced sometimes by BARON [47] on COUENNE’s failures). In the same

spirit as [31], our reformulation is completely automatic, in the sense that given the original

problem we automatically compute the formulation group as well as the narrowing.

With respect to the existing literature about symmetry in mathematical programming,

the main contribution of this paper is that of being able to deal with symmetric MINLPs

and NLPs, and not just MILPs and Semidefinite Programs (SDPs) as was previously the

case [34,23,19,43,52]. Moreover, whereas many existing works assume that the formulation

group is known in advance, we propose a method for computing the formulation group of

a MINLP automatically. The SSBIs we employ for constructing narrowing reformulations

hold for every possible group and are well-behaved numerically. We provide computational

validation of our ideas by (a) supplying formulation group tables for most of the instances

in the MIPLib3 [6], MIPLib2003 [39], GlobalLib [10] and MINLPLib [11] (which also

contains MacMINLP [26]); (b) evaluating BB performance on the symmetric instances in

the aforementioned libraries, with and without SSBIs.

The rest of this paper is organized as follows. In Sect. 3 we perform a literature review

concerning the use of group theoretical methods in mathematical programming. We define

several groups linked to a mathematical program in Sect. 4. In Sect. 5 we introduce expres-

sion trees and DAGs for representing mathematical functions. We explain in Sect. 6 how to

compute a formulation group automatically. Sect. 7 introduces several types of SSBIs and

3

some ways to combine them. Computational results validating the proposed approach are

given in Sect. 8: these include formulation group tables (Sect. 8.3) as well as results tables

(Sect. 8.4).

2 Notation

Most of the groups considered in this paper act on vectors in R
n by permuting the compo-

nents. Permutations act on sets of vectors by acting on each vector in the set. We denote the

identity permutation by e. We employ standard group nomenclature: Sn,Cn are the symmet-

ric and cyclic groups of order n, andD2n is the dihedral group of order n (i.e. the group of ro-

tations and reflections of a regular n-polygon in the plane). If G is a subgroup of H, we write

G ≤ H. If G,H are groups, then the cartesian (set) product G×H can be endowed with a

group structure by defining (π,σ)(π ′,σ ′) = (ππ ′,σσ ′) for all (π,σ),(π ′,σ ′)∈G×H. Two

groups G,H are isomorphic (denoted G∼= H) if there is a group homomorphism φ : G→ H

(i.e. φ is such that φ(ππ ′) = φ(π)φ(π ′) for all π,π ′ ∈G) which is both injective and surjec-
tive.

For a group G ≤ Sn and a set X of row vectors, XG = {xg | x ∈ X ∧ g ∈ G}; if Y is a

set of column vectors, GY = {gy | y ∈ Y ∧ g ∈ G}. If X = {x}, we denote XG by xG (and

similarly GY by Gy if Y = {y}). We say that G fixes X setwise if XG = X , and pointwise

if ∀x ∈ X xg = x (similarly for Y — if not otherwise specified, we shall refer to setwise

rather than pointwise fixing). We refer to xG as the orbit of x in G (similarly for Gy). In

computational group theory literature the notation orb(x,G) is sometimes employed instead

of the more algebraic xG. The (setwise) stabilizer stab(X ,G) of a set X with respect to

a group G is the largest subgroup H of G that fixes X (i.e. such that XH = X). For any

permutation π ∈ Sn, let Γ (π) be the set of its disjoint cycles, so that

π = ∏
τ∈Γ (π)

τ.

For a group G and π ∈ G let 〈π〉 be the smallest subgroup of G containing π , and for a

subset S⊆G let 〈S〉 be the smallest subgroup of G containing all elements of S (we also use

the terminology subgroup generated by π and, respectively, S), in which case S is a set of

generators of 〈S〉. For any π ∈ Sn, let o(π) = |〈π〉| denote the order of π . If π is expressed as

a product of disjoint cycles, o(π) turns out to be the least common multiple of all the cycle

lengths.

Given B⊆{1, . . . ,n}, Sym(B) is the symmetric group of all the permutations of elements

in B. A permutation π ∈ Sn is limited to B if it fixes every element outside B; π acts on

B⊆ {1, . . . ,n} as a permutation ρ ∈ Sym(B) if

∏
τ∈Γ (π)∩Sym(B)

τ = ρ,

in which case we denote ρ by π[B], and call ρ the restriction of π to B. Because disjoint

cycles commute, it follows from the definition that for all k ∈N, πk[B] = (π[B])k. A group G

of permutations of Sn with generators {g1, . . . ,gs} acts on B⊆ {1, . . . ,n} as H if 〈gi[B] | i≤
s〉 = H; in this case we denote H by G[B]. If B is an orbit of the natural action of G on the

integers, then it is easy to show that G[B] is a transitive constituent of G, defined [21] as

the set of restrictions to B of the elements of G whenever B is an orbit. In general, though,

G[B] may not even need to be a subgroup of G: take G = 〈(1,2)(3,4),(1,3),(4,2)〉 and
B = {1,2}, then G[B] = 〈(1,2)〉 6≤ G. Let B,D ⊆ {1, . . . ,n} with B∩D = /0; if π ∈ Sn fixes

both B,D setwise, it is easy to show that π[B∪D] = π[B]π[D].

4

3 Literature review

We provide here an essential review of group-based methods in mathematical programming,

with the notable exceptions of SDP-related results [52] and Constraint Programming (CP)

[13] because mostly out of scope — see [38] for more information. Notwithstanding, a tech-

nique for automatic symmetry detection in CP bearing some similarity to the one proposed

here can be found in [45]. The existing work may be classified in three broad categories: (a)

the abelian group approach proposed by Gomory to write integer feasibility conditions for

Integer Linear Programs (ILPs), not reviewed here because out of scope (see [30] for de-

tails); (b) symmetry-breaking techniques for specific problems, whose symmetry group can

be computed in advance; (c) general-purpose symmetry group computations and symmetry-

breaking techniques to be used in BB-type solution algorithms.

Category (b) is possibly the richest in terms of number of published papers. Many

types of combinatorial problems exhibit a certain amount of symmetry. Symmetries are usu-

ally broken by means of specific branching techniques (e.g. [36]), appropriate global cuts

(e.g. [50]) or special formulations [25,8] based on the problem structure. The main limita-

tion of the methods in this category is that they are difficult to generalize and/or to be made

automatic.

Category (c) contains three main research streams. The first was established by Margot

in the early 2000s [34,35], and is applicable to problems in general form (1) where xL =
0,xU = 1, i.e. Binary Linear Programs (BLPs). Margot [34,38] defines the relaxation group

GLP(P) of a BLP P as:

GLP(P) = {π ∈ Sn | cπ = c∧∃σ ∈ Sn (σb = b∧σAπ = A)}, (2)

or, in other words, all relabellings of problem variables for which the objective function and

constraints are the same. The relaxation group (2) is used to derive effective BB pruning

strategies by means of isomorphism pruning and isomorphism cuts local to some selected

BB tree nodes (Margot extended his work to general integer variables in [37]). Further re-

sults along the same lines, where branching on symmetric nodes at the same level is carried

out implicitly (orbital branching), can be obtained for covering and packing problems [43,

44]: if O is an orbit of a certain subgroup of the relaxation group, at each BB node the dis-

junction (
∨

i∈O xi = 1)∨∑i∈O xi = 0 induces a feasible division of the search space; orbital

branching restricts this disjunction to xh = 1∨∑i∈O xi where h is an arbitrary index in O.

A method for finding the MILP relaxation group (2), based on solving an auxiliary MILP

encoding the conditions σAπ = A, cπ = c and σb = b in the constraints, was proposed in

[29].

The second stream was established by Kaibel et al. in 2007 [23] (also see [16]). Symme-

tries in the column space (i.e. permutations of decision variables) of binary ILPs having 0-1

constraint matrices are shown to affect the quality of the linear programming bound. Limited

only to permutations in cyclic and symmetric group, complete descriptions of orbitopes are

provided by means of linear inequalities. Let x′ be a point in {0,1}n (the solution space),

with n= pq, so that we can arrange the components of x′ in a matrixC. Given a group G and

π ∈ G, for all 0-1 p×q matricesC let πC be the matrix obtained by permuting the columns

of C according to π . Let GC be the orbit of C under the action of all π ∈ G, GC be the

lexicographically maximal matrix in GC (ordering matrices by rows first) and Mmax
pq (G) be

the set of all GC. Then the full orbitope associated with G is conv(Mmax
pq (G)). An automatic

symmetry detection method for certain orbitopal symmetries that works in linear time is

described in [5]. Inspired by the work on orbitopes, E. Friedman recently proposed a similar

5

but extended approach [19] leading to the application of fundamental domains (see [38] for

a definition of this well-known concept) to symmetry reduction: given a feasible polytope

X ⊆ [0,1]n with integral extreme points and a group G acting as an affine transformation on

X (i.e. for all π ∈G there is a matrix A ∈GL(n) and an n-vector d such that πx = Ax+d for

all x ∈ X), a fundamental domain is a subset F ⊂ X such that GF = X .

4 Groups of a mathematical program

Given a MINLP P as in (1), the solution group G∗(P) of P is defined as stab(G (P),Sn),
i.e. the group of all permutations of variable indices mapping global optima into global

optima. When P is a MILP, G∗(P) contains as a subgroup the symmetry group of P, defined
for MILPs in [38] as the group of permutations mapping feasible solutions into feasible

solutions with the same objective function value. Solution groups are hard to compute for a

general MINLP (1) because presumably explicit knowledge of G (P) is needed a priori. We

consider the group ḠP that “fixes the formulation” of P:

ḠP = {π ∈ Sn | Zπ = Z∧∀x ∈ dom(f) f (xπ) = f (x)∧

∃ σ ∈ Sm (σb = b∧∀x ∈ dom(g) σg(xπ) = g(x))}. (3)

It is easy to show that ḠP ≤G∗(P): let π ∈ ḠP and x∗ ∈ G (P); x∗π ∈F (P) because Zπ = Z,

g(x∗π) = σ−1g(x∗) and σ−1b = b; and it has the same function value because f (x∗π) =
f (x∗) by definition. Thus G (P)π = G (P) and π ∈ G∗(P).

The two most problematic conditions that need testing to ascertain whether a given

permutation π is in ḠP are:

∀x ∈ dom(f) f (xπ) = f (x)

∃σ ∈ Sm ∀x ∈ dom(g) σg(xπ) = g(x).

Since NONLINEAR EQUATIONS (determining if a set of general nonlinear equations has a

solution) is an undecidable problem in general [55], such tests are algorithmically infeasible.

We therefore assume that for functions f1, f2 :R
n→R we have an oracle equal(f1, f2) that,

if it returns true, then dom(f1) = dom(f2) and ∀x∈ dom(f1) (f1(x) = f2(x)), in which case
we write f1 ≡ f2. We remark that we do not ask that the equal oracle returning false should

imply f1 6= f2: although this will make equality a stricter notion than it need be (so some

pairs of equal functions will not belong to the ≡ relation), it will allow us to implement

the oracle efficiently by means of expression trees (see Sect. 5). We can now define the

formulation group of a MINLP P as follows:

GP = {π ∈ Sn | Zπ = Z∧ f (xπ)≡ f (x)∧∃ σ ∈ Sm (σg(xπ)≡ g(x)∧σb = b)}. (4)

The structure of GP depends on the oracle used to implement equality testing. With respect

to a trivial oracle always returning false, for example, GP would always only consist of the

identity. Because for any function h, h(xπ)≡ h(x) implies h(xπ) = h(x) for all x ∈ dom(h),
it is clear that GP ≤ ḠP. Thus, it also follows that GP ≤ G∗(P).

Although ḠP is defined for any MINLP (1), if P is a BLP, then ḠP is the same group as

GLP(P), as the following result shows.

Proposition 2 Given a problem P as in (1) such that f ,g are linear forms, Z = {1, . . . ,n}
and xL = 0,xU = 1, we have ḠP = GLP(P).

6

Proof Let π ∈ GLP(P); then (a) cπ = c and (b) ∃σ ∈ Sm such that σb = b and σAb = A.

Let f (x) = cx in (1); then f (xπ) = c(xπ) = (cπ)x, and by (a) we have f (xπ) = cx = f (x).
Now let g(x) = Ax in (1); then g(xπ) = A(xπ) = (Aπ)x, and by (b) there is σ ∈ Sm such that

σb = b and σAπ = A. Thus σg(xπ) = σ((Aπ)x) = (σAπ)x = Ax = g(x), and π ∈ ḠP. The

implication ḠP ≤ GLP(P) follows directly from the definition (3) if P is a BLP. ⊓⊔

5 A function equality test oracle

Any mathematical expression consisting of a finite sequence of operator symbols, variable

symbols and numerical constants can be represented by an n-ary expression tree [15,14,

3]. We consider a finite set O of operators ordered according to a given order (for exam-

ple, lexicographically according to their English names); we remark that operators can be

unary (such as logarithm, exponential, sine, cosine, etc.), binary (such as fraction, differ-

ence, power) or k-ary (such as sum and product) for some positive integer k. The usual

operator precedences, modified by parentheses, apply. Given a function h(x), its expression
tree is a directed tree h= (Vh,Ah)whereVh is partitioned in leaf nodes (labelled with variable
symbols from x1, . . . ,xn and numerical constants) and non-leaf nodes (labelled with operator

symbols fromO), and an arc (u,v) is in Ah if v is an argument of the operator node u. The tree

h is constructed recursively as follows: the root of h is the lexicographically smallest opera-

tor ⊗ of lowest precedence in h(x). Let h1(x), . . . ,hK(x) be the arguments of ⊗. Since each
hk(x) is a mathematical expression, by induction it is represented by a tree hk = (Vhk ,Ahk).
The vertex set Vh is then defined as {⊗}∪

⋃

k≤KVhk and Ah as
⋃

k≤K((⊗,hk)∪Ak). In gen-

eral, expressions need not have unique trees. However, the number of trees corresponding to

a given function can be decreased by defining a set of simplification rules ([28], p. 246-247)

and an arbitrary argument ordering for each operator (e.g. constants first, then variables in

lexicographic ordering, then other operators in the ordered set O [27]). If f : Rn→R, given

a vector of values x′ ∈R
n, the value f (x′) can be obtained algorithmically by a simple recur-

sive procedure eval(f,x′) on the expression tree f ([28], p. 243), which returns the symbol

NaN (Not a Number) whenever f (x′) is undefined. The equal oracle for two expression trees
f ,g is defined in Algorithm 1.

Using Algorithm 1, it is easy to show that if equal(f1, f2)=true, then f1(x) = f2(x) for
all x in the domains of f1, f2, whereas the converse is not true (e.g. sin(x) = cos(x+π/2) for
all x ∈ R but the trees corresponding to sin(x) and cos(x+π/2) are different). As remarked

in Sect. 4, if equal(f1, f2)=true we write f1(x) ≡ f2(x) (in this expression there is no

need to quantify over x, as ≡ is an equality relation between the two trees representing

f1(x), f2(x)).
Restricted to linear forms, the relation ≡ is the same as equality.

Lemma 3 If f1, f2 are linear forms, then ∀x ∈ dom(f1) f1(x) = f2(x) (written f1 = f2)

implies f1 ≡ f2.

Proof Assume f1 = f2; let f1(x)= cx and f2(x)= dx, where c= (c1, . . . ,cn), d = (d1 . . . ,dn),
x = (x1, . . . ,xn) ∈ R

n. We define the canonical expression tree for the linear form cx by:

Vc = {+,×1, . . . ,×n,c1, . . . ,cn,x1, . . . ,xn}

Ac = {(+,×i),(×i,ci),(×i,xi) | i≤ n};

it is easily shown that the canonical tree is unique and that there are finite deterministic

algorithms reducing any other expression tree representing cx to the canonical tree (similarly

7

Algorithm 1 boolean equal(f1, f2)

Input expression trees f1, f2
if f1 and f2 are both leaf nodes then

if f1 and f2 are both variable nodes and represent the same variable then

return true

else

if f1 and f2 are both constant nodes and represent the same constant then

return true

else

return false

end if

end if

else

if f1 and f2 are both operator nodes and have the same arity k then

r←true

for i = 1 to k do

let f ′1, f
′
2 be the i-th nodes in the stars of f1, f2

r←equal(f ′1, f
′
2)

if r =false then

exit for

end if

end for

return r

else

return false

end if

end if

for dx). Now let f1(x) = f2(x) for all x ∈ R
n; then ∀x (cx = dx), which implies c = d, and

thus the canonical expression tree for c is identical to the canonical expression tree for d.

This shows that f1 ≡ f2. ⊓⊔

By Lemma 3 and Prop. 2, given a problem P as in (1) such that f ,g are linear forms, Z =
{1, . . . ,n}, xL = 0 and xU = 1, we have GP = GLP(P).

The functions f ,g appearing in (1) have the property that their argument list x is the

same, so the trees for f ,g1, . . . ,gm can share the same variable leaf nodes. This yields a

Directed Acyclic Graph (DAG) DP = (VP,AP) where VP = Vf ∪
⋃

i≤mVgi and AP = A f ∪
⋃

i≤mAgi . DP is a DAG representing the mathematical structure of the functions of P. It is

rooted at the smallest operators of lowest precedence in f ,g1, . . . ,gm; its leaf nodes are the
problem variables and all the problem constants. More comprehensive discussions about

expression DAGs and their uses in optimization can be found in [4,42,48].

6 Automatic computation of the formulation group

6.1 Fixed subsets of DAG nodes

We emphasize the following subsets of VP: the set SF of all root nodes corresponding to

objective functions (in this section we generalize to multi-objective problems although in

practice we only consider single objective problems), the set SC of all root nodes corre-

sponding to constraints, the set SO of all operator nodes, the set SK of all constant nodes

and the set SV of all variable nodes. We remark that SF ∪SC ∪SO ∪SK ∪SV = VP but

the union is not disjoint as SF ∪SC ⊆SO. For a node v ∈SF , we denote the optimization

8

direction by d(v); for a node v ∈SC, we denote the constraint sense by s(v) and the corre-

sponding constraint RHS constant by b(v). For a node v ∈SO, we let ℓ(v) be the level of v
in DP, λ (v) be its operator label (operator name) and o(v) be the rank of v in the argument

list of its parent node if the latter represents a noncommutative operator, or 1 otherwise.

We remark that for nodes in SO the level in DP is well-defined, as the only nodes in DP

with more than one incoming arc are the leaf nodes, and no operator node can be a leaf. For

v ∈SK , we let µ(v) be the value of v. For v ∈SV we let r(v) be the 2-vector of lower and
upper variable bounds for v and ζ (v) be 1 if v represents an integral variable or 0 otherwise.

We define the relation ∼ on VP as follows.

∀u,v ∈VP u∼ v ⇔ (u,v ∈SF ∧d(u) = d(v))

∨ (u,v ∈SC ∧ s(u) = s(v)∧b(u) = b(v))

∨ (u,v ∈SO∧ ℓ(u) = ℓ(v)∧λ (u) = λ (v)∧o(u) = o(v))

∨ (u,v ∈SK ∧µ(u) = µ(v))

∨ (u,v ∈SV ∧ r(u) = r(v)∧ζ (u) = ζ (v)).

It is easy to show that ∼ is an equivalence relation on VP, and therefore partitions VP into K

disjoint subsets V1, . . . ,VK .

6.2 The projection homomorphism

Let G ≤ Sn and ω be a subset of {1, . . . ,n}. Let H = Sym(ω) and define the mapping

ϕ : G→ H by ϕ(π) = π[ω] for all π ∈ G.

Theorem 4 ϕ is a group homomorphism if and only if G stabilizes ω setwise.

Proof (⇒) Assume ϕ is a group homomorphism and suppose there is σ ∈G and i ∈ω such

that σ(i) = j 6∈ ω . Take any permutation π ∈ H such that π(i) = k ∈ ω , k 6= i. Then the

action of πσ is to move i to j first (because of σ), and then fix it to j (because of π), which
means that (πσ)[ω] simply fixes i; on the other hand, the action of π[ω]σ [ω] on i is to fix it
first (because of σ [ω]) and then move it to k (because of π[ω]), hence ϕ(πσ) 6= ϕ(π)ϕ(σ),
against the assumption. Thus σ(i) ∈ ω for all i ∈ ω and σ ∈ G, which implies Gω = ω .

(⇐) Assume Gω = ω and let π,σ ∈G. First, for a single cycle γ fixing ω pointwise, we

obviously have γ[ω] = e. Now consider two single cycles β ,γ appearing in the disjoint cycle

product representation of some permutations of G. Since G fixes ω setwise, either: (1) both

β ,γ ∈ H, or (2) one is in H and the other is in Sn rH, or (3) both are in Sn rH. For case

(1), β ,γ ∈ H implies β [ω] = β and γ[ω] = γ , which yields (βγ)[ω] = βγ = β [ω]γ[ω]. For
(2), assuming without loss of generality β ∈H and γ 6∈H, then (βγ)[ω] = β [ω] = β [ω]e =
β [ω]γ[ω]. For (3), (βγ)[ω] = e = ee = β [ω]γ[ω]. Thus ϕ(βγ) = ϕ(β)ϕ(γ). Next, notice
that:

πσ =

(

∏
τ∈Γ (π)

τ

)(

∏
τ∈Γ (σ)

τ

)

= ∏
τ∈Γ (π)∪Γ (σ)

τ.

Hence,

ϕ(πσ) = ϕ

(

∏
τ∈Γ (π)∪Γ (σ)

τ

)

= ∏
τ∈Γ (π)∪Γ (σ)

ϕ(τ) = ∏
τ∈(Γ (π)∪Γ (σ))∩H

τ

=

(

∏
τ∈Γ (π)∩H

τ

)(

∏
τ∈Γ (σ)∩H

τ

)

= ϕ(π)ϕ(σ),

9

which completes the proof. ⊓⊔

6.3 Mapping graph automorphisms onto the formulation group

For a digraph D = (V,A), its automorphism group Aut(D) is the group of vertex permuta-

tions γ such that (γ(u),γ(v)) ∈ A for all (u,v) ∈ A [46]. Let GDAG(P) be the largest sub-

group of Aut(DP) fixing Vk for all k ≤ K (i.e. containing only vertex permutations γ such

that γVk =Vk for all i≤ K). For ease of notation, assume without loss of generality that the

vertices of DP are ordered so that for all j ≤ n, the j-th vertex corresponds to the leaf node

for variable x j (the rest of the order is not important), i.e. SV = {1, . . . ,n}.

Lemma 5 GDAG(P) fixes SV setwise.

Proof By definition, all permutations of GDAG(P) fix all Vk’s (setwise). In particular, since

(u,v∈SV ∧r(u) = r(v)∧ζ (u) = ζ (v)) implies u∼ v, there will be a subsetK of {1, . . . ,K}
such that SV =

⋃

k∈K Vk. Hence G
DAG(P)SV = SV as claimed. ⊓⊔

Corollary 6 The map ϕ : GDAG(P)→ Sym(SV) given by ϕ(γ) = γ[SV] is a group homo-

morphism.

Proof By Lemma 5 and Thm. 4. ⊓⊔

Theorem 7 Imϕ = GP groupwise.

Proof We first remark that by Cor. 6, Imϕ is endowed with a group structure, because

GDAG(P)/Kerϕ ∼= Imϕ . In particular, Imϕ is a subgroup of Sn. Now let ψ : GDAG(P)→
Sym(SC) be given by ψ(γ) = γ[SC]. By an argument similar to that of Lemma 5, GDAG(P)
fixes SC setwise, which implies that ψ is a group homomorphism by Thm. 4. Let σ = ψ(γ)
and π = ϕ(γ). Because γ fixes each equivalence class Vk, we have Zπ = Z, f (xπ) ≡ f (x),
σb = b and σg(xπ)≡ g(x). Conversely, suppose π ∈GP and there is no automorphism γ of

DP fixing all Vk’s and such that ϕ(γ) = π . Then either f (xπ) 6≡ f (x), or there is no σ ∈ Sm
such that σg(xπ) ≡ g(x), or ψ(γ)b 6= b, contradicting the hypothesis. Thus, Imϕ = GP

setwise. Since both are subgroups of Sn, the identity isomorphism shows that Imϕ = GP

groupwise too. ⊓⊔

By Thm. 7, we can automatically generate GP by looking for the largest subgroup of

Aut(DP) fixing all Vk’s. Thus, the problem of computing GP has been reduced to computing

the (generators of the) automorphism group of a certain vertex-coloured DAG. This is in

turn equivalent to the GRAPH ISOMORPHISM (GI) problem [2]. GI is in NP, but it is not

known whether it is in P or NP-complete. A notion of GI-completeness has therefore been

introduced for those graph classes for which solving the GI problem is as hard as solving it

on general graphs [51]. Rooted DAGs are GI-complete [7] but there is an O(N) algorithm
for solving the GI problem on trees ([46], Ch. 8.5.2).

Corollary 8 If T ′ is a set of group generators of GDAG(P), then T = {π[SV] | π ∈ T ′} is a
set of generators for GP.

10

7 Symmetry Breaking Constraints

In this section we shall discuss the automatic generation of two types of SSBIs, one of

which is valid for symmetries in any group GP, and the other only holds for the full sym-

metric group Sn. Because of their generality and of the usual trade-off between generality

and efficacy, the general-purpose SSBIs we propose are not the tightest possible; however, it

is their generality that makes their automatic generation feasible (and easy) for all MINLPs.

We also propose tighter SSBIs that only hold for Sn, so that we can only generate them auto-

matically for those instances displaying at least one orbit whose stabilizer is the symmetric

group. Some works in the literature [50] suggest using very tight and rather general-purpose

SSBIs based on interpreting a 0-1 vector as a base-k expansion of an integer number, with

the constraints acting on the latter (also see [38], p. 667). Quite apart from the fact that these

SSBIs only hold for integer variables with values in {0, . . . ,k} (so they would not be applica-
ble to continuous NLPs), it is well known that such SSBIs are badly scaled; so that although

the corresponding narrowing is formally well-defined and symmetry-free, it is often much

more difficult to solve correctly, in practice, than the original problem. We therefore limit

our attention to SBCs that are numerically well behaved.

We first give a formal definition of SSBIs that makes them depend on a group rather

than a set of solutions.

Definition 9 Given a permutation π ∈ Sn acting on the component indices of the vectors in a

given set X ⊆R
n, the constraints g(x)≤ 0 (that is, {g1(x)≤ 0, . . . ,gq(x)≤ 0}) are symmetry

breaking constraints (SBCs) with respect to π and X if there is y ∈ X such that g(yπ) ≤ 0.

Given a group G, g(x)≤ 0 are SBCs w.r.t G and X if there is y ∈ XG such that g(y)≤ 0.

If there are no ambiguities as regards X , we simply say “SBCs with respect to π” (respec-
tively, G). In most cases, X = G (P). The following facts are easy to prove.

1. For any π ∈ Sn, if g(x)≤ 0 are SBCs with respect to π,X then they are also SBCs with

respect to 〈π〉,X .
2. For any H ≤ G, if g(x)≤ 0 are SBCs with respect to H,X then they are also SBCs with

respect to G,X .
3. Let g(x) ≤ 0 be SBCs with respect to π ∈ Sn,X ⊆ R

n and let B ⊆ {1, . . . ,n}. If g(x) ≡
g(x[B]) (i.e., if the constraints g only involve variable indices in B) then g(x) ≤ 0 are

also SBCs with respect to π[B],X [B].

As regards Fact 3, if g(x)≡ g(x[B]) we denote the SBCs g(x)≤ 0 by g[B](x)≤ 0; if B is the

domain of a permutation α ∈ Sym(B), we also use the notation g[α](x)≤ 0.

Example 10 Let y= (1,1,−1), X = {y} and π = (1,2,3); then {x1 ≤ x2,x1 ≤ x3} are SBCs
with respect to π and X because yπ satisfies the constraints. The inequalities {x1 ≤ x2,x2 ≤
x3} are SBCs with respect to S3 and X because (−1,1,1) = y(1,2,3) ∈ XSn, but not with

respect to to 〈(2,3)〉 and X because X〈(2,3)〉 = {y,y(2,3)} = {(1,1,−1),(1,−1,1)} and
neither vector satisfies the constraints.

We use SBCs to yield narrowings of the original problem P.

Theorem 11 If g(x) ≤ 0 are SBCs for any subgroup G of GP and G (P), then the problem

Q obtained by adjoining g(x)≤ 0 to the constraints of P is a narrowing of P.

Proof By Defn. 1, we must provide a map G (Q)→ G (P) and show that if P is feasible then

Q is feasible. Assume F (P) 6= /0; then G (P) 6= /0. By definition of SBCs, there is y∈ G (P)G

11

such that g(y)≤ 0. Since G≤GP ≤G∗(P) = stab(G (P),Sn), it follows that G (P)G= G (P),
so that y ∈ G (P). Thus, y satisfies the constraints of P and also g(y)≤ 0, which means that

y∈F (Q), as required. Now, let η be the identity map; since F (Q) 6= 0 it follows that G (Q)
contains at least one element x. Since F (Q) ⊆ F (P) (because Q is as P with additional

constraints) and the objective functions of P,Q are equal, η(x) = x ∈ G (P). ⊓⊔

We now describe a way to combine SBCs. Since adjoining more constraints to a formu-

lation results into a smaller feasible region and fewer optima, combined SBCs should yield

better narrowings.

Theorem 12 Let ω,θ ⊆ {1, . . . ,n} be such that ω ∩ θ = /0. Consider ρ,σ ∈ GP, and let

g[ω](x)≤ 0 be SBCs w.r.t. ρ,G (P) and h[θ](x)≤ 0 be SBCs w.r.t. σ ,G (P). If ρ[ω],σ [θ] ∈
GP[ω ∪θ] then the system of constraints c(x)≤ 0 consisting of g[ω](x)≤ 0 and h[θ](x)≤ 0

is an SBC system for ρσ .

Proof Let y∈ G (P). Since g[ω](x) only depends on variable indices in ω , g[ω](yρ[ω])≤ 0.

Likewise, h[θ](yσ [θ]) ≤ 0. The fact that ρ[ω],σ [θ] ∈ GP[ω ∪ θ] implies that ρ[ω ∪ θ] =
ρ[ω] and σ [ω ∪θ] = σ [θ], and in turn that ρ[θ] = σ [ω] = e. Since σ fixes ω pointwise, the

action of ρσ on ω reduces to the action of ρ on ω , and similarly for ρ and θ , i.e. (ρσ)[ω] =
ρ[ω] and (ρσ)[θ] = σ [θ]. Thus, g[ω](yρσ) = g[ω](y(ρσ)[ω]) = g[ω](yρ[ω]) ≤ 0 and

h[θ](yρσ) = h[θ](y(ρσ)[θ]) = h[θ](yσ [θ])≤ 0, hence c(yρσ)≤ 0 as claimed. ⊓⊔

Thm. 12 can easily be extended to sets of subsets of {1, . . . ,n}where the required conditions
hold pairwise.

7.1 SBCs from orbits

Consider the set Ω of (nontrivial) orbits of the natural action of GP on {1, . . . ,n}. We pave

the way for applying Thm. 12 to adjoin SBCs arising from different orbits. Since GP acts

transitively on each orbit ω ∈ Ω , for all i 6= j ∈ ω there is at least one permutation in GP

mapping i to j. LetMi j ⊆GP be the set of all such permutations. Let ω,θ ∈Ω be such that:

1. ∀i 6= j ∈ ω ∃ρ ∈Mi j s.t. gcd(o(ρ[ω]),o(ρ[θ])) = 1; let R̃ be the set of all such ρ
2. ∀i 6= j ∈ θ ∃σ ∈Mi j s.t. gcd(o(σ [ω]),o(σ [θ])) = 1; let S̃ be the set of all such σ .

Lemma 13 For all ρ ∈ R̃ and σ ∈ S̃, ρ[ω],σ [θ] ∈ GP[ω ∪θ].

Proof Let r = o(ρ[θ]).

ρr[ω ∪θ] = ρr[ω]ρr[θ] as ω,θ are (setwise fixed) orbits of GP

= ρ[ω]rρ[θ]r by definition (Sect. 2)

= ρ[ω]r because r is the order of ρ[θ].

Now 〈ρ[ω]r〉 = 〈ρ[ω]〉 because gcd(o(ρ[ω]),r) = 1 by definition. Thus there is a positive

integer t such that ρ[ω]rt = ρ[ω], which means that ρ[ω] = ρ[ω]rt = ρr[ω]t = ρr[ω ∪θ]t ∈
GP[ω ∪θ]. The argument for σ [θ] is similar. ⊓⊔

Lemma 13 and Thm. 12 establish the following.

Corollary 14 If g[ω](x)≤ 0 are SBCs w.r.t. some ρ ∈ R̃ and h[θ](x)≤ 0 are SBCs w.r.t. some

σ ∈ S̃, the union of both systems is an SBC system for ρσ .

12

We now propose general-purpose SBCs, valid for GP, which can be derived from any of

its orbits.

Proposition 15 Let ω ∈Ω . The constraints

∀ j ∈ ω r{minω} xminω ≤ x j. (5)

are SBCs with respect to GP.

Proof Let y∈ G (P). Since all groups act transitively on each orbit, there is π ∈GP mapping

miny[ω] to yminω . Thus, yπ satisfies (5). ⊓⊔

If there is ω ∈Ω such that the action ofGP on it is the symmetric group on ω , stronger SBCs

than (5) hold. Let ω− = ω r{maxω}, and for each j ∈ ω− let j+ = min{h ∈ ω | h > j} be
the successor of j in ω .

Proposition 16 Provided GP[ω] = Sym(ω), the following constraints:

∀ j ∈ ω− x j ≤ x j+ (6)

are SBCs with respect to GP.

Proof Let y ∈ G (P). Since GP[ω] = Sym(ω), there is π ∈ GP such that (yπ)[ω] is ordered
by ≤. Therefore, yπ is feasible with respect to the constraints ∀ j ∈ ω− x j ≤ x j+ , which

yields the result. ⊓⊔

By Cor. 14, any set of SBC systems with respect to transitive constituents of GP whose

corresponding orbits verify Conditions 1-2 (top of this subsection) pairwise is a system of

SBCs w.r.t. GP.

Proposition 17 Let ω,θ ∈ Ω and assume GP[ω ∪θ] contains a subgroup H ∼=C|ω |×C|θ |
such that H[ω]∼=C|ω | and H[θ]∼=C|θ |. Then ω,θ satisfy Conditions 1-2.

Proof Let ρ ∈ GP such that ρ[ω ∪ θ] ∈ H be chosen so that 〈ρ[ω]〉 = H[ω] ∼= C|ω | and

ρ[θ] = e. Then for all i 6= j ∈ω there is an integer k such that ρk maps i to j and fixes θ , and
hence ρk ∈Mi j; ρ[θ] = e ensures gcd(o(ρ[ω]),o(ρ[θ])) = 1. The argument for θ is similar.

Proposition 18 Let ω,θ ∈Ω and assume that GP[ω ∪θ] contains a subgroup H such that

H[ω]∼=C|ω | and H[θ]∼=C|θ |. If gcd(|ω|, |θ |) = 1 then ω,θ satisfy Conditions 1-2.

Proof Let ρ ∈ GP such that ρ[ω ∪θ] ∈ H be chosen so that: (a) 〈ρ[ω]〉= H[ω]∼=C|ω |; (b)

there is a single cycle α ∈H[θ] having length |θ | and an integer l such that ρ[θ] = α l . Hence

s= o(ρ[θ]) divides |θ |. Since o(ρ[ω]) = |ω| and gcd(|ω|, |θ |) = 1, 〈ρs[ω]〉 ∼= 〈ρ[ω]〉. Thus,
for all i 6= j ∈ω there is an integer k such that (ρs)k = ρsk maps i to j, and ρsk[θ] = ρ[θ]sk =
(ρ[θ]s)k = ek = e. Thus τ = ρsk is in Mi j and gcd(o(τ[ω]),o(τ[θ])) = 1. The argument for

θ is similar.

Since by Sect. 6 we can obtain the set T of generators of GP, it is possible to compute the

set of orbits Ω in time O(n|T |+n2) [12]. There are polynomial-time algorithms for testing

group membership and subgroup inclusion [49]; algorithms for dealing with the transitive

constituent homomorphism ϕ usually rest on the Schreier-Sims method for computing group

generators (of which some implementations as a nearly linear-time Monte Carlo algorithm

exist). Thus, deriving SBCs as per Prop. 15 and combining them using Prop. 18 are tasks

whose algorithmic implementation is practically feasible.

13

7.2 Generating SBCs automatically

We aim to test two different approaches. In the first one, we simply pick the largest orbit,

verify it contains a subgroup C|ω |, and adjoin the corresponding SBCs (5) to the original

problem. In the second, we attempt to use Prop. 17 and 18 in order to adjoin SBCs (of type

(6) if possible) from several orbits. Since (5) only impose a minimum element within a set of

values, whereas (6) imposes a whole total order, the latter should yield a tighter narrowing

than the former, and we expect a tight narrowing to be easier to solve by BB than a slack one.

This is not always true in practice, however, because narrowing constraints may have some

adverse effects too, such as making each BB node relaxation longer to solve and affecting

the choice of branching variable and/or branching point.

A set ω ⊆ {1, . . . ,n} is a block for G if ∀g ∈ G (ωg = ω ∨ωg∩ω = /0). A group G is

primitive if its only blocks are trivial (i.e. /0, singletons and {1, . . . ,n}). There are practically
fast algorithms for testing groups for primitivity. Let ω ∈ Ω be a nontrivial orbit of GP, let

T be the set of generators of GP constructed as per Cor. 8, and for any ω ⊆ {1, . . . ,n} let
T [ω] = {π[ω] | π ∈ T}. We first remark that if T [ω] contains a cycle of length |ω|, then
C|ω | ≤GP[ω]; this provides a practical way of testing the hypotheses of Propositions 17 and
18. The following result can be used for testing the hypothesis of Prop. 16.

Proposition 19 If GP[ω] is primitive and T [ω] contains a transposition (i.e. a cycle of

length 2), GP[ω] = Sym(ω).

Proof By [53], Thm. 13.3. ⊓⊔

Naturally, if GP[ω] = Sym(ω) then C|ω | ≤ GP[ω], so Prop. 19 can also be used to test the

hypotheses of Prop. 17 and 18.

In practice, we form a subset Λ ⊆Ω of orbits which satisfy the hypotheses of Prop. 18

pairwise. Then, for each orbit ω in Λ we further verify whether GP[ω] satisfies the hypothe-
ses of Prop. 16 or not. Accordingly, for each orbit in Λ , we either output SBCs (6) or (5).

We attempt to construct Λ so that it generates as many added constraints as possible, in the

hope of yielding a significantly smaller feasible region. We adopt a greedy approach on the

orbit length (Alg. 2).

8 Computational results

We report computational results of two kinds. We first attempt to determine a closed form

description of GP for all the considered instances (Tables 2-4). Secondly, we compare BB

performances on the original and reformulated problems. We remark that our symmetry

breaking efforts are limited to the adjoining of static constraints to the formulation (rather

than employing dynamic symmetry breaking techniques [38]): with static techniques only,

it is not so clear that the proposed approach helps in solving general MILPs, although we

have interesting results for some selected instances. The performance on NLPs/MINLPs, on

the other hand, is much better. Part of the reason for this is that MILP solvers are technically

much more advanced than their NLP/MINLP counterparts — and our MILP solver of choice

already contains some symmetry exploitation devices. The good results obtained on MILPs

using dynamic symmetry breaking techniques [34,17,44], however, point to the fact that the

type of automatic symmetry detection proposed in this paper might be complemented by

dynamic symmetry breaking techniques and applied to MILPs quite successfully. This will

make the object of further investigations.

14

Algorithm 2 A greedy algorithm for constructing SBCs.

Input P

Compute GP (Sect. 6)

Let L be the list of all nontrivial orbits of the natural action of GP over {1, . . . ,n}
Let Λ = /0

while |L|> 0 do

Let ω be the longest orbit in L

Let L← Lr{ω}
if C|ω| ≤ GP[ω] then

Let t← 1

for θ ∈Λ do

if gcd(|ω|, |θ |) > 1 then

Let t← 0

Break

end if

end for

if t = 1 then

Let Λ ←Λ ∪{ω}
end if

end if

end while

for ω ∈Λ do

if GP[ω]∼= Sym(ω) then
Output SBCs (6)

else

Output SBCs (5)

end if

end for

We employ two types of reformulations: Narrowing1 is obtained by adjoining (5) for the

longest orbit to the original formulation; Narrowing2 adjoins the SBCs returned by Alg. 2.

The BB solvers employed are: CPLEX 11.01 [22] for the MILP instances and COUENNE

[4] for NLP and MINLP instances; since COUENNE is a relatively young solver, and not

yet totally stable, BARON [47] was used whenever COUENNE failed. The solution statistics

are:

1. the objective function value of the incumbent

2. the seconds of user CPU time taken (meaningful when below the 7200s limit)

3. the gap still open at termination

4. the number of BB nodes closed and those still on the tree at termination.

A first round of tests compares the statistics after two hours of computation time (per in-

stance). In a second round of tests, we perform the same comparison with different termi-

nation criteria on a meaningful subset of instances. All results have been obtained on one

2.4GHz Intel Xeon CPU of a computer with 8 GB RAM (shared by 3 other similar CPUs)

running Linux.

8.1 Implementation

We implemented two software systems: the first, symmgroup, computes an explicit descrip-

tion of the formulation group structure. The second, reformulate, implements Alg. 2 and

produces a reformulated instance ready to be solved. The algorithm that computes the ex-

plicit description of a group structure given its generators has exponential worst-case com-

plexity and is in practice quite slow, whereas reformulating entails computing the orbits

15

from the generators, computing a group action on an orbit, verifying whether a genera-

tor has a certain length, and verifying whether a given group is primitive (all polynomial-

time and also practically fast algorithms [49]). Thus, we were not always able to find the

group description although we were able to reformulate the original problem to the cor-

rect narrowing. The implementation of symmgroup and reformulate is similar up to the

stage where the group generators are computed. Both first call AMPL [18] to parse the in-

stance; the ROSE Reformulation/Optimization Software Engine [32] AMPL-hooked solver

is then called (with ROSE’s Rsymmgroup reformulator) to produce a file representation of

the problem expression DAG. This is then fed into nauty’s [41,40] dreadnaut shell to ef-

ficiently compute the generators of Aut(DP) (see Sect. 6). A system of shell scripts and

Unix tools parses the nauty output to form a valid GAP [20] input. At this stage, symmgroup

uses GAP’s StructureDescription command to output the formulation group description,

whereas reformulate uses a purpose-built GAP code that simply outputs SBCs (5) relating

to the longest orbit (Narrowing1) or implementing Alg. 2 (Narrowing2).

8.2 Test set

Our test set consists of almost all the instances in the best known mathematical program-

ming instance libraries: MIPLib3 [6], MIPLib2003 [39] (containingMILPs), GlobalLib [10]

(containing NLPs) and MINLPLib [11] (containing MINLPs). We have not tested some of

the largest instances (listed in Table 5) because of RAM and CPU time limitations. Our test

set consists of a grand total of 669 instances partitioned in the different libraries as given in

Table 1 — this table also reports the number of instances whose formulation have nontrivial

groups. The instance sizes can be found in the online appendix.

Library Instances Nontrivial GP % of library

miplib3 62 22 35.4%

miplib2003rmiplib3 20 7 35.0%

globallib 390 58 14.8%

minlplib 197 32 16.2%

Total 669 112 16.7%

Table 1 Instance libraries statistics.

8.3 Group tables

In Table 2 we report formulation groups for all (MILP) instances of the MIPLib3 and MI-

PLib2003 libraries. In Table 3 we report formulation groups for all (NLP) instances of the

GlobalLib library. In Table 4 we report formulation groups for all (MINLP) instances of the

MINLPLib library. We remark that all group tables have been compiled with the AMPL pre-

solver disabled. Since the group depends on the formulation rather than the problem itself,

the AMPL presolver has an impact on the group structure. This raises an interesting question

for future research: determining the exact reformulation of P yielding the formulation group

with tightest associated SBCs (a meaningful simplification might call for the reformulation

yielding the largest formulation group). An equally interesting question is that of deciding

16

whether a given problem instance has a formulation whose group is equal to the solution

group.

Critical failures were due to excessive RAM or CPU usage on the part of nauty. Non-

critical failures, due to GAP excessive RAM requirements, imply that an explicit description

of the group structure is missing but the group generators are provided (so it is possible to

reformulate the problem nonetheless). Computational times are not reported in Tables 2-4

because a large share of the total CPU time taken to compute the group structure was taken

by GAP’s StructureDescription command. Since this was only necessary to compute the

tables, but not to reformulate the instances, CPU times at this stage would not be indicative

(the CPU time taken to reformulate the instances is reported in Tables 6-9). Just to give a

rough idea, compiling all the tables took 7 days of computation, with a significant fraction

of the CPU time being taken by all the arki- instances.

MIPLib3 1/2
Instance GP

air03 (C2)
13

arki001 S48
blend2 S9
enigma C2

fiber C2

gen C2

mas74 (C2)
2

mas76 (C2)
2

misc03 S3
misc06 (S5)

3

misc07 S3
mitre (C2)

7

mkca 〈193 generators〉
noswot C2

p0201 (C2)
2

p2756 (C2)
29

a GAP RAM failure.

MIPLib3 2/2
Instance GP

qiu C2×S4
rgn S5
rout S5
seymourd 〈216 generators〉
stein27 ((C3)

3
⋉PSL(3,3))⋉C2

swathd, 〈461 generators〉
All other 1

MIPLib2003rMIPLib3
Instance GP

glass4 C2

mzzv11 (C2)
155

mzzv42z (C2)
110

opt1217 C2

protfold (C2)
2

timtab1 C2

timtab2 C2

All other 1

Table 2 MILP instances and formulation groups. The group labelled PSL(3,3) is the projective special linear
group of order 3 on F3.

It is worth mentioning (thanks to one of the referees for pointing this out) that the

stein45 instance in MIPLib3 has a trivial symmetry group due to an input error of its con-

tributor J. Gregory, as verified by our code. The real Steiner triple incidence matrix actually

has significant symmetry.

8.4 Results tables

In this section we present comprehensive results tables. Their purpose is to show that break-

ing symmetry in general helps, specially on NLP/MINLPs. As explained above, we compare

the performance of various BB algorithms solving the original problem and two types of nar-

rowings (Narrowing1, adjoining SBCs (5) for the longest orbit; and Narrowing2, adjoining

the SBCs output by Alg. 2).

The kind of pattern we notice from the first round of tests (Tables 6-9 — symmetric in-

stances solved with a 2h CPU time limit) is twofold. Firstly, more instances are solved faster

17

GlobalLib 1/2
Instance GP

arki0002 (S6)
2

arki0003 C2

arki0008 S50
arki0009 (S5)

10×S9×S11
arki0010 (S5)

5×S9×S11
arki0011 (C2)

15×S3× (S9)
3×S20

arki0012 (C2)
15×S3× (S9)

3×S11
arki0013 (C2)

15×S3× (S9)
3×S20

arki0014 (C2)
15×S3× (S9)

3×S20
arki0016 S5
elec100 S3
elec25 S3
elec50 S3
ex14 1 5 S4
ex2 1 3 C2

ex5 2 5 S3
ex6 1 1 C2

ex6 1 3 C2

ex6 2 10 C2

ex6 2 12 C2

ex6 2 13 C2

ex6 2 14 C2

ex6 2 5 C2

ex6 2 7 S3
ex6 2 9 C2

ex8 1 6 C2

ex8 2 1 (S4)
4×S8

ex8 2 2a 〈465 generators〉
ex8 2 4 (S4)

4×S8

a GAP RAM failure.

GlobalLib 2/2
Instance GP

ex8 2 5a 〈602 generators〉
ex8 3 10 S5
ex8 3 11 S5
ex8 3 12 S5
ex8 3 13 S5
ex8 3 14 S5
ex8 3 1 S5
ex8 3 2 S5
ex8 3 3 S5
ex8 3 4 S5
ex8 3 5 S5
ex8 3 6 S5
ex8 3 7 S5
ex8 3 8 S5
ex8 3 9 S5
ex8 4 6 S3
ex9 1 10 C2

ex9 1 8 C2

ex9 2 6 C2×D8

ganges (C2)
6× (S3)

2

gangesx (C2)
6× (S3)

2

korcge (C2)
2

maxmin C2

st e18 (C2)
2

st e39 (C2)
2

st fp3 (C2)
2

st rv9 (C2)
10

torsion50 C2

turkey (C2)
4

All other 1

a GAP RAM failure.

Table 3 NLP instances and formulation groups.

MINLPLib 1/2
Instance GP

cecil 13 (C2)
30

deb7 S10
deb8 S10
deb9 S10
elf S3
gastrans (C2)

2

gear D8

gear2 D8

gear3 D8

gear4 D8

hmittelman C2

lop97ic (C2)
2

lop97icx (C2)
7×S762

nuclear14 S6
nuclear24 S6
nuclear25 S5
nuclear49 S7

MINLPLib 2/2
Instance GP

nuclearva S3
nuclearvb S3
nuclearvc S3
nuclearvd S3
nuclearve S3
nuclearvf S3
nvs09 S10
producta 〈150 generators〉
product2 〈561 generators〉
risk2b (C2)

5× (S3)
11×S5× (S6)

2× (S13)
3

super1 (C2)
8× (S3)

4

super2 (C2)
10× (S3)

2

super3 (C2)
9× (S3)

2

super3t (C2)
9× (S3)

2

synheat S4
All other 1

a GAP RAM failure.

Table 4 MINLP instances and formulation groups.

18

Library Instances

MIPLib3 -

MIPLib2003 ds, momentum3, msc98-ip, sp97ar, stp3d

GlobalLib
arki0005, arki0006, arki0007, arki0018,

arki0023, arki0024, elec200, ex8 2 3,

jbearing100, minsurf100, torsion100

MINLPLib
detf1, dosemin2d, dosemin3d, eg all s,

eg disc s, eg disc2 s, eg int s, mbtd,

nuclear104, nuclear10b, qap

Table 5 Excessively large instances (nauty RAM or CPU failures during reformulation).

in the narrowing SBC reformulations than in the original problem. Secondly, whereas those

instances that are solved faster without SBCs only scrape off a minor CPU time advantage,

those that are solved faster with SBCs often have a marked CPU time advantage (or, if not

run to completion, a noticeable optimality gap or total/unexplored nodes ratio advantage).

For MILPs and Narrowing1, for example (see Table 6), the cumulated CPU time advantage

in favour of the original problem is 275s, whereas that in favour of the SBC narrowing is

9861s. The trend seems to be that the beneficial effect of SBCs is mainly felt for medium

to large-sized instances with long BB runs. Even though the optimal solution is often found

later on in the BB run when solving SBC narrowings, the BB tree explorations are in general

shorter. For those instances not solved to optimality, the ratios of total/unexplored nodes at

termination are often larger (fewer unexplored nodes) and the open optimality gaps often

smaller. This is what promtped us to run a second round of tests with no time limit for some

selected difficult instances (see Table 11), on which these effects are even more remarkable.

Table 6 refers to MILPs (MIPLib3 and MIPLib2003), Table 7 refers to NLPs (Global-

Lib) and Table 9 refers to MINLPs (MINLPLib). All tables have the same core structure

recording the following indicators at termination:

1. incumbent value (f ∗)

2. seconds of user CPU time (CPU)

3. open gap (gap—we use the CPLEX definition
(

100| f ∗− f̄ |
| f ∗+10−10|

)

%, where f ∗ is the objective

function value of the incumbent and f̄ is the best overall lower bound)

4. total nodes (nodes)

5. unexplored nodes (tree)

for the original problem and each SBC narrowing. The last column (R.t.) contains the refor-

mulation time expressed as seconds of user CPU time taken to reformulate the instance (this

refers to Narrowing1; the values for Narrowing2 are practically identical, the bottleneck be-

ing the computation of the group structure by nauty). Tables 7 and 9 also have a column

(Slv) which indicates the solver name: “C” stands for COUENNE [4], and “B” for BARON

[47]. Although COUENNE was our NLP/MINLP global solver of choice, because of its rel-

atively young age it still shows some rough spots, which sometimes hamper the solution

process. COUENNE failed on all instances whose results in the table are marked BARON.

NLP and MINLP instances where both solvers failed are recorded in Tables 8 and 10: all

these are well known to be difficult instances, and most of them are very large in size. We

remark that for many of them the reason for failure was the absence of meaningful variable

ranges, which makes the construction of the lower bounding problem inherently difficult.

In all tables, data marked in boldface signals an advantage: in general, lower values for in-

cumbent, CPU times, open gap, total and unexplored nodes at termination are considered

19

an advantage. However, for those instances not solved to optimality within the 2h CPU time

limit, the higher values of the ratios total/unexplored nodes marks an advantage (meaning

that more of the tree has been explored in the allotted time).

Original problem Narrowing1 Narrowing2

Instance CPU

f∗

gap

nodes

tree CPU

f∗

gap

nodes

tree CPU

f∗

gap

nodes

tree R.t.

MIPLib3

air03 1.14

340160

0%

0

0 1.10

340160

0%

0

0 0.98

340160

0%

0

0 161.94

arki001 114.31

7.58e+6

0%

93340

0 125.03

7.58e+6

0%

93340

0 108.5

7.58e+6

0%

93340

0 78.56

blend2 0.94

7.59

0%

957

0 0.87

7.59

0%

969

0 0.91

7.59

0%

967

0 1.43

enigma 0.00

0

0%

0

0 0.05

0

0%

153

0 0.05

0

0%

153

0 1.22

fiber 0.26

4.05e+5

0%

71

0 0.27

4.05e+5

0%

81

0 0.26

4.05e+5

0%

81

0 4.96

gen 0.04

1.12e+5

0%

0

0 0.04

1.12e+5

0%

0

0 0.04

1.12e+5

0%

0

0 2.57

mas74 529

1.18e+4

0%

2405600

0 466

1.18e+4

0%

2558400

0 426

1.18e+4

0%

2558400

0 1.41

mas76 43.42

4e+4

0%

305500

0 43.62

4e+4

0%

305500

0 41.97

4e+4

0%

305500

0 1.41

misc03 0.30

3360

0%

160

0 0.29

3360

0%

656

0 1.07

3360

0%

700

0 1.35

misc06 0.13

0

0%

17

0 0.13

0

0%

17

0 0.13

0

0%

17

0 11.63

misc07 18.41

2810

0%

16211

0 12.72

2810

0%

12317

0 21.28

2810

0%

20395

0 1.57

mitre 0.83

115155

0%

0

0 0.80

115155

0%

0

0 0.82

115155

0%

0

0 1304.41

mkc 7200

-563.732

0.17%

156803

75392 7200

-563.846

0.15%

136200

36654 - - - 2712.33

noswot 7200

-41

4.88%

8629594

1581600 7200

-41

3.56%

7852302

817466 7200

-41

3.56%

7852302

817466 1.27

p0201 0.24

7615

0%

103

0 0.35

7615

0%

295

0 - - - 3.44

p2756 0.40

3124

0%

11

0 0.39

3124

0%

11

0 0.37

3124

0%

11

0 25.61

qiu 45.01

-132.87

0%

8375

0 36.38

-132.87

0%

5500

0 - - - 6.22

rgn 0.13

82.2

0%

561

0 0.15

82.2

0%

555

0 0.12

82.2

0%

505

0 1.36

rout 11.99

1077.21

0%

5800

0 15.28

1077.56

0%

6700

0 53.86

1077.56

0%

17700

0 2.39

seymour 7200

423

1.58%

103097

84949 7200

423

1.58%

101576

83701 7200

423

1.57%

105481

86941 5.95

stein27 0.27

18

0%

1582

0 0.07

18

0%

637

0 - - - 1.30

swatha 1534

492.45

14.60%

215100

200293 1773

486.18

13.83%

194400

165017 1550

484.09

17.55%

196200

182289 325.10

MIPLib2003rMIPLib3

glass4 7200

1.4e+9

21.43%

2240022

944291 1180.69

1.2e+9

0%

392600

0 1186.57

1.2e+9

0%

392600

0 1.62

mzzv11 112.87

-21718

0%

543

0 129.35

-21718

0%

588

0 161

-21718

0%

588

0 213.76

mzzv42z 40.94

-20540

0%

237

0 46.42

-20540

0%

223

0 59.76

-20540

0%

223

0 244.76

opt1217 0.09

-16

0%

0

0 0.09

-16

0%

0

0 0.10

-16

0%

0

0 1.37

protfold 7200

-19

90.71%

12936

11563 7200

-19

91.58%

14050

12760 - - - 592.14

timtab1 5317.42

7.64e+5

0%

3576200

0 1554.20

7.64e+5

0%

973700

0 1555.74

7.64e+5

0%

973700

0 1.37

timtab2 7200

1.12e+6

31.74%

1115428

745016 7200

1.14e+6

33.23%

1002113

647515 7200

1.14e+6

33.32%

959893

619402 1.38

a Termination on out of memory.

Table 6 MILP results (MIPLib3 and MIPLib2003 solved by CPLEX 11). Lower values are best in general;

in instances not solved to optimality (CPU=7200), higher ratios nodes/tree are best. Values marked ‘-’ denote

Narrowing2=Narrowing1.

Some of the results for MILPs are very encouraging: the glass4 instance, for example,

is known to be a hard one: [24] reports solving this instance using XPRESS 2006B in 7 hours

on a 2 processor Xeon system with the following settings: no cuts, best first node selection,

20

heavy strong branching, and variable selection based on up/down pseudocosts. Although it is

hard to compare with our results, what with the solver, hardware and version date difference,

solving it in less than 20 minutes on a default configuration is worthy of note; even more

so considering that the symmetry group is only C2. The timtab1 instance solution time is

reduced to less than a third by adjoining the SBCs. It is interesting that arki001, mas76 and

p2756 have the same number of nodes to completion but different CPU times. The CPLEX

output log files of original/reformulated instances being equal for all but the partial CPU

times, the only cause of this difference lies in the LP being solved at each node: although

most of the times an LP with more constraints takes more time to solve, CPLEX employs

several preprocessing techniques which might exploit the SBCs present in the reformulation

(but absent in the original formulation) to yield the observed improvements.

On average, with a 2h user CPU time limit, it is slightly more advantageous to solve an

SBC narrowing than the original problem.We reported total user CPU time, number of times

the solution yielded best optima in the set (Best), and total number of BB nodes. The total

closed gap averaged over original problem and Narrowing1 and Narrowing2 reformulations

is 22661.35% with a standard deviation of 0.14, which effectively means that within the 2h

CPU time limit, symmetry breaking had no effect with respect to the closed gap (without

the 2h limit the story is different, see Table 11). It appears evident that, on average, breaking

symmetry is beneficial when using BB-type solution algorithms.

The results referring to the second round of tests, involving selected (difficult) instances

solved without the 2h user CPU time limit, are in Table 11. As before, data marked in

boldface signals an advantage. The most meaningful indicators at termination are:

1. the objective function value of the incumbent (the lower the better);

2. the open gap (the lower the better);

3. the amount of explored nodes per second, i.e. nodes
tree×CPU

(the higher the better).

With extended CPU time limits, Narrowing2 provides a significant computational advantage

over the original problem, and a slight advantage over Narrowing1.

We remark also that results worthy of note were obtained on the protfold (open gap

reduced by almost half) and seymour (given the problem structure, even a minor reduction

in open gap is impressive) MILP instances.

It appears that adding SBCs sometimes has an adverse effect (albeit slighter than the

beneficial observed effect). This occurrence may be explained by any one of the following

facts: (a) SBCs have an element of arbitrary user choice in them, e.g. the natural variable

index order 1,2,3,. . . (constraints enforcing other orders would also be valid); (b) SBCs may

change branching decisions; (c) best choices for breaking symmetries may change during

the BB tree exploration, locally to each node (it might be advantageous to change narrowing

at select nodes rather than just at the root node). These issues will hopefully be addressed

in future works (in particular, it might be a good idea to employ orbital branching [43,44]

instead of a static narrowing as a symmetry-breaking device).

9 Conclusion

This paper discusses methods for automatically exploiting symmetries in MILPs, noncon-

vex NLPs and MINLPs. We construct the formulation group, then derive static Symmetry-

Breaking Constraints from its generators, and finally reformulate the given problem to a

narrowing where some of the symmetric solutions are likely to be infeasible. The reformu-

lated problem can then be solved by standard Branch-and-Bound solvers such as CPLEX

21

Original problem Narrowing1 Narrowing2

Instance Slv CPU

f∗

gap

nodes

tree CPU

f∗

gap

nodes

tree CPU

f∗

gap

nodes

tree R.t.

ex14 1 5 C 0.018

0

0%

0

0 0.013

0

0%

0

0 0.020

0

0%

0

0 1.44

ex2 1 3 C 0.013

-15

0%

0

0 0.010

-15

0%

0

0 0.018

-15

0%

0

0 1.41

ex5 2 5 C 7200

-3500

0.32%

2040274

503850 7200

-3500

0.27%

63595

18733 7200

-3500

0.22%

1580366

402117 1.40

ex6 1 1 C 61

-2.02e-2

0%

14226

0 37

-2.02e-02

0%

10027

0 45

-2.02e-02

0%

10027

0 1.43

ex6 1 3 C 135

-3.53e-01

0%

13660

0 97

-3.53e-01

0%

2659

0 111

-3.53e-01

0%

2659

0 1.40

ex6 2 10a C 4754

-3.052

0.37%

45200

19397 7200

-3.052

0.01%

88300

16228 7200

-3.052

0.014%

81700

15898 1.40

ex6 2 12 C 205

2.89e-01

0%

15827

0 85

2.89e-01

0%

3477

0 85

2.89e-01

0%

3477

0 1.41

ex6 2 13 C 7200

-2.16e-01

0.09%

65461

27773 7200

-2.16e-01

0.03%

77569

29202 7200

-2.16e-01

0.03%

75670

28580 1.38

ex6 2 14 C 29

-6.96e-01

0%

195

0 19

-6.96e-01

0%

92

0 17.8

-6.96e-01

0%

92

0 1.37

ex6 2 5a C 3017

-70.75

6.85%

43500

18094 4920

-70.75

0.90%

68600

27187 5240

-70.75

0.90%

68600

27187 1.43

ex6 2 7a C 1874

-0.161

48.35%

32500

10900 1884

-0.161

39.92%

17500

7894 1323

-0.161

32.07%

16600

8008 1.42

ex6 2 9b C 699

-3.51e-02

0%

28711

0 184

-3.46e-02

0%

8522

0 191

-3.46e-02

0%

8522

0 1.42

ex8 1 6 C 0.03

-5.065

0%

0

0 0.03

-5.065

0%

0

0 0.046

-5.065

0%

0

0 1.36

ex8 3 1c B 7200

0

-10

20245

12299 7200

0

-10

14191

8099 - - - 2.27

ex8 3 2 B 7200

-0.4123

2325%

9471

6566 7200

-0.4123

2325%

8004

5445 - - - 2.05

ex8 3 3 B 7200

-0.4166

2393%

9205

5770 7200

-0.4166

2393%

7416

5065 - - - 1.36

ex8 3 4 B 7200

-3.58

2695%

6597

4484 7200

-3.58

2695%

4985

3347 - - - 2.10

ex8 3 5 B 7200

-0.069

14371%

7843

4727 7200

-0.068

14434%

8470

5597 - - - 2.07

ex8 3 11c B 7200

0

-10

15197

8393 7200

0

-10

21532

13344 - - - 1.51

ex8 3 12c B 7200

0

-10

21881

12515 7200

0

-10

20566

13000 - - - 1.37

ex8 3 13c B 7200

0

-10

13662

9015 7200

0

-10

11038

7179 - - - 1.91

ex8 4 6 C 0.08

0.66

0%

0

0 1.53

0.66

0%

0

0 0.13

0.66

0%

0

0 1.40

ex9 1 10 C 4.68

-3.25

0%

0

0 9.3

-3.25

0%

0

0 9.3

-3.25

0%

0

0 1.77

ex9 1 8 C 4.7

-3.25

0%

0

0 9.3

-3.25

0%

0

0 9.3

-3.25

0%

0

0 1.43

ex9 2 2 C 0.16

99.99

0%

2

0 0.15

99.99

0%

2

0 0.17

99.99

0%

2

0 2.31

ex9 2 6 C 0.1

-1

0%

0

0 0.1

-1

0%

0

0 - - - 1.38

maxmin B 7200

-0.366

157.55%

31655

20122 7200

-0.366

157.38%

28973

18300 7200

-0.366

156.87%

31117

19659 1.29

st e18 C 0.01

-2.83

0%

0

0 0.01

-2.83

0%

0

0 0.01

-2.83

0%

0

0 1.38

st e39 C 0.03

-5.065

0%

0

0 0.03

-5.065

0%

0

0 0.04

-5.065

0%

0

0 1.41

st fp3 C 0.015

-15

0%

0

0 0.015

-15

0%

0

0 0.017

-15

0%

0

0 2.02

st rv9 C 10.3

-120.15

0%

214

0 9.5

-120.15

0%

208

0 9.3

-120.15

0%

208

0 1.44

turkey C 2749

-28371.6

0%

97

0 3724

-28371.6

0%

125

0 3831

-28371.6

0%

125

0 7.24

a CPU < 7200 and gap> 0% because of COUENNE’s segmentation fault during computation.
b Some AMPL warnings might be the cause of the objective function value discrepancy (both were

certified optimal by COUENNE).
c When f ∗ = 0 the open gap is (almost) ill defined, thus the value of the best LP bound is reported

instead.

Table 7 NLP results (GlobalLib solved by COUENNE or BARON). Lower values are best in general; in

instances not solved to optimality (CPU=7200), higher ratios nodes/tree are best. Values marked ‘-’ denote

Narrowing2=Narrowing1.

(for linear problems) and COUENNE (for nonlinear problems). We exhibit computational

results validating the approach.

22

Instance R.t.

arki0002 82.36

arki0003 10813

arki0008 92.15

arki0009 401.10

arki0010 65.46

arki0011 5715.02

Instance R.t.

arki0012 5400.03

arki0013 5268.54

arki0014 5695.04

arki0016 142.34

elec100 13082.36

Instance R.t.

elec25 5.32

elec50 228.67

ex8 2 1 1.43

ex8 2 2 21080

ex8 2 4 1.64

ex8 2 5 17172

Instance R.t.

ex8 3 6 1.45

ex8 3 7 1.62

ex8 3 9 1.41

ex8 3 10 1.28

ex8 3 14 1.48

torsion50 6122

Table 8 NLP instances where both COUENNE and BARON failed.

Original problem Narrowing1 Narrowing2

Instance Slv CPU

f∗

gap

nodes

tree CPU

f∗

gap

nodes

tree CPU

f∗

gap

nodes

tree R.t.

cecil 13 C 6181

-1.14e+5

0%

106074

0 6248

-1.14e+5

0%

106074

0 7200

-1.14e+5

0%

101138

2084↓ 2.64

elf B 11.86

0.1916

0%

341

0 7.35

0.1916

0%

326

0 2.9

0.1916

0%

87

0 1.43

gastrans C 9

89.1

0%

227

0 5.2

89.1

0%

109

0 5.7

89.1

0%

109

0 1.39

gear C 0.08

0

0%

8

0 0.01

0

0%

0

0 - - - 1.27

gear2 C 0.34

0

0%

6

0 0.51

0

0%

21

0 - - - 1.38

gear3 C 0.14

0

0%

26

0 0.19

0

0%

25

0 - - - 1.30

gear4 B 0.62

1.968

0%

3239

0 0.48

1.968

0%

1739

0 - - - 1.28

hmittelman C 0.16

13

0%

0

0 0.18

13

0%

0

0 0.20

13

0%

0

0 1.25

lop97icx B 7200

4492.48

40.65%

9106

5537 7200

4493.5

39.9%

10146

6296 7200

4457.55

40.23%

3254

2026 24.96

nvs09 C 5.1

-43.13

0%

0

0 2.4

-43.13

0%

0

0 1.7

-43.13

0%

0

0 1.24

risk2ba C 13.26

-55.87

0%

0

0 14.77

-55.87

0%

0

0 14.28

-55.87

0%

0

0 2.48

synheat B 127

1.5e+5

0%

3316

0 92

1.5e+5

0%

1775

0 566

1.5e+5

0%

9509

0 1.27

a This instance is unbounded [33], so the objective function value is not a meaningful indicator.

Table 9 MINLP results (MINLPLib solved by COUENNE or BARON). Lower values are best in general; in

instances not solved to optimality (CPU=7200), higher ratios nodes/tree are best. Values marked ‘-’ denote

Narrowing2=Narrowing1.

Instance R.t.

deb7 26.0

deb8 26.1

deb9 25.9

lop97ic 202.85

nuclear14 15.49

Instance R.t.

nuclear24 15.22

nuclear25 19.46

nuclear49 457.88

nuclearva 1.83

nuclearvb 1.73

Instance R.t.

nuclearvc 1.88

nuclearvd 2.26

nuclearve 2.03

nuclearvf 2.03

product 13.88

Instance R.t.

product2 292.39

super1 10.12

super2 10.60

super3 10.15

super3t 6.09

Table 10 MINLP instances where both COUENNE and BARON failed (the deb instances are reported infea-

sible).

Symmetry-Breaking Constraints practically help finding exact optima by Branch-and-

Bound algorithms: in general, the more symmetry-breaking constraints we adjoin to the

original formulation, the fewer nodes we might hope the BB search tree will have. Further-

more, these constraints are generated by the nontrivial orbits of the formulation group action

on the set of variable indices. Therefore, in general, the larger the formulation group, the

better. Since different exact reformulations of the same problem often yield different formu-

lation groups (all of which are subgroups of the solution group associated to the problem),

a very interesting question for future research is that of looking for the exact reformula-

tion maximizing the number (and length) of nontrivial orbits. It must be said, however, that

our symmetry-breaking constraints are rather general-purpose, hence they undergo the usual

trade-off between generality and efficiency. This suggests that breaking symmetries at the

modelling level (static symmetry breaking) should also be complemented by breaking sym-

23

Original problem Narrowing1 Narrowing2

Instance Slv CPU

f∗

gap

nodes

tree CPU

f∗

gap

nodes

tree CPU

f∗

gap

nodes

tree R.t.

MILPLib(s)

mkca 146850

-563.846

0.13%

1945500

1479080 133924

-563.846

0.13%

2104500

1449867 - - - 2712.33

protfoldb 300000

-26

30.51%

592000

458813 300000

-29

16.54%

536100

353823 - - - 592.14

seymoura 262817

423

0.9%

3992700

3026077 283311

423

0.83%

4343500

3038821 233643

423

1.0%

3960700

3064665 5.95

GlobalLib

ex5 2 5a C 19805

-3500

28.14%

5452500

1259853 82320

-3500

18.5%

7373700

747262 18151

-3500

17.41%

4425400

1076927 1.40

maxmina B 58643

-0.366

145%

237100

150803 57762

-0.366

144%

238000

150355 - - - 1.29

MINLPLib

lop97icxa B 26903

4391.1

38.2%

44858

27824 30772

4493.5

39.14%

43948

27189 42926

4412.9

37.97%

23416

14708 24.96

a Termination on out of memory.
b Termination after 5000 minutes

Table 11 Some results without the 2h CPU time limit. Lower values are best in general; in instances not

solved to optimality, higher ratios nodes/(tree×CPU) are best.

metries at the branching level of the BB algorithm (dynamic symmetry breaking). This will

make the object of further investigations.

The tabulation of the formulation groups for all instances in the best known mathemat-

ical programming libraries suggests that although symmetry is not all-encompassing, it is

nonetheless pervasive enough to merit more attention than is currently attributed to it by the

mathematical programming community. Current efforts are limited to Mixed-Integer Lin-

ear and Semidefinite Programming only (this is the first work reaching into Mixed-Integer

Nonlinear Programming) and often assume prior knowledge of (subgroups of) the solution

group. If efficient symmetry detection and breaking devices are to make their way into main-

stream MINLP solvers, more techniques are needed to address the issues arising in treating

symmetry in mathematical programming.

Acknowledgements

I wish to thank François Margot for many useful discussions and suggestions, and for care-

fully checking the theoretical part of this paper, and two anonymous referees for insightful

comments. Financial support by ANR under grant 07-JCJC-0151, by EU under grant NEST

“Morphex” and by the Digiteo RMNCCO Chair is gratefully acknowledged.

References

1. F.A. Al-Khayyal and H.D. Sherali. On finitely terminating branch-and-bound algorithms for some global

optimization problems. SIAM Journal of Optimization, 10(4):1049–1057, 2000.

2. L. Babai. Automorphism groups, isomorphism, reconstruction. In R. Graham, M. Grötschel, and

L. Lovász, editors, Handbook of Combinatorics, vol. 2, pages 1447–1540. MIT Press, Cambridge, MA,

1996.

3. C. Bauer, A. Frink, and R. Kreckel. Introduction to the GiNaC framework for symbolic computation

within the C++ programming language. Journal of Symbolic Computation, 33(1):1–12, 2002.

4. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening techniques for

non-convex MINLP. Optimization Methods and Software, 24(4):597–634, 2009.

24

5. T. Berthold and M. Pfetsch. Detecting orbitopal symmetries. In B. Fleischmann, K.-H. Borgwardt,

R. Klein, and A. Tuma, editors, Operations Research Proceedings 2008, pages 433–438, Berlin, 2009.

Springer.

6. R. Bixby, S. Ceria, C. McZeal, and M. Savelsbergh. An updated mixed integer programming library:

Miplib 3. Technical Report TR98-03, Rice University, 1998.

7. K. Booth and C. Colbourn. Problems polynomially equivalent to graph isomorphism. Technical Report

CS-77-04, University of Waterloo, 1979.

8. M. Boulle. Compact mathematical formulation for graph partitioning. Optimization and Engineering,

5:315–333, 2004.

9. M. Bruglieri and L. Liberti. Optimal running and planning of a biomass-based energy production process.

Energy Policy, 36:2430–2438, 2008.

10. M. Bussieck. Globallib — a collection of nonlinear programming problems, 2004.

(http://www.gamsworld.org/global/globallib.htm).
11. M. Bussieck, A. Drud, and A. Meeraus. MINLPLib — A collection of test models for mixed-integer

nonlinear programming. INFORMS Journal on Computing, 15(1), 2003.

12. G. Butler. Fundamental Algorithms for Permutation Groups, volume 559 of LNCS. Springer, 1991.

13. D. Cohen, P. Jeavons, C. Jefferson, K. Petrie, and B. Smith. Symmetry definitions for constraint satis-

faction problems. In P. van Beek, editor, CP, volume 3709 of LNCS. Springer, 2005.

14. J.S. Cohen. Computer Algebra and Symbolic Computation: Mathematical Methods. AK Peters, Natick,

Massachusetts, 2000.

15. J.S. Cohen. Computer Algebra and Symbolic Computation: Elementary Algorithms. AK Peters, Natick,

Massachusetts, 2002.

16. Y. Faenza and V. Kaibel. Extended formulations for packing and partitioning orbitopes. Mathematics of

Operations Research, 34(3):686–697, 2009.

17. M. Fischetti and D. Salvagnin. A local dominance procedure for mixed-integer linear programming.

Technical report, ARRIVAL project, 2007.

18. R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

19. E.J. Friedman. Fundamental domains for integer programs with symmetries. In A. Dress, Y. Xu, and

B. Zhu, editors, COCOA Proceedings, volume 4616 of LNCS, pages 146–153. Springer, 2007.

20. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.10, 2007.

21. M. Hall. Theory of Groups. Chelsea Publishing Company, New York, 2nd edition, 1976.

22. ILOG. ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France, 2008.

23. V. Kaibel and M. Pfetsch. Packing and partitioning orbitopes. Mathematical Programming, 114(1):1–36,

2008.

24. R. Laundy, M. Perregaard, G. Tavares, H. Tipi, and A. Vazacopoulos. Solving hard mixed-integer pro-

gramming problems with Xpress-MP: A MIPLIB 2003 case study. INFORMS Journal on Computing,

21(2):304–313, 2009.

25. J. Lee and F. Margot. On a binary-encoded ILP coloring formulation. INFORMS Journal on Computing,

19(3):406–415, 2007.

26. S. Leyffer. MacMINLP — AMPL collection of mixed integer nonlinear programs, 2000.

(http://www.mcs.anl.gov/~leyffer/macminlp/).
27. L. Liberti. Framework for symbolic computation in C++ using n-ary trees. Technical report, CPSE,

Imperial College London, 2001.

28. L. Liberti. Writing global optimization software. In L. Liberti and N. Maculan, editors, Global Opti-

mization: from Theory to Implementation, pages 211–262. Springer, Berlin, 2006.

29. L. Liberti. Automatic generation of symmetry-breaking constraints. In B. Yang, D.-Z. Du, and C.A.

Wang, editors, COCOA Proceedings, volume 5165 of LNCS, pages 328–338, Berlin, 2008. Springer.

30. L. Liberti. Reformulations in mathematical programming: Symmetry. Technical Report 2165, Optimiza-

tion Online, 2008.

31. L. Liberti. Reformulations in mathematical programming: Definitions and systematics. RAIRO-RO,

43(1):55–86, 2009.

32. L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical programming: A computational

approach. In A. Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht, editors, Foundations of Com-

putational Intelligence Vol. 3, number 203 in Studies in Computational Intelligence, pages 153–234.

Springer, Berlin, 2009.

33. L. Liberti, N. Mladenović, and G. Nannicini. A good recipe for solving MINLPs. In V. Maniezzo,

T. Stützle, and S. Voß, editors, Hybridizing metaheuristics and mathematical programming, volume 10

of Annals of Information Systems, pages 231–244, New York, 2009. Springer.

34. F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71–90, 2002.

35. F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming B, 98:3–21, 2003.

36. F. Margot. Small covering designs by branch-and-cut. Mathematical Programming B, 94:207–220, 2003.

25

37. F. Margot. Symmetric ILP: coloring and small integers. Discrete Optimization, 4:40–62, 2007.

38. F. Margot. Symmetry in integer linear programming. In M. Jünger, T. Liebling, D. Naddef,

G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey, editors, 50 Years of Integer Pro-

gramming, pages 647–681. Springer, Berlin, 2010.

39. A. Martin, T. Achterberg, and T. Koch. Miplib 2003. Technical Report 05-28, ZIB, 2005.

40. B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.

41. B. McKay. nauty User’s Guide (Version 2.4). Computer Science Dept. , Australian National University,

2007.

42. A. Neumaier. Complete search in continuous global optimization and constraint satisfaction. Acta

Numerica, 13:271–369, 2004.

43. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. In M. Fischetti and D.P.

Williamson, editors, IPCO, volume 4513 of LNCS, pages 104–118. Springer, 2007.

44. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Constraint orbital branching. In A. Lodi, A. Pan-

conesi, and G. Rinaldi, editors, IPCO, volume 5035 of LNCS, pages 225–239. Springer, 2008.

45. A. Ramani and I. Markov. Automatically exploiting symmetries in constraint programming. In B. Falt-

ings, A. Petcu, F. Fages, and F. Rossi, editors, Constraint Solving and Constraint Logic Programming,

volume 3419 of LNAI, pages 98–112, Berlin, 2005. Springer.

46. K.H. Rosen, editor. Handbook of Discrete and Combinatorial Mathematics. CRC Press, New York,

2000.

47. N.V. Sahinidis and M. Tawarmalani. BARON 7.2.5: Global Optimization of Mixed-Integer Nonlinear

Programs, User’s Manual, 2005.

48. H. Schichl and A. Neumaier. Interval analysis on directed acyclic graphs for global optimization. Journal

of Global Optimization, 33(4):541–562, 2005.

49. A. Seress. Permutation Group Algorithms. Cambridge University Press, Cambridge, 2003.

50. H. Sherali and C. Smith. Improving discrete model representations via symmetry considerations. Man-

agement Science, 47(10):1396–1407, 2001.

51. R. Uehara, S. Toda, and T. Nagoya. Graph isomorphism completeness for chordal bipartite graphs and

strongly chordal graphs. Discrete Applied Mathematics, 145:479–482, 2005.

52. F. Vallentin. Symmetry in semidefinite programs. Technical Report 1702, Optimization Online, 2007.

53. H. Wielandt. Finite permutation groups. Academic Press, New York, 1964.

54. L.A. Wolsey. Integer Programming. Wiley, New York, 1998.

55. W. Zhu. Unsolvability of some optimization problems. Applied Mathematics and Computation,

174:921–926, 2006.

26

Online appendix: Instance size tables

MIPLib3 1/2

Instance n Bin. Int. m

10teams 2025 1800 0 230
air03 10757 10757 0 124
air04 8904 8904 0 823
air05 7195 7195 0 426
arki001 1388 415 123 1048
bell3a 133 39 32 123
bell5 104 30 28 91
blend2 353 231 33 274
cap6000 6000 6000 0 2176
dano3mip 13873 552 0 3202
danoint 521 56 0 664
dcmulti 548 75 0 290
dsbmip 1877 160 0 1182
egout 141 55 0 98
enigma 100 100 0 21
fiber 1298 1254 0 363
fixnet6 878 378 0 478
flugpl 18 0 11 18
gen 870 144 6 780
gesa2 1224 240 168 1392
gesa2 o 1224 384 336 1248
gesa3 1152 216 168 1368
gesa3 o 1152 336 336 1224
gt2 188 24 164 29
harp2 2993 2993 0 112
khb05250 1350 24 0 101
l152lav 1989 1989 0 97
lseu 89 89 0 28
markshare1 62 50 0 6
markshare2 74 60 0 7
mas74 151 150 0 13
mas76 151 150 0 12
misc03 160 159 0 96
misc06 1808 112 0 820
misc07 260 259 0 212
mitre 10724 10724 0 2054
mkc 5325 5323 0 3411
mod008 319 319 0 6
mod010 2655 2655 0 146
modglob 422 98 0 291
noswot 128 75 25 182
nw04 87482 87482 0 36
p0033 33 33 0 15

MIPLib3 2/2

Instance n Bin. Int. m

p0201 201 201 0 133
p0282 282 282 0 241
p0548 548 548 0 176
p2756 2756 2756 0 755
pk1 86 55 0 45
pp08aCUTS 240 64 0 246
pp08a 240 64 0 136
qnet1 1541 1288 129 503
qnet1 o 1541 1288 129 456
rgn 180 100 0 24
rentacar 9557 55 0 6803
rout 556 300 15 291
set1ch 712 240 0 492
seymour 1372 1372 0 4944
stein27 27 27 0 118
stein45 45 45 0 331
swath 6805 6724 0 884
vpm1 378 168 0 234
vpm2 378 168 0 234

MIPLib2003 r MIPLib3

Instance n Bin. Int. m

a1c1s1 3648 192 0 3312
aflow30a 842 421 0 479
aflow40b 2728 1364 0 1442
atlanta-ip 48738 46667 106 21731
disctom 10000 10000 0 399
glass4 321 302 0 396
liu 1154 1087 0 2178
manna81 3321 18 3303 6480
momentum1 5174 2349 0 42680
momentum2 3732 1808 1 24237
mzzv11 10240 9989 251 9499
mzzv42z 11717 11482 235 10460
net12 14115 1603 0 14021
nsrand-ipx 6621 6620 0 735
opt1217 769 768 0 64
protfold 1835 1835 0 2112
roll3000 1166 246 492 2294
timtab1 397 64 107 171
timtab2 675 113 181 294
tr12-30 1080 360 0 750

Table 12 MILP instance statistics.

27

GlobalLib 1/3

Instance n m NLT

abel 30 14 76
alkylation 10 11 19
alkyl 14 7 17
arki0001 1030 513 512
arki0002 2456 1976 1976
arki0003 2283 2583 33180
arki0008 5072 5020 17646
arki0009 7714 6707 1299
arki0010 4144 3427 654
arki0011 19161 17430 2979
arki0012 19170 17574 2979
arki0013 19161 17430 2979
arki0014 19265 17525 2979
arki0015 2093 1496 4600
arki0016 5047 2946 7301
arki0017 4332 2572 6312
arki0019 510 2 4693
arki0020 1262 2 11930
arki0021 3187 2 27540
arki0022 4152 2 51502
bayes2 10 86 77 440
bayes2 20 86 77 440
bayes2 30 86 77 440
bayes2 50 86 77 440
bearing 13 12 36
btest14 135 93 551
camcge 279 242 867
camshape100 199 200 396
camshape200 399 400 796
camshape400 799 800 1596
camshape800 1599 1600 3196
catmix100 303 200 1600
catmix200 603 400 3200
catmix400 1203 800 6400
catmix800 2403 1600 12800
chain100 202 101 1400
chain200 402 201 2800
chain25 102 51 700
chain400 802 401 5600
chain50 102 51 700
chakra 62 41 82
chance 4 3 10
chem 11 4 30
chenery 43 38 54
circle 3 10 30
demo7 70 57 24
dispatch 4 2 33
etamac 97 70 79
ex14 1 1 3 4 24
ex14 1 2 6 9 67
ex14 1 3 3 4 8
ex14 1 4 3 4 12
ex14 1 5 6 6 8
ex14 1 6 9 15 34
ex14 1 7 10 17 114
ex14 1 8 3 4 26
ex14 1 9 2 2 14
ex14 2 1 5 7 90
ex14 2 2 4 5 32
ex14 2 3 6 9 192
ex14 2 4 5 7 222
ex14 2 5 4 5 68
ex14 2 6 5 7 250
ex14 2 7 6 9 496
ex14 2 8 4 5 128
ex14 2 9 4 5 164
ex2 1 10 20 10 40
ex2 1 1 5 1 15
ex2 1 2 6 2 10
ex2 1 3 13 9 12
ex2 1 4 6 5 2
ex2 1 5 10 11 21
ex2 1 6 10 5 30
ex2 1 7 20 10 39
ex2 1 8 24 10 48
ex2 1 9 10 1 22
ex3 1 1 8 6 5
ex3 1 2 5 6 40
ex3 1 3 6 6 9
ex3 1 4 3 3 10
ex4 1 1 1 0 9
ex4 1 2 1 0 96
ex4 1 3 1 0 8
ex4 1 4 1 0 5
ex4 1 5 2 0 8
ex4 1 6 1 0 5
ex4 1 7 1 0 5
ex4 1 8 2 1 3
ex4 1 9 2 2 12
ex5 2 2 case1 9 6 4
ex5 2 2 case2 9 6 4
ex5 2 2 case3 9 6 4
ex5 2 4 7 6 14
ex5 2 5 32 19 195
ex5 3 2 22 16 12
ex5 3 3 62 53 110
ex5 4 2 8 6 5
ex5 4 3 16 13 22
ex5 4 4 27 19 36
ex6 1 1 8 6 28
ex6 1 2 4 3 12
ex6 1 3 12 9 54
ex6 1 4 6 4 24
ex6 2 10 6 3 176
ex6 2 11 3 1 88
ex6 2 12 4 2 76
ex6 2 13 6 3 118
ex6 2 14 4 2 72
ex6 2 5 9 3 221
ex6 2 6 3 1 106
ex6 2 7 9 3 318
ex6 2 8 3 1 106
ex6 2 9 4 2 120
ex7 2 1 7 14 59
ex7 2 2 6 5 10
ex7 2 3 8 6 19
ex7 2 4 8 4 28
ex7 3 1 4 7 44
ex7 3 2 4 7 6
ex7 3 3 5 8 8
ex7 3 4 12 17 50
ex7 3 5 13 15 59
ex7 3 6 17 17 466
ex8 1 1 2 0 5
ex8 1 2 1 0 24
ex8 1 3 2 0 23
ex8 1 4 2 0 9
ex8 1 5 2 0 11
ex8 1 6 2 0 9
ex8 1 7 5 5 15

GlobalLib 2/3

Instance n m NLT

ex8 1 8 6 5 10
ex8 2 1a 55 31 109
ex8 2 1b 57 33 61
ex8 2 1 55 31 109
ex8 2 2a 7510 1947 15018
ex8 2 2b 7522 1959 7530
ex8 2 2 7510 1947 15018
ex8 2 3a 15636 3155 31268
ex8 2 3b 15641 3160 15648
ex8 2 4a 55 81 309
ex8 2 4b 61 87 165
ex8 2 4 55 81 309
ex8 2 5a 2510 3774 30018
ex8 2 5b 2534 3798 15042
ex8 2 5 2510 3774 30018
ex8 3 10 141 108 291
ex8 3 11 115 76 274
ex8 3 12 120 81 284
ex8 3 13 115 72 269
ex8 3 14 110 71 294
ex8 3 1 115 76 274
ex8 3 2 110 76 219
ex8 3 3 110 76 214
ex8 3 4 110 76 219
ex8 3 5 110 76 219
ex8 3 6 110 76 215
ex8 3 7 126 92 276
ex8 3 8 126 93 270
ex8 3 9 78 45 107
ex8 4 1 22 10 30
ex8 4 2 24 10 70
ex8 4 3 52 25 75
ex8 4 4 17 12 36
ex8 4 5 15 11 53
ex8 4 6 14 8 88
ex8 4 7 62 40 160
ex8 4 8 bnd 42 30 170
ex8 4 8 42 30 170
ex8 5 1 6 4 33
ex8 5 2 6 4 33
ex8 5 3 5 4 22
ex8 5 4 5 4 22
ex8 5 5 5 4 30
ex8 5 6 6 4 42
ex8 6 1 75 45 315
ex8 6 2 30 0 315
ex9 1 10 14 12 5
ex9 1 1 13 12 5
ex9 1 2 10 9 4
ex9 1 4 10 9 4
ex9 1 5 13 12 5
ex9 1 8 14 12 5
ex9 2 1 10 9 8
ex9 2 2 10 11 6
ex9 2 3 16 15 6
ex9 2 4 8 7 6
ex9 2 5 8 7 5
ex9 2 6 16 12 10
ex9 2 7 10 9 8
ex9 2 8 6 5 4
filter 2 1 11
flowchan100 2400 2398 1600
flowchan200 4800 4798 3200
flowchan400 9600 9598 6400
flowchan50 1200 1198 800
ganges 356 273 1035
gangesx 356 273 1035
gasoil100 2603 2598 2202
gasoil200 5203 5198 4202
gasoil400 10403 10398 8202
gasoil50 1303 1298 1202
glider100 1315 1209 3527
glider200 2615 2409 7027
glider400 5215 4809 14027
glider50 665 609 1777
gsg 0001 78 112 108
gtm 63 24 42
harker 20 7 40
haverly 12 9 3
hhfair 29 25 28
himmel11 9 4 22
himmel16 18 21 54
house 8 8 4
hs62 3 1 14
hydro 31 24 24
immun 21 7 6
jbearing25 1404 0 21216
jbearing50 2704 0 41616
jbearing75 4004 0 62016
korcge 95 77 193
launch 38 28 128
least 3 0 22
like 9 3 625
linear 24 20 20
lnts100 506 400 1600
lnts200 1006 800 3200
lnts400 2006 1600 6400
lnts50 256 200 800
mathopt1 2 2 5
mathopt2 2 4 7
mathopt3 6 7 24
mathopt4 2 2 11
maxmin 27 78 234
meanvar 8 2 145
methanol100 3005 2997 5295
methanol200 6005 5997 10395
methanol400 12005 11997 20595
methanol50 1505 1497 2745
mhw4d 5 3 9
minlphi 64 79 72
minsurf25 1404 0 21216
minsurf50 2704 0 41616
minsurf75 4004 0 62016
nemhaus 5 5 18
otpop 103 76 83
pindyck 116 96 96
pinene100 5005 4995 2560
pinene200 10005 9995 4960
pinene25 2505 2495 1360
pinene50 2505 2495 1360
pollut 42 8 80
polygon25 50 324 1896
popdynm100 5615 5592 3352
popdynm200 11215 11192 6352
popdynm25 1415 1392 1342
popdynm50 2815 2792 2012
prob05 2 2 6
prob06 2 2 8
prob07 15 36 76
prob09 3 1 4

GlobalLib 3/3

Instance n m NLT

process 10 7 13
prolog 20 22 8
qp1 50 2 5000
qp2 50 2 2550
qp3 100 52 50
qp4 79 31 58
qp5 108 31 0
ramsey 33 22 44
rbrock 2 0 4
robot100 1112 802 2307
robot200 2212 1602 4607
robot400 4412 3202 9207
robot50 562 402 1157
rocket100 607 502 1607
rocket200 1207 1002 3207
rocket400 2407 2002 6407
rocket50 307 252 807
sambal 17 10 26
sample 4 2 8
ship 10 16 40
srcpm 39 27 10
st bpaf1a 10 10 5
st bpaf1b 10 10 5
st bpk1 4 6 4
st bpk2 4 6 4
st bpv1 4 4 2
st bpv2 4 5 2
st bsj2 3 5 3
st bsj3 6 1 9
st bsj4 6 4 9
st cqpf 4 6 8
st cqpjk1 4 2 8
st cqpjk2 3 1 6
st e01 2 1 1
st e02 3 3 6
st e03 10 7 14
st e04 4 2 7
st e05 5 3 4
st e06 3 3 4
st e07 10 7 3
st e08 2 2 6
st e09 2 1 4
st e10 2 1 3
st e11 3 2 5
st e12 4 3 2
st e16 12 9 23
st e17 2 1 3
st e18 2 4 4
st e19 2 2 5
st e20 6 5 10
st e21 6 6 3
st e22 2 5 3
st e23 2 2 1
st e24 2 4 1
st e25 4 8 9
st e26 2 4 4
st e28 9 4 22
st e30 14 15 8
st e33 9 6 3
st e34 6 4 20
st e37 4 1 69
st e39 2 0 9
st e41 4 2 24
st e42 7 2 6
st fp1 5 1 10
st fp2 6 2 10
st fp3 13 10 8
st fp4 6 5 2
st fp5 10 11 14
st fp6 10 5 20
st fp7a 20 10 40
st fp7b 20 10 40
st fp7c 20 10 40
st fp7d 20 10 40
st fp7e 20 10 39
st fp8 24 20 48
st glmp fp1 4 8 1
st glmp fp2 4 9 1
st glmp fp3 4 8 1
st glmp kk90 5 7 1
st glmp kk92 4 8 1
st glmp kky 7 13 2
st glmp ss1 5 11 1
st glmp ss2 5 8 1
st ht 2 3 2
st iqpbk1 8 7 116
st iqpbk2 8 7 114
st jcbpaf2 10 13 5
st jcbpafex 2 2 1
st kr 2 5 3
st m1 20 11 36
st m2 30 21 55
st pan1 3 4 6
st pan2 5 1 10
st ph10 2 4 4
st ph11 3 4 6
st ph12 3 4 5
st ph13 3 10 6
st ph14 3 10 6
st ph15 4 4 7
st ph1 6 5 12
st ph20 3 9 2
st ph2 6 5 11
st ph3 6 5 7
st phex 2 5 3
st qpc-m0 2 2 2
st qpc-m1 5 5 50
st qpc-m3a 10 10 200
st qpc-m3b 10 10 200
st qpc-m3c 10 10 200
st qpc-m4 10 10 196
st qpk1 2 4 6
st qpk2 6 12 26
st qpk3 11 22 51
st robot 8 8 17
st rv1 10 5 20
st rv2 20 10 40
st rv3 20 20 40
st rv7 30 20 60
st rv8 40 20 80
st rv9 50 20 100
st z 3 5 3
torsion25 1408 4 15912
torsion50 2708 4 31212
torsion75 4008 4 46512
trig 1 1 10
turkey 518 287 110
wall 6 6 6
water 41 25 102
weapons 65 12 130

Table 13 NLP instance statistics. NLT is the number of nonlinear terms in the problem; AMPL errors on

fct, worst.

28

MINLPLib 1/2

Instance n Bin. Int. m NLT

4stufen 149 48 0 98 111
alan 8 4 0 7 8
batchdes 20 9 0 20 13
batch 46 24 0 73 28
beuster 157 52 0 114 155
cecil 13 840 162 18 898 540
contvar 296 87 1 284 799
csched1 77 63 0 23 16
csched2 401 308 0 138 141
deb10 182 11 11 129 940
deb6 475 20 0 507 3108
deb7 813 10 10 897 6144
deb8 823 10 10 897 6144
deb9 813 10 10 917 6144
du-opt5 20 0 13 9 2336
du-opt 20 0 13 9 2336
elf 54 24 0 38 27
eniplac 141 24 0 189 90
enpro48 154 92 0 215 35
enpro56 128 73 0 192 31
ex1221 5 3 0 5 2
ex1222 3 1 0 3 3
ex1223a 7 1 0 9 9
ex1223b 7 2 0 9 17
ex1223 11 1 0 13 17
ex1224 11 5 0 7 5
ex1225 8 6 0 10 3
ex1226 5 3 0 5 8
ex1233 52 12 0 64 68
ex1243 68 16 0 96 32
ex1244 95 23 0 129 46
ex1252a 24 0 6 34 75
ex1252 39 15 0 43 75
ex1263a 24 4 20 35 16
ex1263 92 72 0 55 16
ex1264a 24 4 20 35 16
ex1264 88 68 0 55 16
ex1265a 35 5 30 44 25
ex1265 130 100 0 74 25
ex1266a 48 6 42 53 36
ex1266 180 138 0 95 36
ex3 32 8 0 31 7
ex4 37 25 0 31 254
fac1 22 6 0 18 4
fac2 66 12 0 33 6
fac3 66 12 0 33 6
feedtray2 88 36 0 284 885
feedtray 98 7 0 92 977
fo7 2 114 42 0 211 14
fo7 114 42 0 211 14
fo8 146 56 0 273 16
fo9 182 72 0 343 18
fuel 15 3 0 15 12
fuzzy 896 120 0 1056 72
gasnet 90 10 0 69 163
gastrans 106 21 0 149 45
gbd 4 3 0 4 2
gear2 28 24 0 4 4
gear3 8 0 4 4 4
gear4 6 0 4 1 4
gear 4 0 4 0 4
gkocis 11 3 0 8 3
hda 723 13 0 719 480
hmittelman 16 15 0 7 238
johnall 194 188 0 192 17860
lop97icx 986 67 785 87 556
m3 26 6 0 43 6
m6 86 30 0 157 12
m7 114 42 0 211 14
meanvarx 35 14 0 44 56
nous1 50 0 0 43 66
nous2 50 0 0 43 66
nuclear10a 13010 10920 0 3339 31988
nuclear14a 992 600 0 633 3984
nuclear14b 1568 600 0 1785 3408
nuclear14 1562 576 0 1226 4272
nuclear24a 992 600 0 633 3984
nuclear24b 1568 600 0 1785 3408
nuclear24 1562 576 0 1226 4272
nuclear25a 1058 650 0 659 4215
nuclear25b 1683 650 0 1909 3590
nuclear25 1678 625 0 1303 4590
nuclear49a 3341 2450 0 1431 10826
nuclear49b 5742 2450 0 6233 8425
nuclear49 5735 2401 0 3873 12541
nuclearva 351 168 0 317 1664
nuclearvb 351 168 0 317 1628
nuclearvc 351 168 0 317 1628
nuclearvd 351 168 0 317 2504
nuclearve 351 168 0 317 2504
nuclearvf 351 168 0 317 2504
nvs01 3 0 2 3 13
nvs02 8 0 5 3 23
nvs03 2 0 1 2 4
nvs04 2 0 2 0 4
nvs05 8 0 2 9 48
nvs06 2 0 2 0 13
nvs07 3 0 2 2 4
nvs08 3 0 2 3 11

MINLPLib 2/2

Instance n Bin. Int. m NLT

nvs09 10 0 10 0 50
nvs10 2 0 2 2 16
nvs11 3 0 3 3 44
nvs12 4 0 4 4 92
nvs13 5 0 5 5 158
nvs14 8 0 5 3 22
nvs15 3 0 3 1 9
nvs16 2 0 2 0 8
nvs17 7 0 7 7 392
nvs18 6 0 6 6 258
nvs19 8 0 8 8 556
nvs20 16 0 5 8 122
nvs21 3 0 2 2 11
nvs22 8 0 4 9 48
nvs23 9 0 9 9 762
nvs24 10 0 10 10 1020
o7 2 114 42 0 211 14
o7 114 42 0 211 14
oaer 9 3 0 7 3
oil2 937 2 0 927 1981
oil 1535 19 0 1546 2871
ortez 87 18 0 74 57
parallel 205 25 0 115 280
prob02 6 0 6 8 5
prob03 2 0 2 1 1
prob10 3 0 1 3 9
procsel 10 3 0 7 3
product2 2842 128 0 3125 2112
product 1553 107 0 1925 528
pump 24 0 6 34 75
qapw 450 225 0 255 225
ravem 112 53 1 186 43
risk2b 463 12 2 580 6
saa 2 4407 400 0 6205 143699
sep1 29 2 0 31 6
space25a 383 240 0 201 101
space25 893 750 0 235 101
space960 5537 0 960 6497 3748
spectra2 70 30 0 73 504
spring 17 9 1 8 19
st e13 2 1 0 2 1
st e14 11 1 0 13 17
st e15 5 3 0 5 2
st e27 4 2 0 6 2
st e29 11 5 0 7 5
st e31 112 24 0 135 8
st e32 35 0 19 18 92
st e35 32 7 0 39 59
st e36 2 0 1 2 36
st e38 4 0 0 3 17
st e40 4 0 3 8 24
st miqp1 5 5 0 1 10
st miqp2 4 2 2 3 4
st miqp3 2 0 2 1 2
st miqp4 6 3 0 4 6
st miqp5 7 2 0 13 4
stockcycle 480 432 0 97 48
st test1 5 5 0 1 8
st test2 6 5 1 2 10
st test3 13 10 3 10 10
st test4 6 2 4 5 4
st test5 10 10 0 11 14
st test6 10 10 0 5 20
st test8 24 0 24 20 48
st testgr1 10 0 10 5 20
st testgr3 20 0 20 20 40
st testph4 3 0 3 10 6
super1 1308 44 0 1659 2545
super2 1308 44 0 1659 2545
super3 1308 44 0 1659 2545
super3t 1056 44 0 1343 2169
synheat 56 12 0 64 82
synthes1 6 2 0 6 11
synthes2 11 3 0 14 9
synthes3 17 5 0 23 16
tln12 168 12 156 72 144
tln2 8 2 6 12 4
tln4 24 4 20 24 16
tln5 35 5 30 30 25
tln6 48 6 42 36 36
tln7 63 7 56 42 49
tloss 48 6 42 53 36
tls12 812 656 12 384 288
tls2 37 31 2 24 8
tls4 105 85 4 64 32
tls5 161 131 5 90 50
tls6 215 173 6 120 72
tls7 345 289 7 154 98
tltr 48 12 36 54 27
uselinear 6792 58 0 7030 9549
util 146 28 0 168 5
var con10 573 10 2 464 4368
var con5 573 10 2 464 4368
waste 2484 400 0 1991 1368
water4 195 126 0 137 32
waterx 70 14 0 54 102
waterz 195 126 0 137 32
windfac 14 0 3 13 36

Table 14 MINLP instance statistics. NLT is the number of nonlinear terms in the problem. AMPL errors

on blendgap, meanvarxsc, water3, waterful2, watersbp, waters, watersym1, watersym2

(MINLPLib).

