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Abstract—NMR experiments are able to provide some of
the distances between pairs of hydrogen atoms in molecular
conformations. The problem of finding the coordinates of such
atoms is known as the molecular distance geometry problem. This
problem can be reformulated as a combinatorial optimization
problem and efficiently solved by an exact algorithm. To this
purpose, we show how an artificial backbone of hydrogens can
be generated that satisfies some assumptions needed for having
the combinatorial reformulation. Computational experiments
show that the combinatorial approach to this problem is very
promising.

I. I NTRODUCTION

Proteins are important molecules because they perform
different functions, often of vital importance, in the cells of the
living beings. Their function is determined by the dynamicsof
the proteins, which depend on their three-dimensional confor-
mation. While finding the chemical composition of a protein
molecule is relatively simple, finding its three-dimensional
conformation is not an easy task. Nuclear Magnetic Resonance
(NMR) is an experimental technique which is able to provide
some of the distances between pairs of atoms forming the
molecule [5]. These experimentally obtained data can then be
used for computing the coordinates (into a given Cartesian
system) of all the atoms of the molecule. The problem of
finding the conformation of the molecule (i.e. all the coordi-
nates of its atoms), starting from the known distances between
pairs of atoms, is referred to as the MOLECULAR DISTANCE

GEOMETRY PROBLEM (MDGP) [3]. The focus of this paper
is, in particular, on protein molecules.

Over the years, many methods have been proposed for
solving the MDGP. Most of them are based on a continuous
formulation of the problem. LetX = {x1, x2, . . . , xn} be a
protein conformation, wherexi is theith atom of the protein,
in a given ordering. LetE be the set of pairs of atoms
whose distance is known. Then, the MDGP can be seen as
the problem of findingX such that

||xi − xj || = dij ∀(i, j) ∈ E,

where || · || represents the computed distance between two
atoms of X , and dij is the known value of their relative
distance. This constraint satisfaction problem is usuallyre-
formulated as a global optimization problem. The aim is to
minimize an objective function which is able to provide a
measure of how much the distances||xi − xj ||, related to a
certain conformationX , differ from the known distancesdij ,
for each(i, j) ∈ E. Different objective functions have been
proposed, and one of the most used is the Largest Distance
Error (LDE):

LDE({x1, x2, . . . , xn}) =
1

|m|

∑

{i,j}

||xi − xj || − dij

dij

, (1)

wherem is the total number of known distances. Supposing
that a position is given to then atoms of the conformationX ,
if the value of the LDE function is 0, then the set of given
distances is feasible and the conformationX satisfies all of
them. For a survey on methods and algorithms for the MDGP,
see [6].

Recently, a new approach to the MDGP has been proposed.
In the event that some particular assumptions are satisfied,
the global optimization problem associated to the MDGP is
reformulated as a combinatorial optimization problem. In this
way, the search domain is reduced to a discrete set. Moreover,
the computation of the number of solutions contained in the
discrete search domain is possible, and it is related to the
number of atoms forming the molecule. Computational experi-
ments presented in ([7], [8], [9]) showed that the combinatorial
approach to the MDGP is much more efficient than the con-
tinuous one. We refer to this combinatorial reformulation of
the MDGP as the DISCRETIZABLE MOLECULAR DISTANCE

GEOMETRY PROBLEM (DMDGP).
Proteins are chains of smaller molecules calledamino acids,

which are chemically bound to each other through a subgroup
of atoms that each amino acid has in common. We will refer to
this subgroup of atoms as thecommon partof each amino acid.
All these parts define the so-calledbackboneof the protein.



Fig. 1. The general structure of an amino acid.

The general structure of an amino acid is shown in Figure 1.
All the atoms of the common part are shown, whereas the
circle marked byR represents all the others. When two amino
acids bind to each other during protein synthesis, some of the
atoms of their common parts are lost, and the carbon atom C
of the first amino acid binds to the nitrogen N of the second
one. Therefore, the protein backbone is finally formed by the
sequence of atomsN−Cα −C, where oxygen and hydrogen
atoms are also attached.

In previous works ([7], [8], [9], [10]), the DMDGP has been
tested on instances related to the sequence of atomsN−Cα−
C of the protein backbones. As it is also supposed in many
related works (see for example ([2], [13])), no distinctions
among the different kinds of atoms (N, C, H, O, . . . ) were
done. The computational experiments showed that instances
related to the sequenceN − Cα − C can be almost always
solved by the combinatorial approach, because the necessary
assumptions are satisfied.

In order to perform more realistic experiments, we do not
consider in this work the sequenceN − Cα − C, but rather
all the hydrogen atoms of the protein backbones. Indeed, it
is very important to make a distinction among the atoms that
are contained in protein backbones, because the majority of
the distances detected by NMR are distances between pairs of
hydrogens. Unfortunately, in general, if only the hydrogens of
the protein backbones are considered, then the corresponding
instance does not satisfy the assumptions of the DMDGP in
the natural ordering given to the atoms.

The focus of this paper is a procedure for building artificial
backbones formed by the hydrogen atoms associated to the
protein backbones. We will show some orderings that can be
given to the hydrogens and how they can make the needed
assumptions satisfied. We will work in the simplified case
in which the distances can be considered as accurate. The
work here presented can be extended in order to manage
experimental errors, by integrating, for example, the strategy
presented in [10].

The paper is organized as follows. In Section II, we will
outline an algorithm for solving the DMDGP, and emphasis
will be given to the assumptions that must be satisfied in order

to formulate the problem as DMDGP. In Section III, we will
show how to generate an artificial backbone of hydrogens that
satisfies the necessary assumptions. In Section IV, computa-
tional experiments on instances related to artificial backbones
are shown. In Section V, we end with some conclusions.

II. T HE BRANCH AND PRUNE ALGORITHM

Let us suppose that some of distances between pairs of
atoms of a molecule are known. LetG = (V, E, d) be a
weighted undirected graph, where

• there is a vertexv ∈ V associated to each atom of the
molecule, in a given ordering;

• there is an edge(u, v) ∈ E if and only if the distance
betweenu andv is known;

• the weightsd associated to the edges provide the numer-
ical values of the known distances.

The MOLECULAR DISTANCE GEOMETRY PROBLEM

(MDGP) is the problem of finding a functionx : G → <3

such that the molecular conformation

X = {x(v) : v ∈ V }

satisfies all the distancesd.
The MDGP can be formulated as a combinatorial problem

if the following two assumptions are satisfied:

Assumption 1: all the distancesdi−3,i, di−2,i anddi−1,i must
be known,

Assumption 2: for each triplet of vertices{i − 2, i − 1, i}, the
strict triangular inequality

di−2,i < di−2,i−1 + di−1,i

must hold,

for a given ordering of the atoms of the molecule. Assump-
tion 2 is satisfied in most of the cases. Indeed, if, for a certain
triplet of consecutive vertices,di−2,i were perfectly equal to
di−2,i−1 + di−1,i, then the corresponding three atoms would
be perfectly aligned. The probability for this to happen is
almost zero. Assumption 1 is harder to be satisfied. If data
from NMR are considered, then only the distances smaller
than 6̊A are available, and therefore, if some of the distances
di−3,i, di−2,i anddi−1,i are large, then it cannot be detected
and Assumption 1 may not be satisfied.

If both assumptions are satisfied, then it is possible to prove
that the cosine of the torsion angle among four consecutive
atoms {xi−3, xi−2, xi−1, xi} of a protein backbone can be
computed. If the atomsxi−3, xi−2, xi−1 are already placed
into a fixed location, then, by exploiting all the known dis-
tances and the value of the torsion angle, the exact position
of the atomxi can be obtained. Unfortunately, the value of
the torsion angle is not available, but only its cosine, which
brings to two possible values for the angle. Because of this
uncertainty, each atomxi can be placed in two different
positions. This allows to reformulate the MDGP as a com-
binatorial problem, to which we refer to as DISCRETIZABLE

MOLECULAR DISTANCE GEOMETRY PROBLEM (DMDGP).
For more details, we refer the reader to ([7], [8], [9]).



Algorithm 1 BP algorithm
0: BP(i, n, d)
0: compute the first atomic position for theith atom:x′

i;
0: check the feasibility of the atomic positionx′

i:
if (| ||x′

i − xj || − dij | < ε, ∀j < i) then
the atomic positionxi is feasible;
if (i = n) then

a solution is found;
else

BP(i + 1,n,d);
end if

else
the atomic positionx′

i is pruned;
end if
compute the second atomic position for theith atom:x′′

i ;
check the feasibility of the atomic positionx′′

i :
if (| ||x′′

i − xj || − dij | < ε, ∀j < i) then
the atomic positionx′

i is feasible;
if (i = n) then

a solution is found;
else

BP(i + 1,n,d);
end if

else
the atomic positionx′′

i is pruned;
end if

In the combinatorial reformulation, a binary tree of possible
solutions for the DMDGP can be defined. The BRANCH AND

PRUNE (BP) algorithm [9] is based on this tree structure. The
binary tree of possible solutions is explored starting fromits
top where the first atom of the conformation is placed, and the
search proceeds by placing the following atoms one per time.
As soon as a branch of the tree is found to be infeasible,
then it is pruned and the search is backtracked. Because of
the pruning phase, the size of the tree is reduced quickly and
therefore an exhaustive search on the remaining branches is
not too computational demanding.

Algorithm 1 provides a sketch of the BP algorithm. The
algorithm is invoked iteratively, starting from the atomic
position 4. The input parameters arei, the current atom whose
position is searched;n, the total number of atoms;d, the set of
known distances. One of the solutions to the problem is found
when BP(n,n,d) finds one feasible position at least for the last
atom of the conformation. The condition| ||xi−xj ||−dij | < ε,
for all j < i and whereε > 0 is a given tolerance, represents
a pruning test, which we employ for discovering infeasible
atomic positions.

We showed in previous works that the BP algorithm is able
to efficiently solve instances of the DMDGP. It is important
to note that, even though it is able to find solutions of a
global optimization problem, the BP algorithm does not exploit
any objective function. Once solutions are found by BP, their
quality can then be evaluated through, for example, the LDE
function (1).

III. C ONSTRUCTING ARTIFICIAL BACKBONES

Let us suppose that the sequence of atoms N−Cα−C (defin-
ing the protein backbones) and all the hydrogens H which
bound to such atoms are considered. LetG = (V, E, d) be
the associated weighted undirected graph. Since all the atoms
detected by NMR are hydrogens, we can estimate the kind of
atoms associated to verticesu and v such that(u, v) ∈ E.
There can be indeed two possibilities:

• both the vertices refer to hydrogens, and, in this case, the
distanceduv must be computed by NMR;

• at least one of the vertices refers to an hydrogen, and the
distanceduv could be knowna priori, because it may be
the length of a chemical bond.

Let us consider the subgraphGH , such thatG ⊃ GH =
(VH , EH , dH) and such thatGH contains all the vertices
in V to which at least two edges are associated. For what
observed above, the graphGH can contain hydrogen atoms
only. Therefore, given an ordering on the vertices inVH for
which the assumptions 1 and 2 are satisfied, the MDGP can
be formulated as a DMDGP, and solved by the BP algorithm.
We will refer to the set of hydrogens associated to the vertices
of the graphGH asartificial backboneof hydrogens. We will
show how a particular ordering on the vertices ofGH can
make assumptions 1 and 2, needed for formulating the problem
as combinatorial and applying BP, satisfied.

The main problem we need to solve is the following. The
artificial backbone of hydrogens must satisfy both assumptions
1 and 2. As previously observed, there are a few possibilities
to have Assumption 2 unsatisfied, and therefore we will
not consider it in the following. Inversely, in order to have
Assumption 1 satisfied, all the distancesdi−3,i, di−2,i and
di−1,i, for eachi, must be known. Then, in the hypothesis
that these distances come from an NMR experiment, they all
need to be smaller than 6Å, because NMR can provide only
distances smaller than this threshold. Thus, our main problem
is to identify an artificial backbone of hydrogens such that the
distancesdi−3,i, di−2,i anddi−1,i are smaller than 6̊A.

A protein is a chain of amino acids. The set of all common
parts of the amino acids consists in a sequence of bound atoms
which is usually referred to asprotein backbone. Figure 1
shows the common part of each amino acid (the structure
of the proline is slightly different, but all the following
considerations can be applied anyway). As one can see from
Figure 1, there are 4 hydrogens in the common part of each
amino acid. However, during the protein synthesis, consecutive
amino acids bind to each other through a peptide bond. During
this process, one of the hydrogens bound to the nitrogen N and
the group OH bound to C separate from the other atoms and
form a water molecule (H2O) [12]. Therefore, the common
part of each amino acid in a protein contains two hydrogens
only.

We will refer to the hydrogen bound to N with the symbol H,
and we will refer to the hydrogen bound toCα with the symbol
HA. The most natural way for building an artificial backbone
of hydrogens is to consider the sequenceH − HA one amino



Fig. 2. An artificial backbone created by considering the sequence of hydrogens in the common parts of the amino acids in their natural ordering.

acid at a time, in the ordering defined by the protein backbone
(see Figure 2). Unfortunately, this artificial backbone does not
satisfy Assumption 1 in most of the cases. Indeed, simple
geometric considerations show that the distance between the
hydrogen H of thek-th amino acid and the hydrogen HA of
the (k + 1)-st amino acid cannot be smaller than 6Å, except
for very particular cases. The same observation holds if the
hydrogen HA of thek-th amino acid and the hydrogen H of the
(k+2)-nd amino acid are considered. Therefore, in general, not
all the needed distances are available if this artificial backbone
is considered, and then Assumption 1 cannot be satisfied.

In order to overcome this problem, we will consider a third
hydrogen for each amino acid. This hydrogen is borrowed
from the groupR of the amino acids, which is also called
side chainof the amino acid (see Figure 1). We will refer to
this hydrogen by the symbol HB. The groupR is bound to
the common part of the amino acid through a carbon atom
calledCβ. The only exception is given byglycine, whose side
chain consists in only one hydrogen atom. In the particular
case ofglycine, we consider as third hydrogen the only one
that forms its side chain. In general, one hydrogen HB at least
is bound to the carbonCβ , and we consider one of them in
our artificial backbone.

The artificial backbone we consider is the one in Figure 3.
A label is associated to each arrow for specifying the ordering
given to the hydrogens. As the figure shows, the artificial
backbone considers more than once some of the hydrogens,
in order to reduce the relative distances between the hydro-
gens contained into the quadruplets{xi−3, xi−2, xi−1, xi}.
Algorithm 2 shows the set of instructions for generating the
artificial backbone in Figure 3 starting from a known protein
conformationX . We suppose that all the coordinates of the
atoms of the protein are stored in a PDB file, which is a
standard text file, used for storing the list of coordinates of
the atoms forming a protein.

Algorithm 2 reads the information about the hydrogens of
the backbone of a protein from a PDB file. Note that more

than one hydrogen HA and HB can be found for the same
amino acid. The algorithm reads the first HA or HB, and then
it substitutes the hydrogens if another HA or HB is found. In
our implementation, this substitution is allowed only whenthe
new HA or HB is closer to the previous atoms of the artificial
backbone. Algorithm 2 creates an instance of the DMDGP
where only the hydrogen atoms of the protein backbones are
considered.

The artificial backbones generated by Algorithm 2 have
particular properties. Since some of the hydrogens are con-
sidered twice, some of the relative distances between them
are perfectly zero. If one of the distances between the atoms
in the generic triplet{xi−2, xi−1, xi} is zero, then two atoms
coincide and, as a consequence, the atoms of the triplet lie on
the same straight line (this goes against Assumption 2). For
this reason, the artificial backbone is built in a way that only
distancesdij , with j > i + 2, can be zero.

Since there are distances equal to zero, the LDE function
(1) cannot be used for evaluating the performances of the BP
algorithm on the generated distances, because there would be
divisions by zero. Therefore, in the experiments showed in the
next section, we will consider a modified version of the LDE
function, in which the terms that would contain the divisions
by zero are discarded.

Finally, note that the nitrogen atom N and the carbon
atom Cα of the first amino acid are also included in the
artificial backbone (see Figure 3). The distances between these
two atoms and their following three atoms on the artificial
backbone are known a priori, and hence they do not need to
be detected experimentally. We decided to add these two atoms
for the following reason. Once the coordinates of the atoms
of the artificial backbone are identified by an algorithm such
as BP, then the coordinates of the atoms of the real protein
backbone can be computed. The atoms N,Cα and the first H
define a common coordinate system for all the hydrogens and
the other backbone atoms.



Fig. 3. An artificial backbone providing an ordering such that the assumptions for the DMDGP are satisfied.

IV. COMPUTATIONAL EXPERIMENTS

In this section, instances of the DMDGP generated by
applying Algorithm 2 on a set of known proteins are solved by
the BP algorithm. We consider a subset of monomeric proteins
downloaded from the Protein Data Bank (PDB) ([1], [11]),
where all the selected proteins have been experimentally ob-
tained by NMR. All the codes were written in C programming
language and all the experiments were carried out on an Intel
Core 2 CPU 6400 @ 2.13 GHz with 4GB RAM, running
Linux. The codes have been compiled by the GNU C compiler
v.4.1.2 with the-O3 flag.

Table I shows the obtained results.Protein namerefers to
the label given to the considered protein in the PDB. #Sol is
the number of found solutions. The LDE function (modified
in order to avoid divisions by zero) is used for evaluating
the quality of the solutions and the best one is showed in
Table I. Finally, the CPU time (in seconds) is given for each
experiment.

The number of solutions is at least 8 in each experiment.
This is due to the fact that no distancesdij , with j > i+3, are
given in correspondence with the first two atoms. Then, the
first computed atomic positions can never be pruned, leadingto
multiple solutions. The LDE function indicates that the found
solutions are very accurate. This proves that the hydrogensof
the protein backbones can be efficiently identified by the BP
algorithm if they are organized on a suitable artificial backbone
satisfying the necessary assumptions.

It is important to note that the artificial backbones generated
by Algorithm 2 can also be identified by exploiting the
data obtained by NMR experiments, and the corresponding
instances can then be solved by applying BP. In other words,
supposing that NMR provided distances between the hydro-
gens of a protein backbone, and supposing that these distances
are accurate, then BP can be used for finding the coordinates

protein name #Sol LDE time
1a11 8 2.79e-15 0.00
1bbl 8 3.94e-15 0.00
1k1v 8 4.46e-15 0.01
1jkz 8 8.05e-15 0.36
1bqx 8 1.38e-14 0.02
1b4c 16 4.40e-15 0.04
2hsy 8 6.79e-14 0.06
1itm 8 6.98e-14 0.03
1ngl 32 4.78e-14 63.94
1a23 8 3.08e-14 0.71
2ron 16 2.26e-14 1.69
1d8v 8 4.59e-14 0.19
1q8k 64 2.70e-13 24.11
1ezo 8 1.29e-13 94.60

TABLE I
BP (ALGORITHM 1) APPLIED TO THE ARTIFICIAL BACKBONES OBTAINED

BY ALGORITHM 2.

of such hydrogens, if they are considered in the ordering given
in Figure 3. This is what our computational experiences show.
However, we are not able yet to perform experiments in which
real data from NMR are considered, because we supposed so
far that all the given distances are accurate. The work that
is here presented can be extended in order to consider the
realistic case in which the given distances are not accurate
(see for example [10]). These preliminary experiments show
that our way to approach to the problem is promising.

V. CONCLUSIONS

We presented a strategy for building artificial backbones
associated to the hydrogens of real backbones of protein
molecules. The aim is to find an ordering for the hydrogen
atoms, so that the distances usually detected by NMR can be
exploited for creating an instance of the DMDGP. This is not
trivial, because two particular assumptions must be satisfied
in order to generate an instance of the DMDGP.



Algorithm 2 creating artificial backbones
0: procedure(input: PDB file)
0:

0: # reading information on the hydrogens H, HA and HB
0: let n = 0;
0: open PDB file;

for (each amino acid in the PDB file)do
let n = n + 1;
for (each hydrogen atom)do

let ` = atom label;
let (x, y, z) = atom coordinates;
if (` = H) then

H[n] = (x, y, z);
end if
if (` = HA) then

HA[n] = (x, y, z);
end if
if (` = HB) then

HB[n] = (x, y, z);
end if

end for
end for

# creating the artificial backbone
let X[1] = ((0, 0, 0),’N’);
let X[2] = ((−1.458, 0, 0),’CA’);
let X[3] = (HA[1],’HA’);
let X[4] = (H[1],’H’);
let X[5] = (HB[1],’HB’);
let m = 5;
for (i = 2, n) do

let X[m + 1] = (H[i],’H’);
let X[m + 2] = (HA[ i],’HA’);
let X[m + 3] = (HA[ i − 1],’HA*’);
let X[m + 4] = (H[i],’H*’);
let X[m + 5] = (HB[i],’HB’);
let m = m + 5;

end for

# creating an instance for the DMDGP
compute all the distancesdij between all the pairs in

X[i], i = 1, 2, . . . , m;

keep all the distancesdij such that

j ≤ i + 3 or d(i, j) < 6;

the obtained distances form an instance for the DMDGP.

We investigated different artificial backbones of hydrogens,
and we found a particular ordering that makes the necessary
assumptions satisfied in most of the cases. The BP algorithm
is used to solve the corresponding instances by providing
solutions having a high accuracy. Each solution consists ina
set of coordinates for the hydrogens of the protein backbones.

The results discussed in this paper are very promising,
because they show how experimentally obtained data can
be used for identifying the conformations of the proteins.
Indeed, once the coordinates of the hydrogens have been
computed by BP, the remaining of the backbone atoms, i.e.
the sequence of atomsN−Cα −C, can be built by exploiting
some geometric observations. We are currently working on
a method for automatically reconstructing the whole protein
backbone which exploits the information on the positions of
its hydrogens.
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