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Abstract

Distance geometry problems arise from the need to position entities in the Euclidean K-space
given some of their respective distances. Entities may be atoms (molecular distance geometry),
wireless sensors (sensor network localization), or abstract vertices of a graph (graph drawing). In
the context of molecular distance geometry, the distances are usually known because of chemical
properties and Nuclear Magnetic Resonance experiments; sensor networks can estimate their relative
distance by recording the power loss during a two-way exchange; finally, when drawing graphs in 2D
or 3D, the graph to be drawn is given, and therefore distances between vertices can be computed.
Distance geometry problems involve a search in a continuous Euclidean space, but sometimes the
problem structure helps reduce the search to a discrete set of points. In this paper we survey some
continuous and discrete methods for solving some problems of molecular distance geometry.

1 Introduction

In several situations, when placing entities in the Euclidean space, some inter-entity distances are known
in advance, and the chosen positions for the entities must respect the known distances. Problems of this
type are called Distance Geometry Problems (DGPs). The three main realms of application of DGPs
are:

• the Molecular Distance Geometry Problem (MDGP) and its variants;

• the (wireless) Sensor Network Localization Problem (SNLP);

• Graph Drawing (GD).

In the MDGP the entities are atoms, sets of entities are molecules and a subset of inter-atomic distances
may be known because of the type of chemical bonds between atoms, or by means of Nuclear Magnetic
Resonance (NMR) experiments. Typically, the MDGP involves placing atoms in R3 [9, 19, 39, 27, 33].
In the SNLP the entities are wireless sensors: a pair of sensors can estimate their distance by measuring
the quantity of battery power necessary to a two-way communication. Usually, the entities are embedded
in R2. One particular property of the SNLP, which distinguishes it from the MDGP and GD, is that
sensor networks almost always have a subset of fixed sensor whose position is known in advance (these
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are called anchors) [13, 3, 51]. GD is the problem of deriving representations in the plane or in the
three-dimensional space of graphs, with the aim of finding convenient visualizations of certain properties
of the graph. Basically, it consists in finding an embedding in RK of a given weighted graph G = (V,E, d)
where d : E → R+ (the GD community contributes a well-established series of symposia with published
proceedings in the Lecture Notes in Computer Science Springer series, see www.graphdrawing.org).

Although DGPs are essentially a search in a continuous Euclidean space, sometimes the topology
of the graph supporting the known distances guarantees sufficient structure for the search to become
discrete. In this paper we focus on the MDGP and its variants. We present a survey of some continuous
and discrete methods, highlighting the role of the other communities (mostly SNLP) in the development
of the “discretization” of MDGP solution methods.

This survey consists in two main sections. In Section 2 we formalize the MDGP, and introduce some
continuous formulations and solution methods. In Section 3 we explain under what conditions the search
only need span a discrete set; we then describe a discrete MDGP variant and discuss an algorithmic
framework, called Branch-and-Prune (BP), that solves it.

2 Search in continuous space

In this section we review some continuous formulations and methods used to solve the MDGP for general
molecules, when no further structure on the underlying graph topology is known.

2.1 Continuous formulations

A molecule is represented by a weighted undirected graph G = (V,E, d) where V is the set of atoms, E
is a symmetric relation on V whose members connect atoms whose distances are known through either
chemical bond analysis or NMR experiments, and d is a function E → R+ where dij is the Euclidean
distance between atom i and atom j (for all {i, j} ∈ E). Given an integer K > 0, we wish to determine
a function x : V → RK (called embedding) in such a way that:

∀{i, j} ∈ E ||xi − xj || = dij , (1)

where the norm || · || is taken to be the Euclidean norm. We remark that Eq. (1) is a system of nonlinear
equations.

Let X̄ = {x | x satisfies (1)}. If no atom is fixed to a particular position, then X̄ is either empty or
uncountable, because for any solution x̄ ∈ X̄ and any orthogonal transformation T of RK , we have T x̄ ∈ X̄
by definition of orthogonality — and there is an uncountable number of orthogonal transformations of
R3. We define an equivalence relation ∼ on X̄ given by x̄ ∼ ȳ if and only if there exists an orthogonal
transformation T such that ȳ = T x̄, and let X = X̄/ ∼. Then a natural injection of X into RK can be
obtained by fixing the positions of K atoms in V such that they satisfy (1). In general, when no structure
on G is known a priori, X may be empty, finite or again uncountable.

Numerically, solving the nonlinear equations (1) directly is very difficult. Some subsystems of (1),
however, are sometimes considered and solved as part of more complex specific solution methods [11, 10].
More often, system (1) is re-cast as a penalty function to be minimized:

min
x

∑

{i,j}∈E

(||xi − xj ||2 − d2
ij)

2. (2)

In the above, the left and right hand sides of (1) are squared before taking their square difference, so that
the resulting nonlinear objective function does not involve a square root operation (which may pose some
numerical issues for arguments close to zero). We remark that although a sum of squares, (2) is actually
a nonconvex optimization problem in x, and falls into the category of Global Optimization (GO).
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The decision problem associated with system (1) is the following:

Molecular Distance Geometry Problem. Given an integer K > 0 and a weighted
undirected graph G = (V,E, d) with d : E → R+ find x : V → RK such that (1) holds.

The MDGP is strongly NP-complete for K = 1 and strongly NP-hard for K > 1 [48].

Since NMR measurements are subject to noise, (1) is sometimes replaced by a system of nonlinear
inequalities:

∀{i, j} ∈ E dL
ij ≤ ||xi − xj || ≤ dU

ij . (3)

The corresponding decision problem is the inexact Molecular Distance Geometry Problem

(iMDGP), defined as the MDGP with (1) replaced by (3). A formulation for the iMDGP is as follows:

min
x

∑

{i,j}∈E

[

(

max
(

(dL
ij)

2 − ||xi − xj ||2, 0
))2

+
(

max
(

||xi − xj ||2 − (dU
ij)

2, 0
))2
]

. (4)

Usually, though, the terms are weighted as follows:

min
x

∑

{i,j}∈E





(

max

(

(dL
ij)

2 − ||xi − xj ||2
(dL

ij)
2

, 0

))2

+

(

max

(

||xi − xj ||2 − (dU
ij)

2

(dU
ij)

2
, 0

))2


 . (5)

2.2 Continuous methods

In this section we review some MDGP solution methods based on searching the continuous Euclidean
space R3.

2.2.1 General-purpose methods

Given a nonconvex continuous GO problem such as (2), the first — and obvious — idea is to attempt to
solve it with existing general-purpose GO methods. In [26], comparative computational results on some
artificial MDGP instances from [39, 25] are obtained using the following GO methods [30].

• The spatial Branch-and-Bound (sBB) algorithm is an enumerative tree-like search in continuous
space [30, 37] based on partitioning the original feasible region into rectangular boxes. Upper and
lower bounds are derived for the subproblem defined on each box; if the bounds are closer than
a given ε tolerance, the global optimum for the box is deemed found and the box is discarded,
otherwise the box is recursively partitioned. The search terminates when all boxes have been
explored. In general, upper bounds are given by any local optimum of (2), whilst lower bounds are
given by a suitable convex relaxation of the problem [50, 52, 4]. In the present case, however, we
know that if a solution of (1) exists, then the objective function value of (2) is exactly zero, so zero
is the tightest possible lower bound at the root node of the sBB search. The sBB is essentially an
ε-approximation algorithm for solving nonconvex Nonlinear Programs (NLPs) and Mixed-Integer
Nonlinear Programs (MINLPs). Since searches in nonlinear manifolds of a continuous space can
rarely find exact optima, the best one can do in such cases is ε-approximation; this is way the sBB
is usually referred to as an exact GO method.

• A GO variant of the Variable Neighbourhood Search (VNS) [17] metaheuristic, initially inspired by
[38], first described in [31] and recently extended to deal with constrained nonconvex MINLPs [36],
is a stochastic algorithm based on iteratively exploring increasingly larger neighbourhoods of the
current best optimum (the incumbent) until either a new, better optimum is found or a termination
condition stops the search.
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• The multistart-like heuristic algorithm SobolOpt [24] is a stochastic algorithm that employs Sobol’
pseudo-random sequences to draw points from which to start local descents. Such sequences guar-
antee a good spatial distribution that keeps holding true in a set of projected subspaces.

Whereas the sBB has an optimality guarantee, the two stochastic algorithms only carry a guarantee in
probability in infinite time. Thus, due to the usual trade-off between effort and results, heuristics are
expected to perform better, CPU time-wise, than the exact algorithm. It therefore comes to somewhat
of a surprise that the computational results reported in [26] establish the sBB as fastest on several small
and medium-scale instances (not on the large ones, though). This is due to the guaranteed tight lower
bound of zero which is known aprioristically. Knowledge of this MDGP-specific bound represents an
exploitation of problem structure, and therefore gives sBB an advantage over the other methods.

2.2.2 Continuation methods

Following the ideas described in [39, 56], Moré and Wu proposed an algorithm, called DGSOL, based
on a continuation approach for global optimization. The idea is to gradually transform the nonconvex,
multimodal objective function (2) into a smoother function with fewer local minimizers, where an op-
timization algorithm is then applied to the transformed function, tracing their minimizers back to the
original function. For other works based on continuation approach, see [7, 8, 21, 22, 23, 43].

The transformed function 〈f〉λ, called the Gaussian transform, of a function f : Rn → R is defined
by:

〈f〉λ(x) =
1

πn/2λn

∫

Rn

f(y) exp

(

−||y − x||2
λ2

)

dy, (6)

where the parameter λ controls the degree of smoothing. The value 〈f〉λ(x) is a weighted average of
f(x) in a neighborhood of x, where the size of the neighborhood decreases as λ decreases: as λ tends to
0, the average is carried out on the singleton set {x}, thus recovering the original function in the limit.
Smoother functions are obtained as λ increases.

This approach to the MDGP has been implemented and tested on two artificial instance types, where
the molecule has n = |V | = s3 atoms located in the three-dimensional lattice

{(i1, i2, i3) : 0 ≤ i1 < s, 0 ≤ i2 < s, 0 ≤ i3 < s}

for an integer s ≥ 1. Computational results were obtained for n ∈ {27, 64, 125, 216}. In the first type, the
atomic ordering is specified by letting i be the atom at the position (i1, i2, i3), where i = 1+i1+si2+s2i3,
and

E = {{i, j} : |i− j| ≤ r}, (7)

where r = s2. In the second model,

E = {{i, j} : ||xi − xj || ≤
√

r}, (8)

where xi = (i1, i2, i3) and r = s2. For both models, s is considered in the interval 3 ≤ s ≤ 6. In (7),
E includes all nearby atoms, while in (8), E includes some of nearby atoms and some relatively distant
atoms.

Each smoothed function in the sequence is solved using a globally convergent local NLP solution
method, which is obviously a desirable feature. Continuation approaches seem to determine a global
solution with less computational effort than is required by multistart type approaches.

2.2.3 Double VNS with smoothing

In [34], two efficient methods for large-scale molecules are combined into a heuristic method named Double

VNS with Smoothing (DVS). It consists of two stages to be repeated until a certain termination condition
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becomes true. First, a smoothed version of the objective function (2) is derived as per [39] (see Sect. 2.2.2)
and globally solved using VNS (see Sect. 2.2.1). The global optimum of the smoothed function is likely
to be near the global optimum of the original problem, so a new VNS is deployed on (2) with tightened
variable bounds. The computational results, comparing to DGSOL’s performance, are good as regards
accuracy (i.e. the value of the objective function (2) at the optimum), although DGSOL is much faster
than DVS.

2.2.4 DC optimization

In [1, 2], An and Tao propose an approach for solving the exact MDGP, based on a d.c. (difference of
convex functions) optimization algorithm. They work in Mm,3(R), the space of real matrices of order
n × 3, where n = |V | and for each Y ∈ Mn,3(R), Yi (respectively Y i) is its i-th row (respectively i-th
column). An embedding x is identified with the matrix Y by setting Y T

i = xi for all i ∈ V . The MDGP
can then be formulated as:

min







σ(Y ) =
1

2

∑

(i,j)∈S,i<j

wijθij(Y ) : Y ∈Mn,3(R)







, (9)

for some given weights wij > 0 for i 6= j and wii = 0 for all i ∈ V . The pairwise potential θij :Mn,3(R)→
R is defined for problem (1) by either:

θij(Y ) =
(

d2
ij − ||Y T

i − Y T
j ||2

)2
(10)

or
θij(Y ) =

(

dij − ||Y T
i − Y T

j ||
)2

, (11)

and for problem (3) by θij given by the {i, j}-th term of the objective function of (5). Y is a solution if
and only if it is a global minimizer of problem (9) and σ(Y ) = 0. We remark that although (9) may be
nondifferentiable depending on the choice of θij , it is also d.c.

An and Tao show that some d.c. algorithms can be adapted for developing efficient algorithms for
solving large-scale exact MDGPs. They propose various versions of d.c. algorithms adapted to the different
problem formulations. Although global optimality cannot be guaranteed for a general d.c. problem,
the fact that global optimality can usually be obtained with a suitable starting point motivated the
investigation of a technique for computing good starting points. These algorithms have been tested on
three sets of data: the artificial data from Moré and Wu [39] (with up to 4096 atoms), 16 proteins in the
PDB [5] (from 146 up to 4189 atoms), and the data from Hendrickson [19] (from 63 up to 777 atoms).

2.2.5 Alternating projections algorithm

The program APA, described in [44], puts together a sequence of existing algorithms. The main steps
are as follows. First, a dissimilarity matrix ∆ = (δij) is generated randomly so that: (a) δij = 0 for
all {i, j} 6∈ E and dL

ij ≤ δij ≤ dU
ij otherwise, and (b) ∆ satisfies the triangular inequality. Secondly, ∆

is projected onto the cone of matrices that are negative semidefinite on the orthogonal complement of
the all-one vector, and projected back onto the data box, simultaneously zeroing the diagonal entries,
obtaining ∆′. It can be shown that iterating this process an infinite number of times would yield a
distance matrix ∆′ satisfying (3). In practice, an embedding minimizing the distance from ∆′ is obtained
from the eigenvalues of ∆′ after five iterations.

More precisely, APA rests on the following basic idea [15]. A symmetric (n + 1) × (n + 1) matrix
D = (dij) with a 0 diagonal is a Euclidean distance matrix if there is K ≤ n and a vector function
x : {0, . . . , n} → RK such that ∀0 ≤ i < j ≤ n ‖xi − xj‖ = dij . By [49], this is equivalent to requiring
that the n× n matrix A = (aij) defined by aij = 1

2 (d0i + d0j − dij) is positive semidefinite (A � 0), and
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rk(A) is the minimum value of K ensuring the Euclidean distance matrix property for D. Furthermore,
considering the spectral decomposition A = UΛU⊤, where Λ is a diagonal matrix with the eigenvalues
of A along the diagonal and letting X = UΛ

1

2 , we have A = XX⊤ and the (i, k)-th component of X is
xik, the k-th component of the K-vector xi, for i ∈ {0, . . . , n}. It is shown that 2A = P (−D)P⊤ where
P is I − 1

n1(1⊤) is the orthogonal projection on the subspace M orthogonal to 1, so D is a Euclidean
distance matrix if and only if D is negative semidefinite on M . In APA, a projection operator having an
equivalent effect as P is applied to the dissimilarity matrix ∆.

The computational results reported in [44] are all obtained from the bovine pancreatic trypsin inhibitor
protein. The protein 1qlq has 588 atoms including side chains. Accuracy-wise, APA is reported to
yield Root Mean Square Deviation (RMSD) measures (given by ‖X −X ′Q‖/

√
K, where X,X ′ are two

embedding matrices, whose i-th colums are xi, x
′
i ∈ RK respectively, and Q is an appropriate rotation

matrix) ranging in O(1)−O(10).

2.2.6 Geometric build-up algorithm

In [11], Dong and Wu propose the solution of the exact MDGP by an algorithm, called the geometric
build-up algorithm, based on a geometric relationship between coordinates and distances associated to
the atoms of a molecule. It is assumed that it is possible to determine the coordinates of at least four
atoms, which are marked as fixed; the remaining ones are non-fixed. The coordinates of a non-fixed atom
a can be calculated by using the coordinates of four non-coplanar fixed atoms such that the distances
between any of these four atoms and the atom a are known. If such four atoms are found, the atom a
changes its status to fixed. More specifically, let b1, b2, b3, b4 be the four fixed atoms whose Cartesian
coordinates are already known. Now suppose that the Euclidean distances among the atom a and the
atoms b1, b2, b3, b4, namely da,bi

, for i ∈ {1, 2, 3, 4}, are known. That is,

||a− b1|| = da,b1 ,

||a− b2|| = da,b2 ,

||a− b3|| = da,b3 ,

||a− b4|| = da,b4 .

Squaring both sides of these equations, we have:

||a||2 − 2aT b1 + ||b1||2 = d2
a,b1 ,

||a||2 − 2aT b2 + ||b2||2 = d2
a,b2 ,

||a||2 − 2aT b3 + ||b3||2 = d2
a,b3 ,

||a||2 − 2aT b4 + ||b4||2 = d2
a,b4 .

By subtracting one of these equations from the others, one obtaines a linear system that can be used to
determine the coordinates of the atom a. For example, subtracting the first equation from the others, we
obtain

Ax = b, (12)

where

A = −2







(b1 − b2)
T

(b1 − b3)
T

(b1 − b4)
T






,

x = a,

and

b =











(

d2
a,b1
− d2

a,b2

)

−
(

||b1||2 − ||b2||2
)

(

d2
a,b1
− d2

a,b3

)

−
(

||b1||2 − ||b3||2
)

(

d2
a,b1
− d2

a,b4

)

−
(

||b1||2 − ||b4||2
)











.
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Since b1, b2, b3, b4 are non-coplanar atoms, the system (12) has a unique solution. If the exact distances
between all pairs of atoms are given, this approach can determine the coordinates of all atoms of the
molecule in linear time [10]. A further extension of the geometric build-up algorithm, dealing with the
case of fewer than four known distances incident to any particular atom by means of a branching-type
approach similar to that of the BP algorithm (Sect. 3.2.3), is given in [12]. Another development in the
same direction is given in [55].

Dong and Wu report that the geometric build-up algorithm is very sensitive to the numerical errors
introduced in computing the atomic coordinates. In [54], Wu and Wu propose an updated geometric
build-up algorithm where the accumulated errors can be controlled. The latest implementation of this
algorithm [54] was tested on a set of problems generated using the known structures of 10 proteins
downloaded from the PDB [5], with problems from 404 up to 4201 atoms, yielding RMSD measures
ranging from O(10−8) to O(10−13).

2.2.7 The GNOMAD iterative method

The GNOMAD algorithm [53] is an iterative method, based on a specific atomic order which changes
iterationwise as each atom’s contribution to the total error is updated. The method also exploits several
local NLP searches (in low dimension) at each iteration. Particular attention is paid to the physically
inviolable separation distances between atoms, that are usually referred to as Van der Waals distances. In
fact, depending on the kind of atoms that interact, there is a minimum distance under which a repulsive
force tends to separate such atoms. Therefore, if the aim is to find the stable conformation of a molecule,
then it is preferable that all the Van der Waals distances are satisfied. This feature of the GNOMAD
algorithm can also be exploited in other methods for the MDGP, even based on other approaches.

2.2.8 Monotonic Basin Hopping

In order to solve (5), a Monotonic Basin Hopping (MDH) algorithm is employed in [16]. The two key
concepts in this algorithm are those of funnel and funnel bottom. Given a neighbourhood structure N
of R3, a funnel is a maximal set F of local minima of the objective function (5) (call it h(x)) such that
there exists a partial order = on F with the following property: for each x ∈ F there exists a finite
descending chain x = x0 = x1 = . . . = xt = minF such that h(xj) > h(xj+1) and xj+1 ∈ N (xj) for all
j < t; xt is called the funnel bottom. The exploration of different funnels can be performed with the aim
of increasing the probability of catching a funnel whose bottom is the global optimum of (5). In [16], the
authors propose a Population Basin Hopping (PDH) algorithm for the MDGP, in which several funnels
are explored in parallel.

2.2.9 Semidefinite programming

The method described in [6] first forms vertex clusters that cover V in such a way that neighbouring
clustering share some vertices (these are used to “stitch together” the embeddings restricted to each
cluster). The clustering technique is based on permuting columns of the distance matrix (dij) so as to
try to pool the nonzeros along the main diagonal. The partial embeddings for each cluster are computed
by first solving an SDP relaxation of the quadratic system (3) restricted to edges in the cluster, and then
applying a local NLP optimization algorithm that uses the optimal SDP solution as a starting point.
When the distances have errors, there may not exist any valid embedding satisfying all the distance
constraints. In this case, it is likely that the SDP approach (which relaxes these constraints anyhow) will
end up yielding an embedding x′ which is valid in a higher dimensional space RK′

where K ′ > K. In such
cases, x′ is projected onto an embedding x in RK . Such projected embeddings usually exhibit clusters of
close vertices (none of which satisfies the corresponding distance constraints), due to correct distances in
the higher dimensional space being “squeezed” to their orthogonal projection into the lower dimensional
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space. In order to counter this type of behaviour, a regularization objective max
∑

i,j∈V ||xi − xj ||2 is
added to the feasibility SDP.

2.2.10 A self-organization heuristic

The basic idea of the Stochasting Proximity Embedding (SPE) [57] heuristic is as follows. All the atoms
are initially placed randomly into a cube of a given size. Pairs of atoms in E are repeatedly and randomly
selected; for each pair {i, j}, the algorithm checks satisfaction of the corresponding constraint in (3). If
the constraint is violated, the positions of the two atoms are changed according to explicit formulae in
order to improve the current embedding. Naturally, since the algorithm works locally on pairs of atoms,
there is no guarantee of obtaining a final solution satisfying all the constraints. Success stories concerning
the SPE algorithm are reported in [20].

3 Search in discrete space

In this section we discuss discrete formulations and methods for the MDGP. We first present the topics
which have had an influence on the discretization of the MDGP, then discuss a discretizable problem
variant and the algorithmic framework used to solve it.

Notationwise, given a graph G = (V,E), for all v ∈ V we let δ(v) = {u ∈ V | {u, v} ∈ E}. For a subset
U ⊆ V we let G[U ] be the subgraph of G induced by U , having edge set E[U ]. For a totally ordered set
(V,<), for all v ∈ V we let γ(v) = {u ∈ V | u < v}, and we define the rank of v as ρ(v) = |γ(v)|+ 1.

3.1 The influence of rigidity

In the context of graph rigidity, embeddings are also called realizations [19]. A realization is generic if all
vertex coordinates are algebraically independent over Q. Although generic realizations are dense in the set
of all realizations, as noted in [18], we really only need to avoid certain specific algebraic dependencies,
so the genericity condition is not too hard to meet in practice. Given an undirected, weighted graph
G = (V,E, d) and a realization x ∈ X, the pair (G, x) is a satisfying framework. A finite flexing of a
framework is an uncountable family y ⊆ X, indexed by a continuous parameter t ≥ 0, such that there
is t0 with x = y(t0). Since for all t we have y(t) ∈ X, (G, y(t)) are all satisfying frameworks, thus for
each edge {i, j} ∈ E, ||yi(t) − yj(t)||2 is constant. If there are no such families, the framework is rigid,
otherwise it is flexible. We can differentiate the condition with respect to t [45] to obtain:

∀{i, j} ∈ E (vi − vj) · (yi − yj) = 0, (13)

where vi = ∇tyi for all i. A function v : E → R3 satisfying (13) is an infinitesimal motion of the
framework. If there exists such a v then the framework is infinitesimally flexible and otherwise it is
infinitesimally rigid. For generic realizations, infinitesimal rigidity implies rigidity. By a theorem of Gluck,
if a graph has a single infinitesimally rigid realization, then all its generic realizations are infinitesimally
rigid [14]. If we restrict attention to rigid realizations, by Gluck’s theorem we can ignore the concept of
framework and refer directly to rigid graphs [19]. The MDGP is still NP-hard even when restricted to
rigid graphs [13].

3.1.1 ABBIE: a mixed discrete-continuous method

The concept of graph rigidity first made its way into the MDGP literature with the ABBIE [19] mixed
discrete-continuous method for realizing general molecule graphs. Instead of solving (2) directly, ABBIE
automatically finds the largest uniquely realizable rigid subgraphs of the molecule graphs and essentially
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contracts them to single vertices, yielding a graph minor G′ with hopefully fewer vertices than the original
graph. Sufficient conditions for unique graph realizability are given in [19]. The nonconvex MDGP
problem (2) corresponding to G′ is then solved using a multistart GO heuristic. The largest practical
drawback of ABBIE is that, for interesting molecules such as proteins, the uniquely realizable subgraphs
might fail to be large, yielding relatively insignificant CPU time reductions. The overall method fails
to be exact because of the heuristic search in continuous space, but the combinatorial treatment using
graph rigidity is a promising one, as we shall see in the remainder of the paper.

3.1.2 The Sensor Network Localization Problem

In [13], graph rigidity is used to investigate the SNLP:

Sensor Network Localization Problem. Given an integer K > 0, a weighed undirected
graph G = (V,E, d) with d : E → R+, a subset U ⊆ V , an embedding x′ : U → RK

s.t. ||x′
i − x′

j || = dij for all {i, j} ∈ E[U ], find an extension x : V → RK of x′ satisfying (1).

It is evident that SNLP⊇MDGP, for if U = ∅ then SNLP=MDGP: thus, a general method for solving
the SNLP also solves the MDGP. The main algorithmic interest in [13] is to solve SNLP with K = 2,
and to use the given x′ to “grow” x iteratively exploiting graph rigidity by means of trilateration. The
iteration follows a trilateration order of the vertices, i.e. an order < on V such that:

1. letting U0 be the set of the first K + 1 vertices in the order, G[U0] is the complete graph on K + 1
vertices;

2. for all j > K + 1, E contains at least K + 1 edges linking the j-th vertex to preceding vertices in
the order.

If E is dense enough to grant the existence of a trilateration order, then G is rigid and x can be found in
polynomial time [13].

Although the above method seems to be extremely interesting in network analysis, no-one has yet
found an interesting class of molecules for which a trilateration order on the atoms can be established a

priori.

3.2 A discrete MDGP variant

Borrowing ideas from rigidity and SNLP, [32, 33] define a subproblem of the MDGP which includes
proteins and for which the search is completely discrete. Given a graph G = (V,E) with an order < on
the vertex set V , let U0 = {v ∈ V | ρ(v) ≤ K} be the set of the first K vertices of (V,<) and for all v ∈ V
having rank ρ(v) > K let Uv = {u ∈ V | ρ(v) −K ≤ ρ(u) ≤ ρ(v)} be the subset of vertices including v
and its K immediate predecessors.

Discretizable Molecular Distance Geometry Problem (DMDGP). Given a weighted
undirected graph G = (V,E, d) where d : E → R+ and a total order < on V such that:

1. G[U0] is the clique on K vertices (starting configuration);

2. for all v s.t. ρ(v) > K, G[Uv] is the clique on K + 1 vertices (discretizing order);

3. for all v s.t. ρ(v) > K and all subsets {u,w, z} with ranks in ρ(v) −K, . . . , ρ(v) − 1 we
have duz < duw + dwz (strict triangular inequality),

find an embedding x : V → RK such that (1) holds.
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Figure 1: The binary tree T for n = 6. The boxes show a complete path on T , which corresponds to a
possible solution to the DMDGP.

The order < given as part of the data in the DMDGP can be successfully used to construct a (partial)
directed binary tree T of depth n = |V | each node of which, at level i ≤ n, represents a possible spatial
position xi for the i-th atom. Thus, each path of length n in T represents an embedding of G in RK (see
Figure 1).

Notice that the discretizing order falls short of the trilateration order defined in Sect. 3.1.2 by exactly
one vertex: requiring Uv to contain K + 2 vertices and G[Uv] to be the complete graph on K + 2 vertices
would be a sufficient condition for the existence of a trilateration order, in the presence of which the
MDGP is known to be polynomial. The binary tree construction can occur because, at a generic atom
v ∈ V with ρ(v) = i > K, the vector d includes distances to v from atoms i−K, . . . , i− 1. Assuming all
atoms in γ(v) have already been positioned, v belongs to the intersection of K spheres in RK . Because
of strict triangular inequality, this intersection consists of at most two points.

In order to see this in the case K = 3, recall that the intersection of two spheres (spherical surfaces)
in R3 is either empty, or a single point, or a circle in space; intersecting these sets with a third sphere
might yield the empty set, a singleton, two distinct points, or the whole circle. The latter case, however,
corresponds to a configuration of 3 collinear atoms, which is impossible by the strict triangular inequality
(see Fig. 2). This idea is at the core of the main solution technique used in the solution of the DMDGP —
the Branch-and-Prune algorithmic framework. We remark that the trilateration order given by [13] yields
a polynomial algorithm simply because adding a vertex to Uv would make v stand at the intersection of
four spheres in R3, which in presence of the strict triangular inequality is either empty or a singleton,
thereby reducing T to a single path.

Algebraically, if we know the position of three atoms x1, x2, x3 ∈ R3 and the distances d1, d2, d3 to a
fourth atom y, we obtain the system:

‖x1 − y‖2 = d2
1

‖x2 − y‖2 = d2
2

‖x3 − y‖2 = d2
3.

We subtract the third equation from the first and the second, to get:

2(x1− x3) · y = (‖x1‖2 − d2
1)− (‖x3‖2 − d2

3) (14)

2(x2− x3) · y = (‖x2‖2 − d2
1)− (‖x3‖2 − d2

3) (15)

||x3 − y||2 = d2
3. (16)

The linear part (14)-(15) can be written as Ay = b where A is a 2 × 3 matrix. Let B,N be a partition
of the columns of A into basics and nonbasics; we can then write yB = (AB)−1(b−ANyN ). If A has full
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Figure 2: The intersection of three spherical surfaces in R3, containing exactly two points.

rank then yN ∈ R1, hence by replacing yB in (16) we obtain a single quadratic equation in one variable,
which has at most two solutions. If rk(A) < 2, either rk(A) = 0 (which means that x1 = x2 = x3, which
in particular implies that x1, x2, x3 are collinear, violating the strict triangular inequality) or rk(A) = 1,
which implies x1−x3 and x2−x3 are linearly dependent, i.e. x1, x2, x3 are collinear, again violating strict
triangular inequality.

3.2.1 Relevance to proteins

Whereas the polynomial method in [13] requires conditions that are too strict to be applied in practice,
it is very likely that most protein backbones satisfy the DMDGP definition. Proteins are molecules
whose atoms can be partitioned into two distinct sets: the backbone atoms and the side chains atoms.
The problem of positioning side chains given the backbone embedding is known as the Side Chain

Placement Problem (SCPP) [46, 47] and is NP-hard.

The protein backbone induces a natural total order on V . Since quadruplets of subsequent atoms are
spatially close, this order looks like a good candidate for the order required by the DMDGP definition. The
distance from a generic atom v ∈ V with rank ρ(v) > 3 to its preceding atom in the backbone can be known
because of chemical reason, and so is the angle defined by the three atoms ranked ρ(v)− 2, ρ(v)− 1, ρ(v).
Since the distance between the atoms ranked ρ(v) − 2, ρ(v) − 1 can also be known because of chemical
reasons, the distance between the atoms ranked ρ(v) − 2 and ρ(v) could be computed. Furthermore,
since the distance between atoms ranked ρ(v) − 3 and ρ(v) is usually smaller than 6Å, it is very likely
to be estimated by NMR experiments (the NMR distance threshold is usually assumed to be somewhere
between 5 and 6Å). Thus, DMDGP conditions 1-2 are satisfied in most of the cases. As for 3, no protein
exhibiting a backbone with three exactly collinear atoms has ever been found yet.

3.2.2 Complexity of DMDGP

It was proved in [32] that the DMDGP is NP-hard with a reduction from Subset-Sum. The proof is
similar in spirit to that provided in [48] for the 1-dimensional case of the MDGP.
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3.2.3 The Branch-and-Prune algorithmic framework

The BP algorithm explores the tree T mentioned at the beginning of Sect. 3.2 (p. 10), branching the
search whenever the next atom in the order can take exactly two positions. We remark that the DMDGP
definition involves distances from a generic atom v ∈ V to K preceding atoms in the order; protein
backbones, however, due to twisting and coiling, often display spatial proximity between atoms whose
ranks in the order are very different. Since these small distances will very likely also be estimated by
NMR experiments, the corresponding edges are expected to be in E; these distances can be used in BP
to prune large parts of the search tree. The largest possible binary tree search for an embedding in X
will have 2i−K nodes at level i ≤ n = |V |. A known distance {j, i} where j < i −K, however, may be
infeasible with respect to many of the 2i−K worst-case partial embeddings, and could potentially make
the search tree collapse to a few possible nodes at level i.

We now restrict our attention to K = 3 for simplicity, and without (excessive) loss of generality.
Algorithm 1 provides a sketch of the BP algorithm for the exact DMDGP. BP is a recursive procedure
deployed at each node of the tree T . Its arguments are as follows:

• i is the rank of the atom whose position is to be determined;

• x<i is the partial embedding represented by the path on the tree T from the root to the current
node;

• G = (V,E, d) is an encoding of the instance;

• X̂ is a collection of valid embeddings for G found by BP.

Notationwise, we let S(y, r) be the sphere in R3 centered in y ∈ R3 with radius r ∈ R.

Algorithm 1 The BP algorithmic framework.

1: BranchAndPrune(i, x<i, G, X̂)
2: Let S ← ⋂

k≤3 S(xi−k, di−k,i) = {s1, . . . , sq}, where q ∈ {1, 2}
3: for p ≤ q do
4: Extend the current embedding to x(p) = (x<i, sp)
5: if x(p) satisfies (1) then
6: if (i = n) then
7: Let X̂ ← X̂ ∪ {x(p)}
8: else
9: BranchAndPrune(i + 1, x(p), G, X̂)

10: end if
11: end if
12: end for

The algorithm is initially invoked with i = 4, x<4 being an initial partial embedding for the first
three atoms, and X̂ = ∅. It calls itself recursively on increasing values of i, building up embeddings as it
dynamically generates the nodes of T . Notice that whenever the intersection of three spheres is given by
two points, two subnodes of the current nodes are generated.

We call Alg. 1 an algorithmic framework because it does not specify how to check whether x(p) satisfies
(1) on Line 5. We already remarked earlier that S, defined on Line 2, has at most two points. Theorem
3.1 is shown to hold in [33].

3.1 Theorem ([33])
At termination of Alg. 1, X̂ = X.
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There are different ways for checking the feasibility of computed atomic positions at Line 5 of Alg. 1.
If exact distances are available, then the most natural pruning test is the one in which, every time a new
position xi is computed for atom i, the subset of constraints in (1) involving the index i are checked.
The position is feasible only if these constraints are satisfied. Since equations cannot be verified exactly
in floating point arithmetic, it is important to set up a tolerance ε accurately, because excessively small
tolerances could force the pruning of all the atomic positions, whereas excessively large ones could allow
infeasible positions to be accepted. Thus, it is unfortunately the case that Thm. 3.1 only holds in an
ideal case where equations in (1) can be checked exactly.

A different pruning test is based on point-to-point shortest paths in G. Consider atoms h, i, k with
h < i < k such that (h, k) ∈ E, i.e. the distance dhk is known. Let us suppose that the BP algorithm
already placed atom h, and the feasibility of the atom i needs to be verified. Let D(i, k) be an upper
bound to the distance ||xi − xk|| for all possible solutions to the problem. It has been proved in [32]
that, if the converse triangular inequality D(i, k) + dhk < ||xh − xi|| holds, then the current BP node
establishing the position of atom i can be pruned. One way for computing a reasonably tight upper
bound D(i, k) to ||xi− xk|| is by finding the shortest path between vertex i and vertex k of the graph G.

When both pruning tests are used together [28], the BP algorithm is able to find valid embeddings in
a smaller number of steps. This apparent efficiency, however, is not reflected on the computational cost
needed to apply it. While the natural pruning test just checks that distances are contained in certain
intervals in O(K), essentially O(1) if K = 3, shortest path computations are of order O(n2) in general.
Even precomputing all shortest paths (O(n3) but carried out only once) does not seem to reverse this
trend in practice.

Computational experiments [28, 29, 32, 40, 41, 42] showed that the BP algorithm is able to efficiently
solve instances of the DMDGP and that it compares well with other algorithms based on a continuous
formulation of the problem, both w.r.t. computational efficiency and accuracy. We remark that the
BP algorithm can be easily extended to deal with the inexact version of the DMDGP, i.e. when exact
distances are replaced by bounds.

3.3 Future challenges

Distance geometry has been for decades the mathematical tool of choice when working out tridimensional
molecular structure from NMR data. Methods searching the (continuous) Euclidean space are useful when
no further molecular structure is known. For the all-important class of proteins, however, the search can
be discretized, and tools such as the BP algorithmic framework clearly outperform continuous approaches
on both accuracy and CPU time. We recall that the embedding problem for protein graphs in R3 consists
in two stages: placing the backbone and then placing the side chains; and that independent research is
conducted on both fronts. The DMDGP conditions are verified for most protein backbones, and so in
principle the technique should now be applicable to real proteins. There is, however, a last difficulty
to overcome: NMR data can usually measure inter-atomic distance between hydrogen atoms, whereas
protein backbones do not only consists of hydrogen atoms. The current effort, conducted by the authors
of this survey, is to identify a virtual hydrogen backbone on the whole protein on which the DMDGP
order exists. As long as the backbone is not given but must be identified, there is also an opportunity to
relax the DMDGP definition somewhat, and to only require that the order be such that each atom has at
least three adjacent precedents, which need not be immediate precedessors (similarly to the trilateration
order). This opens up new combinatorial problems: given the graph G, identify an order satisfying the
DMDGP definition, or a relaxed order as described above.

Another challenge, of a purely mathematical nature, is to explain why computational experiments on
the DMDGP always return a set of embeddings X̂ with cardinality a power of two. Work based on the
study of DMDGP symmetries is currently ongoing in this direction.
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4 Conclusion

The purpose of this survey is to show how research on the Molecular Distance Geometry Problem, which
establishes embeddings of molecules in Euclidean space using NMR data, evolved from purely continuous
search methods to mixed-discrete (via concepts in graph rigidity) to almost exclusively combinatorial —
which can be applied to proteins. Although there are more continuous methods in the literature than
discrete ones, many of the continuous approaches involve a combinatorial element at some degree.

It is an interesting fact that MDGP solution methods started off in chemical communities and later
moved to the field of mathematics (geometry and optimization). Nowadays most MDGP papers, including
those written by the authors of this survey, report computational experiments conducted on publically
available proteins from the PDB where the NMR experiments are simulated: only those distances smaller
than 6Å are kept. It is these authors’ opinion that current discrete DMDGP techniques are almost up
to the challenge of tackling real NMR protein data, thereby moving back to chemistry and biochemistry.
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