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Abstract. Heuristics are widely applied to modularity maximization
models for the identification of communities in complex networks. We
present an approach to be applied as a post-processing on heuristic meth-
ods in order to improve their performances. Starting from a given parti-
tion, we test with an exact algorithm for bipartitioning if it is worthwhile
to split some communities or to merge two of them. A combination of
merge and split actions is also performed. Computational experiments
show that the proposed approach is effective in improving heuristic re-
sults.
Keywords: clustering, bipartition, network, graph, community, modu-
larity, heuristic, exact algorithm.

1 Introduction

The identification of communities in complex networks has become in recent
years a very active research domain because of the common representation of
complex real-world systems arising in a variety of fields as networks, where one
aims to find communities, or clusters, of entities grouped on the basis of some re-
lationship holding among them. Telecommunication networks such as the World
Wide Web, biological networks representing interactions between organisms and
transportation networks used to represent movements of goods and passengers,
are some examples of real-life applications.

A very successfull class of methods to detect communities in networks is based
on the concept of modularity. In [1] the definition of modularity for a partition of
a network as the sum for all communities of the difference between the fraction
of edges they contain and the expected fraction of edges if they are placed at
random, keeping the same degree distribution, was introduced. High values of
modularity correspond to a clear partition of a network. Methods for the iden-
tification of communities are then based on the idea of maximizing modularity.
Many heuristics have been proposed, while exact algorithms for modularity max-
imization are rare. Heuristics are based on agglomerative hierarchical clustering
[2–6], simulated annealing [7–9], mean field annealing [10], genetic search [11],
extremal optimization [12], spectral clustering [13], linear programming followed
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by randomized rounding [14], dynamical clustering [15], multilevel partitioning
[16], contraction-dilation [17], multistep greedy search [18], quantum mechanics
[19] and many more [6, 20–24]. These heuristics are able to solve large instances
with up to hundred or thousand entities and therefore are often preferred to ex-
act algorithms, even though they do not have a guarantee of optimality. Exact
algorithms for maximizing modularity have been proposed in [25, 26]. They can
only solve instances with about a hundred entities in reasonable time.

Given a partition found by a heuristic, one can apply an exact algorithm
to the reduced networks represented by the communities found, thus obtain-
ing a new, better partition. We propose such an approach to improve heuristic
solutions, which is based on merging and splitting some communities if this is
worthwhile in terms of increase of the modularity value. An exact algorithm for
bipartitioning is used to split a community. We apply our approach as post-
processing of some known heuristics for modularity maximization, obtaining
improved solutions and, for some datasets, the optimal partition. These results,
that show the impact of exact algorithms on heuristic schemes, may in turn lead
to more efficient exact algorithms, where some steps are sometimes performed
heuristically. This is the case, for example, of column generation algorithms.

The paper is organized as follows. In the next section, the proposed approach
to improve heuristic results for modularity maximization is described, presenting
in particular an exact algorithm for bipartition. Section 3 presents the results
of computational experiments carried out applying the proposed approach as
post-processing to two known heuristics on some datasets from the literature.
Conclusions are given in Section 4.

2 Improving heuristics for modularity maximization

2.1 An exact algorithm for bipartitions

We present in this section an exact algorithm for bipartition. Although it can
be applied in full generality to any graph, we specifically test it in the role of
post-processing step to heuristic algorithms for the identification of community
in networks, to improve their solution quality.

We model the bipartitioning problem using some variables to identify to
which community each vertex and each edge belongs. In this respect, our model
is similar to that of Xu et al. [26]. These authors proposed in 2007 [26] a mod-
ularity maximization model to obtain a partition (generally with more than
two communities) of a network, that leads to a mixed integer convex quadratic
program. They were able to solve exactly instances up to 104 vertices.

Let G = (V, E) be a graph, or network, with set of vertices V of cardinality n

and set of edges E of cardinality m. First, we recall the definition of modularity
Q as a sum over communities of their modularities [1]:

Q =
∑

s

[as − es],
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where as is the fraction of all edges that lie within community s and es is the
expected value of the same quantity in a graph in which the vertices have the
same degrees but edges are placed at random. Modularity can then be written
equivalently as:

Q =
∑

s

[

ms

m
−

(

ds

2m

)2
]

, (1)

where ms denotes the number of edges in community s, i.e., the subgraph induced
by VS , and ds denotes the sum of degrees ki of the vertices of community s. Since
we aim to find a bipartition, only two sub-modules of the original community
have to be considered, i.e. s ∈ {1, 2}. We can express the sum of degrees d2 of
vertices belonging to the second community as a function of the sum of degrees
d1 of vertices belonging to the first one:

d2 = dt − d1, (2)

where dt is the sum of degrees in the community to be bipartitioned and it is
equal to 2m when one aim to bipartition the original network, containing all the
entities. We rewrite (1) for s ∈ {1, 2}, using (2):

Q =
m1 + m2

m
−

d2

1

4m2
−

d2

2

4m2
=

=
m1 + m2

m
−

d2

1

4m2
−

d2

t + d2

1
− 2dtd1

4m2
=

=
m1 + m2

m
−

d2

1

4m2
−

d2

t

4m2
+

dtd1

2m2
.

(3)

We then introduce binary variables Xr1, Xr2 and Yi1, Yi2 to model assignment
of vertices and edges to the two communities of the bipartition. These variables
are defined as follows:

Xrs =

{

1 if edge r belongs to module s

0 otherwise
(4)

for r = 1, 2, . . .m and s = 1, 2 and

Yis =

{

1 if vertex i belongs to module s

0 otherwise
(5)

for i = 1, 2, . . . n and s = 1, 2.
We impose that any edge r = {vi, vj} with end vertices indiced by i and j

can only belong to community s if both of its end vertices belong also to that
community:

Xr1 ≤ Yi1 ∀r = {vi, vj} ∈ E

Xr1 ≤ Yj1 ∀r = {vi, vj} ∈ E
(6)

and
Xr2 ≤ 1 − Yi1 ∀r = {vi, vj} ∈ E

Xr2 ≤ 1 − Yj1 ∀r = {vi, vj} ∈ E.
(7)



4 Cafieri, Hansen, Liberti

Furthermore, we exploit the following expressions in terms of variables X and Y

for the number of edges of each of the two communities and the sum of vertex
degrees of the first one:

ms =
∑

r

Xrs ∀s ∈ {1, 2}, (8)

d1 =
∑

i∈V1

kiYi1. (9)

The sum of vertex degrees of the first community only is exploited, because of
expression (2).

Maximizing modularity (3) subject to constraints (6)-(7) and (8)-(9) gives a
mixed-integer program that can be solved by CPLEX [27].

Note that in Xu et al.’s model a number of other constraints are imposed
on the variables. For example, constraints are used to express that community
s can be nonempty only is community s − 1 is so and lower and upper bounds
on the cardinality of the modules are imposed. Furthermore, symmetry-breaking
constraints avoid the computation of alternative equivalent solutions.

2.2 Improving partitioning by merging and splitting

Given a partition of a network in communities, we aim to improve the partition
computing a new one with a high value of modularity. As we apply our approach
as post-processing to available heuristics for modularity maximization, the initial
partition is represented by the solution provided by the considered heuristic.
A new partition is obtained in a sequence of steps, which act on the current
communities by splitting and merging.

First, for each community of the original partition, we split it into two sub-
communities by applying the exact algorithm for bipartition described in sub-
section 2.1 and we check if the modularity value corresponding to the obtained
bipartition is higher than the one of the original community. It is worth noticing
that this comparison makes sense because of the definition of modularity of a
partition as sum of modularities of its communities. If the new modularity value
is higher than the one of the original community, such community is replaced
by the two new communities, otherwise the two obtained communities are dis-
carded and the original one is kept. When all the original communities have
been checked, a new partition is obtained with a high modularity if at least one
bipartition has been accepted.

A next step consists in trying to merge pairs of communities if this is worth-
while for modularity. For each pair of communities, we consider the new com-
munity containing all vertices of this pair and we check if the larger community
has a modularity value higher than the one corresponding to the two original
communities. If this is the case, the new large community is kept in place of the
other two. Otherwise, if merge is not beneficial, we try to split the merged com-
munity using again the exact algorithm presented in subsection 2.1. As before,
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the two communities resulting from the bipartition are kept if they correspond
to an increased value of modularity.

A sketch of our algorithm is given in Alg. 1.

Algorithm 1

1: /* ncl = number of communities of the partition found by a heuristic */
2: /* CLi = community of the partition found by a heuristic, ∀i = {1, . . . , ncl} */

Require: V, E, ncl, CLi ∀i = {1, . . . , ncl}
3: nclsplit ← 0
4: for all i ≤ ncl do

5: split CLi into CL1, CL2 using algorithm in subsection 2.1
6: if Q(CL1) + Q(CL2) > Q(CLi) then

7: replace CLi with CL1, CL2

8: else

9: keep CLi

10: end if

11: nclsplit ← number of communities of the new partition
12: end for

13: nclmerge+split ← nclsplit

14: for all i ≤ nclsplit do

15: listcl← list of pairs of communities (CLj , CLk), j, k ∈ {1, . . . , nclsplit}
16: while listcl 6= ∅ do

17: select a pair of communities CLj , CLk from listcl

18: merge CLj and CLk into CLm

19: if Q(CLm) > Q(CLj) + Q(CLk) then

20: replace CLj , CLk with CLm = CLj ∪ CLk

21: else

22: split CLm into CLm1, CLm2

23: if Q(CLm1) + Q(CLm2) > Q(CLm) then

24: replace CLm with CLm1, CLm2

25: else

26: keep CLm

27: end if

28: end if

29: update listcl

30: end while

31: end for

32: nclmerge+split ← number of communities of the new partition

33: compute modularity Q =
Pi=nclmerge+split

i=1 Q(CLi)
34: return final partition, Q

3 Computational results

We describe the results of some computational experiences carried out applying
our strategy, described in subsections 2.1, 2.2, as post-processing to two known
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heuristics for modularity maximization, due to Clauset, Newman and Moore [3]
and Noack and Rotta [28] respectively, whose implementations are freely avail-
able. Clauset et al. [3] proposed in 2004 an efficient agglomerative hierarchical
scheme, that for sparse networks has a very low complexity and is considerably
faster than previously proposed methods. Noack and Rotta [28] recently pre-
sented a comparison of heuristics for modularity maximization and proposed a
heuristic based on a single-step coarsening with a multi-level refinement, which
is competitive with other methods in the literature. For details about these two
heuristic schemes, the reader is referred to [3, 28].

Our computational results have been obtained on some datasets that are
often used to evaluate heuristics and algorithms for identification of communities
in networks. These datasets correspond to various real-life applications: a social
network of dolphins described by Lusseau [29], a network describing interactions
among the characters of Hugo’s novel Les Miserables [30], a network dealing
with p53 protein [31], a network dealing with co-purchasing of political books
on Amazon.com [32], a network of common adjective and noun adjacencies for
the Dickens’ novel David Copperfield, as described by Newman [33], a network
representing the schedule of games between American college football teams
in the Fall 2000 [34], a network dealing with connections between US airports
[35], a network describing electronic circuits [36], a network dealing with e-mail
interchanges between members of a university [37], a network representing the
topology of the Western States Power Grid of the United States [38] and a
network of authors collaborations [35].

In Table 1 we report, for each dataset, the values of modularity computed
by the two considered heuristics and by our proposed approach when applied as
post-processing to these methods, together with the optimal value of modularity,
when available in the literature. The number of vertices and the number of edges
of the datasets are also reported. A comparison in terms of modularity values
shows that we are able to improve results provided by the considered heuristics
for all the tested datasets, sometimes significantly. A significant improvement is
obtained, for example, in the case of Clauset et al.’s solution for dolphin, les
miserables and usair97 datasets. We transformed solutions for some datasets,
i.e. Noack and Rotta’s solutions for dolphin, political books and football

datasets and Clauset et al.’s solution for political books dataset, into optimal
ones.

Our approach is based on two moves, a splitting and a merging move, the
merging one being in turn used in conjunction with a splitting when merging
is not beneficial. These two main steps, which we call split and merge+split

for short, are applied sequentially. In order to evaluate the impact of the two
steps, we report in Table 2 the modularity values obtained applying split and
merge+split starting from Clauset et al.’s (CNM) solution and from Noack-
Rotta’s (NR) solution. Note that modularity values for merge+split are the
final results provided by our moves, already shown in Table 1. These results show
that the splitting step provides in most cases a significant improvement of the
original partition. Examples are given by dolphin, usair97 and email datasets
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dataset n m QCNM Q QNR Q Qopt

dolphin 62 159 0.49549 0.51958 0.52377 0.52852 0.52852
les miserables 77 254 0.50060 0.54039 0.56001 0.56001 0.56001
p53 protein 104 226 0.52052 0.52621 0.53216 0.53502 0.53513
political books 105 441 0.50197 0.52724 0.52694 0.52724 0.52724
adjnoun 112 425 0.29349 0.29446 0.30729 0.30848 –
football 115 613 0.57728 0.58685 0.60028 0.60457 0.60457
usair97 332 2126 0.32039 0.36161 0.36577 0.36605 –
s838 512 819 0.80556 0.80914 0.81624 0.81656 –
email 1133 5452 0.51169 0.53808 0.57740 0.57773 0.579
power 4941 6594 0.93402 0.93612 0.93854 0.93870 –
erdos02 6927 11850 0.78092 0.78095 0.71552 0.7157 –

Table 1. Results on real-world datasets: modularity values found by the Clauset et
al.’s heuristic (QCNM ), by the Noack and Rotta’s heuristic (QNR) and by our proposed
approach (Q). Qopt are the optimal modularity values as reported in the literature. n

and m are the number of vertices and the number of edges of the networks.

for CNM , where an improvement on the second decimal digit of modularity
value is obtained. Furthermore, the splitting step provides the optimal solution
of political books dataset for NR. By contrast, this step does not provide for
some instances a better partition than the original one, leading to an unchanged
modularity value. Examples are given by adjnoun and erdos02 datasets for
CNM and by p53 protein, usair97 and s838 datasets for NR. This behavior
shows the importance of a combined use of both splitting and merging steps.

dataset CNM NR

Qorig Qsplit Qmerge+split Qorig Qsplit Qmerge+split

dolphin 0.49549 0.51693 0.51958 0.52377 0.52773 0.52852
les miserables 0.50060 0.50732 0.54039 0.56001 0.56001 0.56001
p53 protein 0.52052 0.52518 0.52621 0.53216 0.53216 0.53502
political books 0.50197 0.52708 0.52724 0.52694 0.52724 0.52724
adjnoun 0.29349 0.29349 0.29446 0.30729 0.30847 0.30848
football 0.57728 0.58232 0.58685 0.60028 0.60237 0.60457
usair97 0.32039 0.36157 0.36161 0.36576 0.36576 0.36605
s838 0.80556 0.80639 0.80914 0.81624 0.81624 0.81656
email 0.51169 0.53761 0.53808 0.57740 0.57741 0.57773
power 0.93402 0.93605 0.93612 0.93854 0.93867 0.93870
erdos02 0.78092 0.78092 0.78095 0.71552 0.71561 0.7157

Table 2. Modularity values corresponding to the partition found by the heuristic
(Qorig) and by our approach after the splitting step only (Qsplit) and after the suc-
cessive application of the merging and splitting step (Qmerge+split) for Clauset et al.’s
heuristic (CNM) and Noack and Rotta’s heuristic (NR).
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Table 3 shows computing time required by our post-processing strategy ap-
plied to the two considered heuristics to get an improved solution. As expected,
times are roughly increasing with network dimension, even though they depend
mostly on the quality of the initial partition and the cardinality of its commu-
nities to be handled. Times are in general reasonably moderate, and very short
times are spent on most of the tested networks. The optimal partition is found
in less than 1 second for dolphin dataset starting from NR solution and in less
than 10 and 16 seconds respectively for political books starting from NR

solution and from CNM solution.

dataset timeCNM timeNR

dolphin 0.48 0.75
les miserables 0.38 1.17
p53 protein 0.58 2.28
political books 9.58 15.70
adjnoun 0.83 1.68
football 0.97 7.57
usair97 164342.86 2752.27
s838 2.61 11.95
email 334662.61 614.20
power 49.59 113.80
erdos02 147915.81 32778.81

Table 3. Computing time (seconds) required by the proposed approach applied as
post-processing to Clauset at al.’s heuristic (timeCNM ) and Noack and Rotta’s heuristic
(timeNR). Solutions have been obtained on a 2.4 GHz Intel Xeon CPU of a computer
with 8GB RAM shared by three other similar CPU running Linux.

4 Conclusion

This paper describes the application of an approach based on an exact algorithm
for bipartitioning a network, in the framework of split and merge movements
on communities of a network partition. Computational results obtained on a
set of examples from the literature, applying the proposed approach as post-
processing to two known heuristics for modularity maximization of networks,
show the impact of an exact approach on the improvement of heuristic results.

The presented approach may be further developed including the described
moves directly in a local search heuristic as well as in a hierarchical divisive
clustering algorithm based on exact bipartitions. Future work will address these
points.
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