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Abstract. The Molecular Distance Geometry Problem consists in
finding the positions in R

3 of the atoms of a molecule, given some
of the inter-atomic distances. We show that under an additional re-
quirement on the given distances (which is realistic from the chemical
point of view) this can be transformed to a combinatorial problem. We
propose a Branch-and-Prune algorithm for the solution of this problem
and report on very promising computational results.
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moléculaires. Nous montrons que, sous une condition additionnelle
sur les distances données (raliste sous un point de vue chimique), le
problm̀e peut être considéré de nature combinatoire. Nous proposons
un algorithme SEP pour la solution de ce problème et nous présentons
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1. Introduction

We present a discrete formulation and a very fast and accurate solution method
for a subclass of instances of the Molecular Distance Geometry Problem (MDGP)
[2, 4, 6, 8, 9]. The MDGP is related to the determination of the tridimensional
structure of a molecule based on knowledge of some distances between pairs of
atoms. The tridimensional structure is very important because it is associated to
the physical and chemical properties of the molecule.

The MDGP can be seen as finding a distance-preserving immersion in R
3 of a

given undirected weighted graph G = (V,E, d), so it can be very naturally cast as
a continuous search problem.

Under three additional assumptions which are satisfied by most proteins (a very
interesting and rich class of molecules), we transform the MDGP to a discrete
search problem. The assumptions are:

(1) covalent bond lengths and angles are known;
(2) the molecule has the shape of a protein backbone, i.e. it is a sequence of n

atoms such that there is a covalent bond between every pair of consecutive
atoms;

(3) all distances between atoms separated by three covalent bonds are known
(using distance data obtained from the NMR experiments this assumption
is realistic [1, 13]);

(4) no bond angle is equal to kπ, for k ∈ Z.

Naturally, distances between atoms separated by two covalent bonds can be easily
calculated from the covalent bond lengths and bond angles.

In Section 2, we show a discrete formulation for the problem. In Section 3, we
describe the Branch-and-Prune algorithm, which will be applied to the solution
of the MDGP. The computational results are discussed in Section 4. Section 5
concludes the paper.

2. The Molecular Distance Geometry Problem

Formally, the MDGP can be defined as the problem of finding Cartesian coor-
dinates x1, . . . , xn ∈ R

3 of the atoms of a molecule such that for all (i, j) ∈ S,

||xi − xj || = dij ,

where S is the set of pairs of atoms (i, j) whose Euclidean distances dij are known.
If all distances are given, the problem can be solved in linear time [4]. Otherwise,
the problem is NP-hard [12].

The MDGP is usually formulated as a continuous least-squares minimization
problem, where the objective function is as follows:

f(x1, . . . , xn) =
∑

(i,j)∈S

(||xi − xj ||
2 − d2

ij)
2. (1)
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Obviously, (x∗
1, . . . , x

∗
n) solve the problem if and only if f(x∗

1, . . . , x
∗
n) = 0.

Note that, as stated above, the MDGP bears no connection whatsoever with
molecules. In fact the MDGP appears in such diverse application fields as 3D
graph drawing [3] and network design [5]. Our assumption that all distances
between atoms separated by one, two, and three covalent bonds are known can be
expressed as an additional condition on the set S of distances, namely that S can
be partitioned into two disjoint sets E, F of distances where

E = {(i, i + 1) | 1 ≤ i ≤ n− 1} ∪

{(i, i + 2) | 1 ≤ i ≤ n− 2} ∪

{(i, i + 3) | 1 ≤ i ≤ n− 3},

and
F = {(i, j) | j − i ≥ 4}.

We also assume that for all pairs of atoms in F , the distances are shorter than
a given cut-off value ∆ (usually this is taken to be 5Å using, for example, NMR
analysis [1, 13]), that is, dij ≤ ∆ ∀(i, j) ∈ F .

As we shall show in Section 2.1, for each group of four consecutive atoms, if we
know all the distances between them and fix the first three, with probability 1 (see
Section 2.2) the fourth atom can only have two possible symmetric placements.
This allows us to give a discrete formulation for the considered problem.

2.1. Discrete formulation

Consider a molecule as being a sequence of n atoms with Cartesian coordinates
given by x1, . . . , xn ∈ R

3 and such that there is a covalent bond between every
pair of atoms (i, i + 1), for i = 1, . . . , n − 1. The bond length ri is the Euclidean
distance between atoms i− 1 and i (i.e. ri = di−1,i for all i = 2, . . . , n). The bond
angle θi ∈ [0, π] is the angle between the segments joining atoms i − 2, i − 1 and
i−1, i (for all i = 3, . . . , n). The torsion angle ωi ∈ [0, 2π] is the angle between the
normals through the planes defined by the atoms i− 3, i− 2, i− 1 and i− 2, i− 1, i

(for all i = 4, . . . , n). See Fig. 1.
In most molecular conformation calculations, all covalent bond lengths and

bond angles are assumed to be known a priori [10]. Thus, the first three atoms
in the sequence can be fixed and the fourth atom is determined by the torsion
angle ω4. The fifth atom can be determined by the torsion angles ω4 and ω5,
and so on. So, given all bond lengths r2, r3, . . . , rn, bond angles θ3, θ4, . . . , θn, and
torsion angles ω4, ω5, . . . , ωn of a molecule with n atoms, the Cartesian coordinates
xi = (xi1, xi2, xi3) for each atom i in the molecule can be obtained using the
following formulae [10]:









xi1

xi2

xi3

1









= B1B2 · · ·Bi









0
0
0
1









∀ i = 1, . . . , n, (2)



4 TITLE WILL BE SET BY THE PUBLISHER

i

i + 1

i + 2

i + 3

ri+1

ri+2

ri+3

di,i+2

di+1,i+3

θi+2

θi+3

ωi+3

Figure 1. Definitions of bond lengths, bond angles and torsion angles.

where

B1 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, B2 =









−1 0 0 −r2

0 1 0 0
0 0 −1 0
0 0 0 1









,

B3 =









− cos θ3 − sin θ3 0 −r3 cos θ3

sin θ3 − cos θ3 0 r3 sin θ3

0 0 1 0
0 0 0 1









,

and

Bi =









− cos θi − sin θi 0 −ri cos θi

sin θi cos ωi − cos θi cos ωi − sin ωi ri sin θi cos ωi

sin θi sin ωi − cos θi sinωi cos ωi ri sin θi sin ωi

0 0 0 1









, (3)

for i = 4, ..., n. We call Bi the torsion matrices and denote by Ci =
∏

j≤i Bj the
cumulative torsion matrices. For every four consecutive atoms xi, xi+1, xi+2, xi+3

we can express the cosine of the torsion angle ωi+3 in terms of the distances
ri+1, di+1,i+3, di,i+3 and the bond angle θi+2, θi+3 by using the cosine law for tor-
sion angles [11] (p. 278), as follows:

cos ωi+3 =
r2
i+1 + d2

i+1,i+3 − 2ri+1di+1,i+3 cos θi+2 cos θi+3 − d2
i,i+3

2ri+1di+1,i+3 sin θi+2 sin θi+3
. (4)

Hence, if we know all the bond lengths (ri), bond angles (θi), and distances between
atoms separated by three covalent bonds (di,i+3), we can calculate the cosine of
the torsion angles defined by the atoms i, i + 1, i + 2, i + 3 for i = 1, . . . , n− 3. We
note in passing that in order for (4) to hold, we obviously need the denominator
to be nonzero.
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Using the bond lengths r2, r3 and the bond angle θ3, we can determine the
torsion matrices B2 and B3 and obtain

x1 =





0
0
0



 ,

x2 =





−r2

0
0



 ,

x3 =





r3 cos θ3 − r2

r3 sin θ3

0



 ,

fixing the first three atoms of the molecule. Since we also know the distance d14,
by (4) we can obtain the value cosω4. Thus, the sine of the torsion angle ω4 can

have only two possible values: sinω4 = ±
√

1− (cos ω4)2. Consequently, we obtain
only two possible positions x4, x

′
4 for the fourth atom:

x4 =





−r2 + r3 cos θ3 − r4 cos θ3 cos θ4 + r4 sin θ3 sin θ4 cos ω14

r3 sin θ3 − r4 sin θ3 cos θ4 − r4 cos θ3 sin θ4 cos ω4

−r4 sin θ4

√

1− (cos ω14)2



 ,

x
′

4 =





−r2 + r3 cos θ3 − r4 cos θ3 cos θ4 + r4 sin θ3 sin θ4 cos ω4

r3 sin θ3 − r4 sin θ3 cos θ4 − r4 cos θ3 sin θ4 cos ω4

r4 sin θ4

√

1− (cos ω4)2



 ,

along with the respective torsion matrices B4, B
′
4 such that

(x4, 1)
⊤

= C3B4(0, 0, 0, 1)
⊤

(x′
4, 1)

⊤
= C3B

′
4(0, 0, 0, 1)

⊤
,

where C3 is a cumulative torsion matrix. This dichotomy, shown pictorially in
Fig. 2, is the basic reason why this problem can be formulated combinatorially.

For the fifth atom, we will obtain four possible positions, one for each combi-
nation of ±

√

1− (cos ω4)2 and ±
√

1− (cos ω5)2. By an easy induction argument,
we can see that for the i-th atom we obtain 2i−3 possible positions. So, for a
molecule shaped as a sequence (a linear chain) of n atoms, we get 2n−3 possible
sequences of torsion angles ω4, ω5, . . . , ωn, each defining a different tridimensional
structure. By using the matrices Bi defined above, we can convert a sequence of
torsion angles into Cartesian coordinates x1, . . . , xn ∈ R

3. Thus, this problem has
a finite search space. To test a candidate solution we simply use the function f

defined in (1); the candidate solution (x1, . . . , xn) will be a valid solution if and
only if f(x1, . . . , xn) = 0.

The discussion above can be summarized in the following theorem.
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i

i + 1

i + 2

i + 3

(i + 3)′

θi+1 θi+2

di,i+3

d′i,i+3

Figure 2. Discretization of the problem. The atom i + 3 can
only be in the two shown positions in order to be feasible with
the distance di,i+3.

Theorem 2.1. Consider a sequence M of n atoms such that:

(i) atom i is covalently bonded to atom i + 1 for all i ≤ n− 1;
(ii) all bond angles and bond lengths are known;
(iii) no bond angle is a multiple of π;
(iv) all distances between atom i and i + 3 are known, for all 1 ≤ i ≤ n− 3.

Then there is a finite number of distinct immersions p : M → R
3 such that:

(a) p(1) = (0, 0, 0), p(2)1 = 0, p(2)2 = 0, p(3)1 = 0 (where p(i)k is the k-th
coordinate of p(i) for k ≤ 3, i ≤ n);

(a) for all atoms i, j with known atomic distance dij we have:

||p(i)− p(j)|| = dij .

2.2. Undiscretizable instances

As has been remarked, the instances of the considered problem have a finite
number of valid solutions with probability 1. The only case where an instance is
not susceptible of a discrete formulation is when there is a subsequence of three
consecutive atoms i, i + 1, i + 2, where the bond angle θi+2 is kπ for k ∈ Z: since
ωi+3 is an angle between two normal vectors to given planes, ωi+3 is undefined
when at least one of the planes is undefined, i.e. if the two vectors defining the
plane are collinear. In other words, if the bond angle θi+2 is a multiple of π, we
have the situation depicted in Fig. 3, where di,i+3 is feasible for every position of
atom i + 3 on the circle shown in the drawing. Since the set {π} has measure 0
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i

i + 3

θi+3

(i + 3)′

di,i+3

d′i,i+3

Figure 3. An instance which cannot be discretized. The i+3-rd
atom can be on any position on the circle shown without affecting
the feasibility of the distance di,i+3.

in [0, 2π], the probability that any given instance is discretizable is 1. In any case
the “undiscretizable cases” do not often occur in practice.

3. The Algorithm

In this section we shall present a Branch-and-Prune (BP) algorithm designed
for solving the considered problem. The approach is very simple and mimicks the
structure of the problem closely: at each step we can place the i-th atom in two
possible positions xi, x

′
i. We then branch the search and prune away the infeasible

branches. More precisely, for each position we check feasibility with all distance
pairs (j, i) ∈ F by checking that (||xj − xi||

2 − d2
j,i)

2 < ε, where ε > 0 is a given
tolerance. There are four possible outcomes:

(1) both xi, x
′
i are feasible: in this case we store both positions and explore

both branches in a depth-first fashion;
(2) only xi is feasible: we only store the feasible position xi and prune the

infeasible branch x′
i;

(3) only x′
i is feasible: we only store the feasible position x′

i and prune the
infeasible branch xi;

(4) neither position is feasible: we prune both branches and backtrack the
search.

Notice that this algorithm, as described, will find all solutions to the problem. If
we are only interested in one, we can stop the search as soon as we have placed
the last atom in a feasible position.

Let T be a graph representation of the search tree. Initially, T is initialized to
1 → 2 → 3 since the first three atoms can be fixed to feasible positions x1, x2, x3

as explained earlier. By the current rank of the search tree we mean the index of
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the atom being placed at the current node. At each search tree node of rank i we
store:

• the position xi ∈ R
3 of the i-th atom;

• the cumulative product Ci =
∏i

j=1 Bj of the torsion matrices;

• a pointer to the parent node P (i);
• pointers to the subnodes L(i), R(i) (initialized to a dummy value PRUNED

if infeasible).

Notice that the edge structure of the graph T is encoded in the operators P (), L(), R()
defined at each node. The recursive procedure at rank i− 1 is given in Algorithm

1. Let y = (0, 0, 0, 1)
⊤

, ε > 0 a given tolerance and v a node with rank i − 1 in
the search tree T .

3.1. Detailed example

We now discuss the application of Algorithm 1 to a simple example (artificially
generated as explained in [7], also see Section 4.2).

The instance in question (called lavor11 7), with all bond lengths set to 1.526Å

and bond angles set to 1.91 radians, has 11 atoms with distances in F given by:

δ(2) = {9}, dF
2 = {3.387634917}

δ(3) = {8, 9, 10}, dF
3 = {3.96678038, 3.003368265, 3.796280236}

δ(4) = {8, 9, 10}, dF
4 = {2.60830758, 2.102385055, 3.159309539}

δ(5) = {9, 10}, dF
5 = {2.689078459, 3.132251169}

δ(6) = {10}, dF
6 = {3.557526815}

δ(7) = {11}, dF
7 = {3.228657023},

where δ(i) indicates the atoms j such that dij ≤ 4Å (the cut-off value). The
distances in E are of course δ(i) = {i + 1, i + 2, i + 3} for all i ≤ n− 3, δ(n− 2) =
{n− 1, n}, δ(n− 1) = {n}. The vector of the distances in E is:

dE = (1.526, 2.491389536, 3.83929637,

1.526, 2.491389536, 3.831422399,

1.526, 2.491389536, 3.835602674,

1.526, 2.491389535, 3.030585263,

1.526, 2.491389534, 2.899348439,

1.526, 2.491389535, 3.086914764,

1.526, 2.491389536, 2.788611167,

1.526, 2.491389536, 2.888815709,

1.526, 2.491389537,

1.526),
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Algorithm 1 BP algorithm.

0: BranchAndPrune(T , v, i)
if (i ≤ n− 1) then

Compute the possible placements for i-th atom:
calculate the torsion matrices Bi, B

′
i via Eq. (3);

retrieve the cumulative torsion matrix Ci−1 from the parent node P (v);
compute Ci = Ci−1Bi, C ′

i = Ci−1B
′
i and xi, x

′
i from Ciy, C ′

iy;
let λ = 1, ρ = 1;
Check feasibility:
for all (j, i) ∈ F do

let δji = (||xj − xi||
2 − d2

ji)
2 and δ′ji = (||xj − x′

i||
2 − d2

ji)
2;

if (δji > ε) then

λ = 0;
end if

if (δ′ji > ε) then

ρ = 0;
end if

end for

Create subnodes as required:
if (λ = 1) then

create a node z, store Ci and xi in z, let P (z) = v and L(v) = z;
set T ← T ∪ {z};
BranchAndPrune(T , z, i + 1);

else

set L(v) = PRUNED;
end if

if (ρ = 1) then

create a node z′, store Ci and xi in z′, let P (z) = v and R(v) = z′;
set T ← T ∪ {z′};
BranchAndPrune(T , z′, i + 1);

else

set R(v) = PRUNED;
end if

else

Rank n reached, a solution was found:
solution stored in parent nodes ranked n to 1, output by back-traversal;

end if

where the i-th line contains the distances among atoms i and i+1, i+2, i+3. Of
course, the last two lines contain the distances among the atom n− 2 and atoms
n− 1 and n, and the distance between the atom n− 1 and n, respectively.

As can be seen from the BP tree given in Fig. 4 (this is actually the output
of Algorithm 1 on the given instance), this instance has four solutions: the leaf
nodes at rank 11 — the rank is given by the number of the leftmost node in each
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row. Notice that the earliest node when some pruning occurs is at rank 7, i.e. no
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Figure 4. The BP tree of the instance of Section 3.1.

pruning occurs before the placement of the 8-th atom. This happens because there
are no distances (j, k) ∈ F with k < 8, so each position for atoms with index i < 8
is feasible (by construction of xi, x

′
i) with the distances in E. The only symmetry-

breaking distances are in fact those in F . Again, there is pruning at ranks 8,9,10,
i.e. during the placement of atoms 9,10,11, because there are distances (j, k) ∈ F

with k = 9, 10, 11. One of the solutions is shown in Fig. 5.

4. Computational experiments

In order to test the viability of the proposed method, we tested a class of
randomly generated MDGP instances described in [7]. We present comparative
results of BP and another existing MDGP software called dgsol [9]. It turns
out that BP is superior to dgsol for speed and solution accuracy, and inferior as
regards memory requirements and running time reliability.

4.1. Software testbeds

The software code dgsol [9] (version 1.3) can be freely downloaded from
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Figure 5. One of the possible solutions of the lavor11 7 instance.

http://www.mcs.anl.gov/~more/dgsol/.

The algorithm implemented by the dgsol code is very different from ours. First,
it targets a more general problem class: the Molecular Distance Geometry Prob-
lem with Distance Bounds. In this problem, lower and upper bounds to atomic
distances are known, rather than the exact atomic distances. Since these are usu-
ally estimated through NMR techniques, it is realistic to assume that there is
an experimental error in the measurements (our approach does not consider this
issue yet). Secondly, dgsol needs to make no assumption whatsoever about the
distances of triplets and quadruplets of consecutive atoms being known. Thirdly,
dgsol is based on a continuous smoothing of the original problem to a form which
has fewer local minima. An ordinary NLP optimization method is then applied
to the modified problem, and the optimum is traced back to the original prob-
lem. This is a fully continuous optimization algorithm, whereas BP is a discrete
method.

It turns out that the main advantages of BP over dgsol are:

(1) tractability of larger instances;
(2) higher solution accuracy;



12 TITLE WILL BE SET BY THE PUBLISHER

(3) BP can potentially find all feasible solutions, not just one.

By contrast, the main advantages of dgsol over BP are:

(1) it targets a larger class of problems;
(2) its running time seems to increase very slowly (and regularly) as a function

of the number of atoms in the molecule, at least when the set of given
distances is comparatively small;

(3) the amount of memory needed to complete the search is negligible.

The BP algorithm behaves very unpredictably with respect to the amount of
needed memory, sometimes requiring over 1GB RAM for relatively small molecules
(40 atoms), sometimes solving 1000-atoms instances in a few seconds and very little
memory.

4.2. Lavor instances

These instances, described in [7], are based on the model proposed by [10],
whereby a molecule is represented as a linear chain of atoms. Bond lengths and
angles are kept fixed, and a set of likely torsion angles is generated randomly.
Depending on the initial choice of bond lengths and angles, the Lavor instances give
rather more realistic models of proteins than other randomly generated instances
do (see for example the instances described in [9]). Fig. 5 gives an example of a
Lavor instance. In the numerical tables, we labelled the Lavor instances by lavorn-
m, where n is the number of atoms in the molecule and m is an instance ID (since
there is a random element of choice in the generation of the Lavor instances, many
different instances can be generated having the same atomic size).

We generated 10 different Lavor instances for each size n = 10, . . . , 70 (“small
set”), and 4 different Lavor instances for each size n in {100i|1 ≤ i ≤ 10} (“large
set”).

4.3. Hardware and memory considerations

All tests have been carried out on an Intel Pentium IV 2.66GHz with 1GB RAM,
running Linux. The code implementing the BP algorithm has been compiled by
the GNU C++ compiler v.3.2 with the -O2 flag. As mentioned above, BP can be
very memory-demanding. We deliberately took the choice of employing a low-end
PC with just 1GB RAM to show just how powerful this technique can be even
with modest hardware.

The BP algorithm is in general very fast, since all it does is testing feasibility
with the known distances at each branched node. However, exploring the search
space may require a lot of memory, especially if no pruning occurs early in the
run. Consequently, when the physical RAM of the test machine is exhausted, and
the operating system starts swapping to disk, the total CPU elapsed time size
becomes unmanageable. Thus, it was decided to kill all jobs requiring more than
1 GB RAM. In particular, we solved almost all the Lavor instances in the “small
set” and found one solution for each of the Lavor instances in the “large set”.
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4.4. Comparative results

The full results table for the complete test suite includes 655 instances and
spans 14 pages: thus, only a sample will be presented in detail. The averages,
however, are taken with respect to the whole suite. The ε parameter of Algorithm
1 was set to 1× 10−3 for all tests.

Table 1 contains detailed results for the sample. The instances are described by
their name, their atomic size n and the number of given distances |S|. Note that
in order to use dgsol, the lower and upper bounds to these distances were set to
±5 × 10−4. Other than this, dgsol was used with all default parameter values.
The results refer to three methods: dgsol, BP stopped after the first solution was
found (BP-One), and BP run to completion (BP-All). For dgsol and BP-One, the
user CPU time (in seconds) was reported, as well as the Largest Distance Error
(LDE), defined as

LDE =
1

|S|

∑

(i,j)∈S

| ||xi − xj || − dij |

dij

,

employed as a measure of solution accuracy (the lower, the better). For the (BP-
All) method, we reported the user CPU time and the number of solutions found
(#Sol). Missing values are due to excessive memory requirements (over 1GB
RAM).

It is immediately noticeable that whereas dgsol always finds a solution, BP
sometimes fails to find one within 1 GB RAM. It is instructive, however, to look
at the solution accuracy (taken over the whole test suite): whereas dgsol ranges
from 4.5 × 10−7 to 0.875 (excepting a couple of out-of-scale values clearly due
to some numerical instability), BP scores a rather more impressive 4.74 × 10−11

to 5.62−6. On average, the solution accuracy obtained by dgsol is 9.55 × 10−2

whereas BP averages 4.56 × 10−8. Furthermore, all the instances in the Lavor
“large set” are solved by dgsol to a solution accuracy of order 10−1: given that
in BP pruning often occurs for feasibility differences of order 10−1 and even 10−2,
such a slack solution accuracy may mean that dgsol is not actually finding the
correct solution.

Table 2 reports the averages of the same parameters as in Table 1 taken over
10 Lavor instances in a sample of the “small set” and over 4 Lavor instances in
a sample of the “large set”. It appears clear from these data that BP’s strong
points are indeed speed and accuracy. A graphical representation of the averages
taken over the whole Lavor test set is shown in Fig. 6 (user CPU average taken
to solve the instances in function of the molecular size by dgsol and BP-One)
and Fig. 7 (average accuracy of the solution attained by dgsol and BP-One). We
chose not to show the curves in the same plot because the huge scale difference on
the ordinate axis “pushed” the BP-One performance towards zero.
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Instance dgsol BP-One BP-All
Name n |S| CPU LDE CPU LDE CPU #Sol

lavor10 0 10 33 0.02 1.57E-5 0.00 5.36E-10 0.00 4
lavor15 0 15 57 0.10 4.04E-5 0.00 2.84E-09 0.00 16
lavor20 0 20 105 0.14 2.77E-5 0.00 6.13E-09 0.00 8
lavor25 0 25 131 0.84 1.18E-4 0.00 1.38E-09 0.00 8
lavor30 0 30 169 0.40 1.75E-5 0.00 1.23E-09 0.00 2
lavor35 0 35 171 0.81 9.33E-5 0.00 1.52E-09 0.00 64
lavor40 0 40 295 2.84 0.096 0.00 2.87E-09 0.00 2
lavor45 0 45 239 3.33 0.170 0.00 6.92E-09 0.00 2
lavor50 0 50 271 3.45 0.696 0.00 3.96E-08 0.46 4096
lavor55 0 55 551 5.80 0.257 0.00 2.66E-09 0.00 64
lavor60 0 60 377 5.15 0.049 0.00 3.51E-09 0.00 64
lavor65 0 65 267 2.61 0.065 0.00 7.76E-10 – –
lavor70 0 70 431 8.73 0.107 0.02 1.64E-09 – –
lavor100 2 100 605 6.95 0.167 2.26 4.01E-09 – –
lavor200 2 200 1844 63.52 0.395 0.00 5.66E-08 – –
lavor300 2 300 2505 100.99 0.261 0.03 1.56E-08 – –
lavor400 2 400 2600 182.21 0.767 0.01 3.35E-09 – –
lavor500 2 500 4577 329.29 0.830 0.27 4.69E-07 – –
lavor600 2 600 5473 299.76 0.700 0.01 4.94E-08 – –
lavor700 2 700 4188 281.34 0.569 0.16 1.83E-06 – –
lavor800 2 800 6850 570.20 0.528 3.34 3.37E-06 – –
lavor900 2 900 7965 550.26 0.549 3.08 5.62E-06 – –
lavor1000 2 1000 8229 844.52 0.695 0.81 2.04E-06 – –

Table 1. Computational results for a sample of small and large
Lavor instances. Missing values are due to excessive memory re-
quirements (> 1GB RAM).

5. Final Remarks

In this paper we presented a new discrete formulation for a particular subclass
of the Molecular Distance Geometry Problem. We proposed a Branch-and-Prune
algorithm and tested it against dgsol, an existing software for the MDGP. It
appears that our method is faster and more accurate than dgsol by several orders
of magnitude, albeit less predictable as concerns the running time and way more
memory-hungry.
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Instance dgsol / avg. BP-One / avg. BP-All / avg.
n CPU LDE CPU LDE CPU #Sol

10 0.03 4.40E-01 0.00 1.19E-09 0.00 1.54E+01
15 0.08 1.96E-02 0.00 1.23E-09 0.00 3.72E+01
20 0.23 3.20E-03 0.00 1.94E-09 0.00 6.90E+01
25 0.56 1.58E-02 0.00 1.58E-09 0.02 1.14E+02
30 0.65 1.03E-02 0.00 3.45E-09 0.01 2.65E+02
35 1.10 5.43E-02 0.00 2.84E-09 0.10 3.35E+03
40 1.41 2.61E-02 0.00 5.75E-09 0.02 8.48E+02
45 2.13 5.80E-02 0.00 6.25E-09 0.12 2.48E+03
50 2.54 1.65E-01 0.00 6.62E-09 0.16 1.80E+03
55 4.10 7.29E-02 0.00 5.53E-09 0.03 4.28E+02
60 4.47 1.59E-01 0.00 6.44E-09 0.04 3.49E+02
65 4.64 1.16E-01 0.00 8.37E-09 1.21 3.80E+03
70 7.63 9.28E-02 0.01 1.07E-08 – –
100 10.57 3.53E-01 0.57 2.46E-09 – –
200 57.34 3.61E-01 0.02 2.00E-08 – –
300 109.91 4.03E-01 0.03 1.90E-08 – –
400 173.54 6.69E-01 0.10 1.05E-08 – –
500 273.66 6.19E-01 0.16 4.92E-07 – –
600 351.15 5.75E-01 0.01 5.47E-08 – –
700 365.37 7.03E-01 0.82 2.65E-06 – –
800 583.65 6.54E-01 2.72 1.90E-06 – –
900 714.39 6.88E-01 1.68 2.85E-06 – –
1000 787.30 6.88E-01 0.41 1.45E-06 – –
Table 2. Average statistics for Lavor instances (over 10 instances
for the set of small instances and over 4 for the set of large in-
stances).
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