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Abstract

Determining the maximum number of D-dimensional spheres of radius r that can
be adjacent to a central sphere of radius r is known as the Kissing Number Problem
(KNP). The problem has been solved for 2 and 3 dimensions. The smallest open
case is 4 dimensions: a solution with 24 spheres is known, and an upper bound of 25
has been found. We present a new nonlinear mathematical programming model for
the solution of the KNP. This problem is solved using a quasi Monte Carlo variant of
a multi level single linkage algorithm for global optimization. The numerical results
indicate that the solution of the KNP is 24 spheres, and not 25.

1 Introduction

When rigid balls touch each other, in technical terms, they “kiss”. This is the
etimology of the term “kissing number”. In mathematical terms, the kissing
number in D dimensions is the number of D-spheres of radius R that can
be arranged around a central D-sphere of radius R so that each of the sur-
rounding spheres touches the central one without overlapping. Determining
the maximum kissing number in various dimensions has become a well-known
problem in Combinatorial Geometry.
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Fig. 1. The problem in R? (a) and R? (b)

In R? the result is trivial: the maximum kissing number is 6 (Fig. 1, a). The sit-
uation is far from trivial in R®. The problem earned its fame because, according
to Newton, the maximum kissing number in 3D is 12, whereas according to
his contemporary fellow mathematician David Gregory, the maximum kissing
number in 3D is 13 (this conjecture was stated without proof). This question
was settled, at long last, more than 250 years after having been stated, when
J. Leech finally proved that the solution in 3D is 12 [1]. The question for the
4-dimensional case is still open. A best known solution is 24, and the tightest
upper bound is 25 [2]. In this paper, we propose a mathematical program-
ming approach to settle the question. The continuous nonconvex optimization
models we shall propose are not dissimilar, in nature, from those found in [3].
However, whereas that paper carried the infamous sentence “the solution of
the above programs remains an open question” in its conclusion, in this paper
we report the numerical solution of this problem. Our results seem to indicate
the solution should be 24. We derived this result by using a general-purpose
global optimization software [4] that includes both a stochastic method [5] and
a deterministic one [6]. Methodologically speaking, neither method produces
an output that is equivalent to a mathematical proof. We are offering strong
numerical evidence that seems to point out that the solution of the maximum
kissing problem in 4 dimensions is 24.

2 The model

The formulation we propose is a special case of a more general formulation
found in [3]. As has been said above, we know a feasible solution with 24
spheres around a central one, and we know that 25 spheres is a tight upper
bound. We maximize a decision variable «, bounded by the interval [0, 1],
which represents the degree of separation of the 25-sphere configuration being



tested, subject to the necessary geometric constraints. Since the constraints
are nonconvex, there may be multiple local minima. If the global optimization
of the model determines that the global maximum is at o = 1, then there is
enough space for 25 balls, otherwise the kissing number is 24. The geometric
variables z* = (2%, 2%, 2%, 2%), 1 <4 < 25, determine the position of the center
of the i-th sphere around the central one. The following formulation was used:

max (6] (1)
st. ||2']|> =4 Vi < 25 (2)
2" =27 |?>4a  Vi<j<25 (3)

3 A quasi Monte Carlo variant of a multi level single linkage al-
gorithm based on Sobol’ sequences

A stochastic approach for global optimization, in its simplest form, consists
only of random search and it is called Pure Random Search (PRS). In PRS
an objective function f(x) is evaluated at N randomly chosen points and the
smallest value of f(z) is taken as the global minimum. Advanced stochastic
techniques use stochastic methods to search for local minima and then utilize
deterministic methods to solve a local minimisation problem. Two phases are
considered: global and local. In the global phase, the function is evaluated
in a number of randomly sampled points from a uniform distribution over a
unit hypercube H,. In the local phase the sample points are used as starting
points for a local minimization search. The efficiency of the multistage meth-
ods depends both on the performance of the global stochastic and the local
minimization phases.

In the most basic form of the multistage approach a local search is applied to
every sample point. Inevitably, some local minima would be found many times.
Since the local search is the most CPU-time consuming stage, ideally it should
start just once in every region of attraction. This is the idea behind various
versions of the so-called clustering methods. Extensive reviews on this subject
can be found in [7-9] and [10]. One of the most efficient clustering methods is
a multi level single linkage (MLSL) algorithm developed by Rinnooy-Kan and
Timmer in [8,9].

The efficiency of stochastic methods depends on the quality of sampled points.
It has been recognized through theory and practice that uniformly distributed
deterministic sequences provide more accurate results than purely random se-
quences. Low-discrepancy sequences (LDS) are designed specifically to place
sample points as uniformly as possible. Unlike random numbers, successive
low discrepancy points “know” about the position of their predecessors and



fill the gaps left previously. Methods based on LDS are known as quasi Monte
Carlo (QMC) methods. In the majority of applications, QMC methods have
superior performance compared to that of MC methods. Improvement in time-
to-accuracy using QMC methods can be as large as several orders of magni-
tude. It was shown in [5] that application of LDS can significantly increase
the efficiency of MLSL methods.

Central to the QMC approach is the choice of LDS. Different principles were
used for constructing LDS by Holton, Faure, Sobol’, Niederreiter and others.
Many practical studies have proven that Sobol’ LDS in many aspects are supe-
rior to other LDS [11], [12]. A C++ program called SobolOpt which employs
a QMC variant of MLSL based on Sobol’ sequences [5] was used in the present
study.

4 Computational results

We solved the KNP by using the stochastic solver SobolOpt within the frame-
work of a general-purpose global optimization software 0oOPS [4]. The solution
yielded a result of & = 0.924126 in 7m36s of CPU time on a 2.66 GHz Pentium
IV CPU with 1GB RAM. This indicates that the solution of the KNP is 24
spheres, and not 25 (we would need o = 1 for 25 spheres).
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