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Abstract NMR experiments provide information from which some of the distances

between pairs of hydrogen atoms of a protein molecule can be estimated. Such dis-

tances can be exploited in order to identify the three-dimensional conformation of the

molecule: this problem is known in the literature as the Molecular Distance Geometry

Problem (MDGP). In this paper, we show how an artificial backbone of hydrogens can

be defined which allows the reformulation of the MDGP as a combinatorial problem.

This is done with the aim of solving the problem by the Branch and Prune (BP) algo-

rithm, which is able to solve it efficiently. Moreover, we show how the real backbone

of a protein conformation can be computed by using the coordinates of the hydrogens

found by the BP algorithm. Formal proofs of the presented results are provided, as

well as computational experiences on a set of instances whose size ranges from 60 to

6000 atoms.

Keywords distance geometry · protein molecules · hydrogen atoms · combinatorial

optimization · branch and prune

1 Introduction

Proteins are important molecules because they perform different functions, often of

vital importance, in the cells of the living beings. Their function is determined by

the dynamics of the proteins, which depends on their three-dimensional conformation.

While finding the chemical composition of a protein molecule is nowadays relatively
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simple, finding its three-dimensional conformation is not an easy task. The Nuclear

Magnetic Resonance (NMR) is an experimental technique that is able to provide infor-

mation from which some of the distances between pairs of atoms forming the molecule

can be estimated [9]. These experimentally obtained data can then be used for com-

puting the coordinates (into a given Cartesian system) of all the atoms of the molecule.

The problem of finding the three-dimensional conformation of the molecule (i.e. the

coordinates of all its atoms), starting from the known distances between pairs of atoms,

is referred to as the Molecular Distance Geometry Problem (MDGP) [5]. The

focus of this paper is, in particular, on protein molecules.

Over the years, many methods have been proposed for solving the MDGP. Let

X = {x1, x2, . . . , xn} be a protein conformation, where xi ∈ R
3 represents the ith

atom of the protein, in a given ordering. Let E be the set of pairs of atoms whose

distance is known. Then, the MDGP can be seen as the problem of finding X such

that

||xi − xj || = dij ∀(i, j) ∈ E, (1)

where ||xi − xj || represents the computed distance between two atoms of X, and dij

is the known value of the generic distance. The decision version of this problem (is

there an X such that (1) holds?) is NP-hard by [28]. The MDGP is usually cast as a

global optimization problem, where the aim is to minimize an objective function which

is able to provide a measure of how much the distances ||xi − xj ||, related to a certain

conformation X, differ from the known distances dij , for each (i, j) ∈ E. Different

objective functions have been proposed, and one of the most often used is the Largest

Distance Error (LDE):

LDE(X) =
1

m

∑

{i,j}

| ||xi − xj || − dij |

dij
, (2)

where m is the total number of known distances. Supposing that a position is given to

all the atoms of the conformation X, if the value of the LDE function is 0, then the

set of given distances is feasible and the conformation X satisfies all of them.

Different methods have been proposed over time for solving this global optimization

problem. One of the difficulties to be faced is that the LDE function (and even other

penalty functions used in this context) has many local minima, where a method for

optimization can get stuck at. In order to overcome this problem, Moré and Wu [21,22]

proposed to approximate the used penalty function with smoother functions converging

to the original one. Another method for the MDGP makes use of a penalty function

which can be seen as the difference of two convex functions [1], and particular techniques

for d.c. optimization are used. Moreover, in [8], a Population Basin Hopping method

is employed, in which basic concepts (such as the ones of funnel and funnel bottom)

usually used in methods for finding molecular conformations are exploited. Note that

many of these methods are based on a continuous formulation of the problem, and

that deterministic methods are often employed for their solution. However, there are

heuristic algorithms particularly designed for solving the MDGP, such as, for example,

the SPE algorithm [33] and the one proposed in [19]. Other algorithms, as for example

[30], are instead based on a meta-heuristic search, such as Simulated Annealing [10].

For a survey on methods and algorithms for the MDGP, the reader is refereed to [11,

20].

Even though many algorithms have been proposed for solving MDGPs, there are

actually only a few implementations of such algorithms that are freely available to
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Fig. 1 The general structure of an amino acid.

the scientific community. For example, the software DGSOL implements the algorithm

proposed by Moré and Wu [21,22], and it is freely downloadable from the first author’s

web page. Other examples of free software for MDGP are Xplor-NIH [30] and TINKER

(http://dasher.wustl.edu/tinker/). Both of them are based on meta-heuristic searches.

Recently, a new approach to the MDGP has been proposed. In the event that some

particular assumptions are satisfied (see Section 2), the global optimization problem

associated to the MDGP is reformulated as a combinatorial optimization problem. In

this way, the search domain is reduced to a discrete set. Computational experiments

presented, for example, in [12,14–18,25], showed that the combinatorial approach to

the MDGP is more efficient than the continuous one. We refer to this combinatorial

reformulation of the MDGP as the Discretizable Molecular Distance Geometry

Problem (DMDGP). A software based on a Branch & Prune (BP) algorithm [11],

which we employ for solving instances of the DMDGP, is currently under development

[24]. MD-jeep is freely available to the scientific community, and we plan to integrate

the software with the results presented in this paper in the future releases.

Proteins are chains of smaller molecules called amino acids, which are chemically

bound to each other through a subgroup of atoms that each amino acid has in common.

We will refer to this subgroup of atoms as the common part of each amino acid. All

these parts define the so-called backbone of the protein. When two amino acids bind

to each other during protein synthesis, some of the atoms of their common parts are

lost, and the carbon atom C of the first amino acid binds to the nitrogen N of the

second one. Therefore, the protein backbone is finally formed by the sequence of atoms

N − Cα − C, where oxygen and hydrogen atoms are also attached (see Figure 1).

In previous works [12,14,18,25], the DMDGP has been tested on instances related

to the sequence of atoms N−Cα−C of the protein backbones. As it is also supposed in

many related works (see for example [3,4,31,32]), no distinctions between the different

kinds of atoms (N, C, H, O, . . . ) were considered. The computational experiments

showed that instances related to the sequence N−Cα −C can be almost always solved

by the combinatorial approach, because the necessary assumptions are satisfied.

However, the majority of the distances obtained by NMR are distances between

pairs of hydrogens. In order to perform more realistic experiments, we do not consider

in this work the sequence N−Cα−C, but rather all the hydrogen atoms of the protein

backbones. Unfortunately, in general, if only the hydrogens of the protein backbones
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are considered in the natural ordering given to these atoms, then the corresponding

instances do not satisfy the assumptions of the DMDGP.

The focus of this paper is two-fold. First of all, we will show how to identify artificial

backbones of hydrogen atoms such that the needed assumptions for formulating the

problem as a DMDGP are satisfied. Preliminary studies on artificial backbones of

hydrogens can be found in [15,16,27]. Secondly, we will show how the real backbone

of a protein conformation (the sequence N − Cα − C) can be computed by exploiting

the coordinates of the hydrogens obtained by solving the DMDGP related to a given

artificial backbone of hydrogens. In the computational experiments, we will work in the

simplified case in which the distances can be considered as accurate. However, the work

here presented can be extended in order to manage experimental errors, by integrating,

for example, the strategies presented in [23,26].

The paper is organized as follows. In Section 2, we will give an outline of the

DMDGP and of the BP algorithm. Emphasis will be given to the assumptions that

must be satisfied in order to formulate the problem as a DMDGP. In Section 3, we

will show how to generate an artificial backbone of hydrogens that satisfies the nec-

essary assumptions. In Section 4, we will show how to generate the real backbone

N − Cα − C of a protein conformation by using the coordinates of the hydrogens of

an artificial backbone, once they have been obtained by applying the BP algorithm.

Finally, computational experiences are shown in Section 5, and conclusions are drawn

in Section 6.

2 The DMDGP and the Branch and Prune algorithm

Let us suppose that some of the distances between pairs of atoms of a molecule are

known. Let G = (V, E, d) be a weighted undirected graph, where

– there is a vertex i ∈ V associated to each atom of the molecule;

– there is an edge (i, j) ∈ E if and only if the distance between i and j is known;

– the weights d associated to the edges provide the numerical values of the known

distances.

The Molecular Distance Geometry Problem (MDGP) is the problem of finding

an embedding x : V → R
3 such that the molecular conformation

X = {x(i) : i ∈ V }

satisfies all the distances d.

The MDGP can be formulated as a combinatorial problem if there exists an ordering

on V such that the following two assumptions are satisfied:

Assumption 1: all the distances di−3,i, di−2,i and di−1,i are known, for each i;

Assumption 2: for each triplet of vertices {i − 2, i − 1, i}, the strict triangular

inequality

di−2,i < di−2,i−1 + di−1,i

holds,

where the subtraction operation on V refers to the given ordering.

Assumption 2 is satisfied in most of the cases. Indeed, if, for a certain triplet of

consecutive vertices, di−2,i were perfectly equal to di−2,i−1 + di−1,i, then the corre-

sponding three atoms would be perfectly aligned. The Lebesgue measure of the subset
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Fig. 2 Two representations for the solutions to the DMDGP: a path on the binary tree of
atomic positions and a vector of n − 3 binary variables.

of X not satisfying Assumption 2 is zero, so the probability of Assumption 2 not be-

ing satisfied is zero in a purely technical sense. Assumption 1 is instead harder to be

satisfied. If data from NMR are considered, then only the distances smaller than 6Å

are available, and therefore, if some of the distances di−3,i, di−2,i and di−1,i are large,

then it is unknown and Assumption 1 may not be satisfied.

If both assumptions are satisfied and the atoms are positioned by following the same

ordering given to the vertices of V , then only two possible positions can be chosen for

the generic atom xi. This property leads to the definition of a binary tree of possible

atomic positions, where solutions to the DMDGP can be searched [12,18].

Referring to the binary tree of atomic positions, a solution can be seen as a complete

path from the root of the tree to one of its leaf nodes. Moreover, a classic way to

represent these solutions is through vectors of n − 3 binary variables, where the ith

variable indicates which of the two possible choices for the atom xi have been taken

and n = |V | (see Figure 2). Finally, note that a vector of n− 3 binary variables can be

seen as an integer number ranging from 0 to 2n−3−1. In this representation, the whole

variability of the search domain is represented by a set of consecutive integer numbers.

This representation is very useful for visualizing, for example, the LDE function (2),

because it allows us to concentrate the variability of the search domain on only one

coordinate axis (see Figure 3). The figure shows that the LDE function has several

local minima in which a method for optimization could get stuck at. In the considered

instance, there are only two molecular conformations corresponding to an LDE value

equal to 0.

The BP algorithm [18] is an algorithm for the DMDGP which is based on the

binary tree of solutions. The search proceeds by placing the atoms of the molecular

conformation one per time: at each step, two possible positions for the current atom

can be computed. As soon as an atomic position is found to be infeasible, then it is

pruned and the search is backtracked. Pruning tests are employed for this purpose.

Once the two possible positions for the current atom have been computed, the pruning

test verifies whether the newly computed positions satisfy or not the available distances.
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Algorithm 1 BP algorithm

0: BP(i, n, d)
for (k = 1, 2) do

compute the k
th atomic position for the i

th atom: x
(k)
i

;

check the feasibility of the atomic position x
(k)
i

:

if (the atomic position x
(k)
i

is feasible) then

if (i = n) then

one solution is found;
else

BP(i + 1,n,d);
end if

else

the current branch is pruned;
end if

end for

If all the distances are satisfied (for a certain tolerance ε > 0), then the atomic position

is feasible. If at least one of the distances is not satisfied, then the atomic position is

not feasible. Because of the pruning phase, the size of the tree is reduced quickly and

therefore an exhaustive search on the remaining branches is not too computationally

expensive.

Algorithm 1 provides a sketch of the BP algorithm. The algorithm is invoked re-

cursively, starting from the atomic position 4. The input parameters are i, the current

atom whose position is searched; n, the total number of atoms; d, the set of known dis-

tances. A solution to the problem is found when BP(n,n,d) finds one feasible position

for the last atom of the conformation.

We showed in previous works [12,14–18,25] that the BP algorithm is able to ef-

ficiently solve instances of the DMDGP. Theoretically speaking, atomic positions are

only accepted in the BP if they are feasible, i.e. if the objective function is zero. Com-

putationally, equality tests are replaced by ε-approximation tests, and hence some

discrepancy from the zero cost is possible. It is important to note that, even though

it is able to find solutions of a combinatorial optimization problem, the BP algorithm

does not exploit any objective function. When the final set of solutions is found by BP,

Fig. 3 A plot of the LDE function in correspondence with an instance of the DMDGP with
15 atoms.
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the quality of the solutions can be evaluated through, for example, the LDE function

(2).

3 Defining an artificial backbone of hydrogens

Let us suppose that the sequence of atoms N−Cα−C (defining the protein backbones)

and all the hydrogens H which are bound to such atoms are considered. Let G =

(V, E, d) be the associated weighted undirected graph. In order to reformulate the

problem as a combinatorial problem, G must satisfy the two necessary assumptions.

In particular, there cannot be triplets of aligned atoms, but the probability of having

exactly three collinear atoms in any order is zero, so we shall assume that all possible

orders satisfy Assumption 2. Moreover, Assumption 1 requires, given an ordering on

V , that, for each atom xi, there are three edges in E that precede i and that are

incident in the vertex i. In other words, for each i, all the distances di−3,i, di−2,i and

di−1,i must be known. Unfortunately, not all the vertices i of a graph G related to

protein backbones can satisfy this assumption [27]. Therefore, the atoms related to

these vertices need to be removed from G.

Note that some of the distances d in G can be computed by observations on the

chemical structure of the protein backbone. When two atoms bind together, they form

a known local conformation that is simply defined by the distance between the two

atoms (which strongly depends on the kinds of bound atoms). Moreover, when three

atoms bind as in a chain, where the first atom is bound to the second one, and the

second atom is bound to the third one, we also obtain a local known conformation for

the three atoms. As already remarked, the distances between the two pairs of bound

atoms are known. Furthermore, the three atoms also form an angle that only depends

by the kinds of the three interacting atoms. By exploiting the known distances and

the value for the angle, the distance between the first and the third atom can be easily

computed. To sum up, all the distances between bound atoms and between atoms

which are bound to a common atom are known a priori. For example, the distances

di,i+1 and di,i+2 related to the sequence of atoms N−Cα−C are all known. However,

in practice, all the distances that are known a priori are not enough for satisfying

Assumption 1.

Therefore, only atoms whose relative distances can be obtained by NMR are ex-

ploited for having the combinatorial reformulation. As a consequence, only hydrogen

atoms will be considered in the following (and hence only relative distances shorter

than 6Å). Let us consider the subgraph GH , such that G ⊃ GH = (VH , EH , dH) and

such that GH contains only hydrogen atoms. We will refer to the set of atoms related

to GH as artificial backbone of hydrogens. The problem we need to solve is the one of

identifying an artificial backbone of hydrogens such that the distances di−3,i, di−2,i

and di−1,i are all smaller than 6Å and, as a consequence, detectable by NMR. In order

to avoid confusion, the sequence of atoms N−Cα−C will be referred to as real backbone

of the protein.

There are 4 hydrogens in the common part of each amino acid. However, during

the protein synthesis, consecutive amino acids bind to each other through a peptide

bond. During this process, one of the hydrogens bound to the nitrogen N and the group

OH bound to C separate from the other atoms and form a water molecule (H2O) [29].

Therefore, the common part of each amino acid in a protein contains two hydrogens

only (see Figure 1).
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Fig. 4 The artificial backbone providing an ordering such that the assumptions for the
DMDGP are satisfied (4 amino acids are considered). Note that some of the hydrogens are
considered twice and that the considered order is specified through the labels associated to the
arrows.

We will refer to the hydrogen bound to N with the symbol H, and we will refer

to the hydrogen bound to Cα with the symbol Hα. We also consider a third hydrogen

which is not contained into the common part of each amino acid. It is borrowed from

the side chains of the amino acids. Each amino acid has a different side chain: 19 of the

20 amino acids involved in the protein synthesis have a carbon atom Cβ in their side

chains which is bound to the carbon atom Cα. At least one hydrogen is bound to the

carbon atom Cβ , and we can consider one of them in the artificial backbone. The only

exception is given by glycine, whose side chain consists in only one hydrogen atom. In

the particular case of glycine, we consider as third hydrogen the only one that forms

its side chain. We will refer to this third hydrogen with the symbol Hβ.

The artificial backbone we consider is the one in Figure 4. A label is associated to

each arrow for specifying the ordering given to the hydrogens. As the figure shows, the

artificial backbone considers some of the hydrogens more than once, in order to bring

the distance between the hydrogens {xi−3, xi−2, xi−1, xi} under the 6Å threshold. Note

that the nitrogen atom N, the carbon atom Cα and the carbon atom C of the first

amino acid are also included in the ordering. These three atoms are also considered in

the experiments together with the artificial backbone (see Section 5). We decided to

add these three atoms at the beginning of our artificial backbone because they define a

common coordinate system for the hydrogens and for the atoms of the real backbone.

The artificial backbones of hydrogens have some interesting properties. Since some

of the hydrogens are considered twice, some of the relative distances between them

are perfectly zero. If one of the distances between the atoms in the generic triplet

{xi−2, xi−1, xi} is zero, then two atoms coincide and, as a consequence, the atoms

of the triplet lie on the same straight line (this goes against Assumption 2). For this

reason, the artificial backbone is built in a way that only distances dij , with j > i + 2,

can be zero.

In the following, we will show that the artificial backbone of hydrogens can satisfy

the necessary assumptions for the DMDGP (see Theorem 1). Then, we will also show
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that this artificial backbone can be extended by adding the atoms N, Cα and C of the

first amino acid at the beginning (see Theorem 2), while the needed assumptions are

still satisfied.

In the theorems, the superscripts i will indicate to which amino acid a given atom

belongs. Therefore, Ni, Ci
α and Ci will refer to the three atoms of the real backbone of

the ith amino acid (the amino acids are sorted as in the sequence defining the protein).

Hi will refer to hydrogen bound to Ni, Hi
α to the hydrogen bound to Ci

α, and Hi
β to

the hydrogen taken from the side chain of the ith amino acid. Finally, Hn′

will refer to

the last hydrogen of the artificial backbone (see Figure 4), the only one that is bound

to an oxygen. We can state the following theorem.

Theorem 1 If all the distances

d(H1, H1
α), d(H1, H2), d(H1, H2

α), d(H1
α, H2), d(H1

α, H2
α), d(H1

α, H2
β),

∀i ∈ {2, . . . , n − 1} d(Hi, Hi−1
α ), d(Hi, Hi

α), d(Hi, Hi−1

β
), d(Hi, Hi

β), d(Hi, Hi+1),

∀i ∈ {2, . . . , n − 1} d(Hi
α, Hi−1

β
), d(Hi

α, Hi
β), d(Hi

α, Hi+1

β
), d(Hi

α, Hi+1), d(Hi
α, Hi+1

α ),

d(Hn, Hn−1
α ), d(Hn, Hn

α), d(Hn, Hn−1

β
), d(Hn, Hn

β), d(Hn, Hn′

),

d(Hn
α, Hn

β), d(Hn
α, Hn′

), d(Hn
β , Hn′

)

are obtained by NMR, then the artificial backbone defined as

H1
α, H1, H2, H1

α, . . . , Hi
α, Hi, Hi

β, Hi+1, Hi
α, . . . , Hn

α, Hn, Hn
β, Hn′

satisfies Assumption 1 of the DMDGP.

Proof Let us consider the first 4 atoms of the artificial backbone:

(H1
α, H1, H2, H1

α).

This is a clique if all the relative distances between all the pairs of these atoms are

known. All these distances are known by the hypothesis.

Let us now consider a generic quintuplet of consecutive hydrogens of the artificial

backbone, given by

Hi
α, Hi, Hi

β, Hi+1, Hi
α,

for each i ∈ {2, . . . , n − 1}. We will prove that, for each of these hydrogens h, the set

of atoms formed by h and the three preceding ones forms a clique. To do this, we will

show that, for each considered hydrogen h, the distances between the three preceding

atoms and h are known.

Let us consider the generic hydrogen Hi. The three preceding atoms are Hi
α, Hi−1

α

and Hi, ordered from the closest to the farthest atom. The distance between the two

copies of Hi in the order (see discussion before statement of Theorem 1) is obviously

zero. The distances d(Hi, Hi−1
α ) and d(Hi, Hi

α) are both contained in the list of distances

given in the theorem statement. Therefore, the generic hydrogen Hi of the artificial

backbone satisfies Assumption 1.

The same observations can be made in order to prove that each atom of a generic

quintuplet of consecutive hydrogens of the artificial backbone satisfies Assumption 1.

Note that, when considering the generic hydrogen Hi
α, one must be aware that there are

two atoms labeled in this way in the artificial backbone, but they are in two different
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positions in the sequence. Depending on which of the two is chosen, the three preceding

atoms are obviously different.

Finally, let us consider the last four atoms of the artificial backbone:

(Hn
α, Hn, Hn

β, Hn′

).

Since all the distances between these atoms and the three preceding ones are known

by the hypothesis, the theorem is proved. �

Since NMR experiments can find estimates of distances shorter than 6Å, we have

the following immediate corollary:

Corollary 1 If all the distances in the hypothesis of Theorem 1 are smaller than 6Å,

then the corresponding artificial backbone of hydrogens satisfies Assumption 1.

In the computational experiments in Section 5, for each considered artificial back-

bone, all the distances in the hypothesis of Theorem 1 are smaller than 6Å. Therefore,

the combinatorial reformulation is possible for these instances, and the BP algorithm is

able to efficiently find solutions related to the artificial backbones. However, in practice,

few of these distances could be larger than 6Å. In order to verify this, we considered the

distances available from the Cambridge Structural Database [7] for the bond lengths

and bond angles among atoms, and we made some computations for verifying which

distances could be out of the 6Å threshold. Our computations show that, among all the

distances in the hypothesis of Theorem 1, there are only 3 of them that could exceed

the threshold.

The first one is the distance between H1 and H2
α, whose maximum is 6.57Å. This

distance does not pose any real trouble, because it is the distance between a hydrogen of

the first amino acid and another hydrogen of the second amino acid. Hence, it appears

only once. In the event that this distance should be larger than 6Å, one way to solve

the problem could be to investigate all the possible orderings of the first few atoms of

the artificial backbone in order to have Assumption 1 satisfied. This procedure is not

expensive and it is easily implementable.

The other two distances that could not be detected by NMR are:

d(Hi
α, Hi−1

β ) and d(Hi
α, Hi+1

β ),

whose maximum values are 6.65Å and 6.61Å, respectively. In these two cases, another

hydrogen bound to Cβ can be considered in order to shorten the relative distances

between the hydrogens of the artificial backbone. Obviously, this procedure cannot be

applied when the corresponding amino acid is a glycine. In the worst case, in which no

orderings for the first atoms of artificial backbone can be found and no more hydrogens

bound to Cβ can be added, we can substitute the three distances greater than 6Å by

the three intervals:

d(H1, H2
α) ∈ [6.00, 6.57], d(Hi

α, Hi−1

β ) ∈ [6.00, 6.65], d(Hi
α, Hi+1

β ) ∈ [6.00, 6.61].

An extension of the BP algorithm which is able to manage intervals instead of exact

distances is currently under study. Preliminary results have been presented in [23].

Note that, since some of the distances between the hydrogens of the artificial back-

bones are zero, the LDE function (2) cannot be used for evaluating the quality of the

solutions found by the BP algorithm in correspondence with the considered instances,



11

because there would be divisions by zero. Therefore, in the experiments showed in the

next section, we will consider a modified version of the LDE function, in which the

terms that would contain divisions by zero are discarded.

As already mentioned, we consider in our computational experiences an extension

of the artificial backbone defined in Theorem 1, where the atoms N, Cα and C of the

first amino acid are added at the beginning (see Figure 4). We can state the following

theorem.

Theorem 2 If the artificial backbone defined in Theorem 1 satisfies Assumption 1 of

the DMDGP, then the sequence of atoms

N, Cα, C, H1
α, H1, H2, H1

α, . . . , Hi
α, Hi, Hi

β, Hi+1, Hi
α, . . . , Hn

α, Hn, Hn
β , Hn′

,

obtained by adding the atoms N, Cα and C at the beginning of the artificial backbone,

also satisfies Assumption 1 of the DMDGP.

Proof In order to have Assumption 1 satisfied for the added atoms, we need to verify

that these three subsets of atoms

(N, Cα, C, H1
α), (Cα, C, H1

α, H1), (C, H1
α, H1, H2),

form three cliques. In the first subset (N, Cα, C, H1
α), the distances d(N,Cα), d(N,C),

d(Cα, C), d(Cα, H1
α) and d(C, H1

α) can be obtained by using the bond lengths and bond

angles between these atoms, which are known a priori. Moreover, by the symmetric

property of the DMDGP [12], we can also fix the fourth atom (in this case H1
α), in

order to obtain the distance d(N,H1
α).

Finally, all the needed distances in the other two subsets (Cα, C, H1
α, H1) and

(C, H1
α, H1, H2) can be obtained by using the known bond lengths and bond angles. �

4 Reconstructing the real backbone of a protein conformation

Let us suppose that the coordinates of the hydrogens of an artificial backbone have

been obtained by the BP algorithm. This information can be used in order to identify

all the other atoms of the protein backbone, i.e. the sequence of atoms N − Cα − C.

One way for doing this is to exploit the available coordinates of the hydrogens and the

distances (known a priori) between these hydrogens and other atoms of the protein

backbone.

The procedure we use for building the real backbone of a protein from an artificial

backbone is the following. Let us suppose that we need to find the coordinates of the

backbone atom a and that the distances between a and other four atoms b1, b2, b3
and b4 (with known coordinates) are known. In this hypothesis, the coordinates of the

atom a can be identified if the 4 atoms are non-coplanar [6,31,32].

Let da,bi
be the Euclidean distance between the atom a and the atom bi, for all

i ∈ {1, 2, 3, 4}. In order to find the coordinates of a, the following system needs to be

solved:














||a − b1|| = da,b1

||a − b2|| = da,b2

||a − b3|| = da,b3

||a − b4|| = da,b4 .

(3)

This is a quadratic system of 4 equations in 3 variables.
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Theorem 3 If the quadratic system (3) has a solution, then the linear system

Ax = b, (4)

where

A = −2











1 (b1)
T

1 (b2)
T

1 (b3)
T

1 (b4)
T











, x =

(

t

a

)

, b =

















(

d2
a,b1

)

−
(

||b1||
2
)

(

d2
a,b2

)

−
(

||b2||
2
)

(

d2
a,b3

)

−
(

||b3||
2
)

(

d2
a,b4

)

−
(

||b4||
2
)

















and

t = −
||a||2

2
,

has the same solution.

Proof Let us square both sides of the quadratic equations of system (3):



















||a||2 − 2aT b1 + ||b1||
2 = d2

a,b1

||a||2 − 2aT b2 + ||b2||
2 = d2

a,b2

||a||2 − 2aT b3 + ||b3||
2 = d2

a,b3

||a||2 − 2aT b4 + ||b4||
2 = d2

a,b4
.

The independent variables in the quadratic terms in all the equations correspond to the

coordinates of a. Therefore, in order to remove the quadratic terms, we can introduce

another variable t = −||a||2/2. The introduction of t allows to obtain a linear system

of 4 equations in 4 variables, that can be written as system (4). So, if the quadratic

system (3) has a solution, then the linear system (4) has the same solution. �

Note that the result of Theorem 3 is related to a result reported in [6]. However, in

the quoted paper, the system (3) is transformed into a 3 × 3 linear system, where the

three independent variables correspond to the three coordinates of the atom a. The

advantage in using the 4 × 4 linear system (4) is that the introduced variable t allows

to check the quality of the computed solutions. Indeed, when solving the system (4),

one solution could be found even though the original system (3) has no solutions. This

could happen when the distances da,bi
are not compatible to one another. If the value

of t for a found solution corresponds to the squared norm of the vector a related to

the remaining variables (t = −||a||2/2), for a given tolerance, then the vector a can be

considered as a good estimate of the coordinates of the considered atom.

Theorem 4 The real backbone of a protein conformation can be calculated in linear

time by using the artificial backbone defined in Theorem 1, with the atoms N, Cα, C

added at the beginning (see Theorem 2).

Proof The positions of all the backbone atoms N, Cα and C can be found by solving a

sequence of 4×4 linear systems defined by (4). Three different systems can be defined,

depending on the atom whose coordinates need to be computed. For computing the

position of the nitrogen N of the protein backbone, for example, the following four

atoms with known positions can be considered: Cα and C of the previous amino acid,

the hydrogen H bound to N and the hydrogen Hα bound to the following Cα (see

Figure 5). The considered Cα and C are supposed to be known (if they belong to the
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first amino acid, they are known because they are the first three atoms (including N)

that are fixed by BP considering the extension of the artificial backbone defined in

Theorem 2). The distances between C and N and between N and H are known because

these two pairs of atoms are chemically bound. The distance between Cα and N is also

known, because the bond lengths Cα −C and C−N are known, and the angle among

the three atoms Cα −C−N is also known. For the same reason, the distance between

N and Hα is available. The solution of the corresponding 4 × 4 linear system allows

to identify the coordinates of N. Analogue observations can be made for the other two

systems. See Figure 5 to find out which atoms and distances can be considered. �

5 Computational experiments

We will show in this section how instances of the DMDGP related to artificial backbones

can be efficiently solved by the BP algorithm, and how the solutions found by BP can

be exploited for reconstructing the real backbone of a protein conformation. All the

codes were written in C programming language and all the experiments were carried

out on an Intel Core 2 CPU 6400 @ 2.13 GHz with 4GB RAM, running Linux. The

codes have been compiled by the GNU C compiler v.4.1.2 with the -O3 flag.

The instances we consider are artificially generated. The method we use for gen-

erating such instances is similar to the one proposed in [13]. However, in this case,

not only the backbone atoms N, Cα and C are considered, but also hydrogens H, Hα

and Hβ . The atoms of the real backbone are used only for placing the hydrogen atoms

in a way that they simulate protein conformations, and they are discarded when cre-

ating the final instance. Some hydrogen atoms are considered twice and they are all

sorted in accordance with the special ordering of the artificial backbone discussed in

Section 3. Only distances smaller than 6Å are considered. We randomly generated a

set of instances having a different number of amino acids. When the real backbone is

reconstructed, each amino acid is represented by the 3 hydrogens H, Hα and Hβ , the

carbons Cα and C, and the nitrogen N.

All the instances we generated belong to the class of instances of the DMDGP. We

applied the BP algorithm for solving such instances, and the computational experi-

ments are shown in Table 1. In the table, n is the number of atoms included in the

instance. It is always a number which is divisible by 5, because each amino acid of the

considered artificial backbone contains exactly 5 hydrogens (two of them are consid-

ered twice). As a consequence, the number of amino acids in each instance is m =
n

5
,

and the number of atoms (all distinct to each other) after the reconstruction of the

real backbone will be 6m. The cardinality of the set of edges E indicates the number

Fig. 5 The atoms and the distances used in the three linear systems used to determine the
protein backbone.
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of known distances, and #Sol is the number of found solutions. The LDE function

(modified in order to avoid divisions by zero) is used for evaluating the quality of the

solutions and the best one is showed in the table. Finally, the CPU time (in seconds)

is given for each experiment. The experiments show that the BP algorithm is very

efficient in finding solutions of the DMDGP in terms of quality of the solutions and

CPU time, as already shown in previous works. In these experiments, each solution

consists of the set of coordinates of the hydrogen atoms H, Hα and Hβ of the artificial

backbones. The total number #Sol of solutions is 2 or 4. When there are 4 solutions,

the experiments are slightly more expensive because more branches of the binary tree

are explored during the search.

By following the method described in Section 4, we also built the real backbone, i.e.

the sequence of atoms N−Cα −C, related to the solutions found by BP. To this aim, a

sequence of linear systems (4) needs to be solved, and we solved each of them by using

the procedure dgesv of the LAPACK library [2]. Even though these linear systems

are small in size and they are solved by one of the best solvers for linear systems, the

corresponding solutions are very sensible to errors. In theory, the solution of the system

(4) can provide the correct coordinates of the atom only if these coordinates are also

solution for the original system (3). In practice, approximations of such coordinates can

be found by solving system (4) even when floating-point errors affect the used distances.

Unfortunately, approximated values of the coordinates can bring to the propagation

of errors along the atoms of the real backbone, that can spoil the final real backbone

which is obtained.

The strategy we implemented for overcoming this problem is the following. As

explained in Section 4 (see Theorem 4), depending on the kind of real backbone atom

we want to place, 4 different distances must be used in the linear system. Such distances

are known, and we obtained them from the Cambridge Structural Database [7]. These

distances can be considered as correct, but the floating-point arithmetic of a computer

machine can make them incompatible with known atomic coordinates, even though

this incompatibility can be caused by very small errors. Therefore, we tune the known

distances to the current system to be solved by slightly modifying their values. In the

experiments, each distance is allowed to change its values into a small neighbor of its

known value. Many systems are then solved by using different combinations for the

values for the distances, and the quality of the found solutions is checked through the

variable t. A solution is accepted only if the difference between t and −
1

2
||a||2 is smaller

than a given small tolerance. In this way, we do not allow errors to propagate along the

Instance name n |E| #Sol LDE CPU time
rand1 50 444 4 1.75e-09 0.00
rand2 100 1180 2 3.42e-09 0.00
rand3 200 2872 2 1.00e-08 0.01
rand4 400 5867 2 9.70e-09 0.01
rand5 800 13460 2 1.40e-08 0.03
rand6 1500 22040 4 9.13e-09 0.14
rand7 3000 54537 4 6.43e-08 0.43
rand8 5000 87992 2 2.35e-08 0.80

Table 1 Results obtained by the BP algorithm on a set of randomly generated artificial
backbones.
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Instance name 6m #Sol err

rand1 60 4 0.000021
rand2 120 2 0.000046
rand3 240 2 0.000408
rand4 480 2 0.008775
rand5 960 2 0.001793
rand6 1800 4 0.005795
rand7 3600 4 0.012779
rand8 6000 2 0.011418

Table 2 The err value for the best real backbone reconstructed by solving the sequence of
4 × 4 linear systems for each instance in Table 1.

atoms of the real backbone, and we are able to find very accurate positions for these

atoms.

We computed the real backbone of all the solutions found by BP in correspondence

with the instances in Table 1. Table 2 shows the obtained results. 6m is the number

of atoms of the final conformation, after the real backbone has been built. #Sol is the

number of solutions found by BP: we reconstructed the real backbone for all of them,

and the one with the best average error is considered in the table. The quality of the

found real backbones is evaluated through the function:

err =
1

3m

3m
∑

i=1

| t +
||a||2

2
|,

which computes an average of all the single errors occurring while solving the linear

systems. Note that this function depends on the solutions of the linear systems only

(we have information on the actual coordinates of the atoms because the instances

are artificially generated, but they are not used here). Since three backbone atoms are

computed for each amino acid, the average is computed on 3m local errors. We can see

from Table 2 that the value of err is approximately 10−3, and it is close to 10−2 in

correspondence with larger instances. This indicates that the propagation of the errors

through the linear systems has been kept low (some of the known distances have a

precision of 10−3), and that good quality real backbones have been reconstructed.

6 Conclusions

In this paper we solve the MDGP on protein backbones of up to 6000 atoms. The main

innovation we put forward is to take into account a limitation of NMR measurements,

i.e. the fact that interatomic distances are usually only obtained for hydrogen atoms

(this limitation is usually overlooked in the literature). We address it by identifying

an “artificial backbone of hydrogens” with two properties: (i) it consists of hydrogen

atoms only; (ii) it is an instance of the DMDGP, and so it can be solved by a very

efficient discrete search method called Branch & Prune. Once the hydrogen backbone

is positioned, its embedding is extended to the other atoms in the natural backbone

by solving a few (small) linear systems.

Future works will be devoted to extensions of the presented strategies for managing

the noise and the errors that can affect experimentally obtained data. The distances

between the hydrogens that are given to the BP algorithm may not be so accurate,
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and hence intervals in which the distances are contained might be available, instead of

exact distances. Moreover, a few of these distances could be wrong. We plan to combine

all these ideas into a general strategy, and to extend such a strategy to entire protein

conformations.
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22. J.J. Moré, Z. Wu, Distance Geometry Optimization for Protein Structures, Journal of
Global Optimization 15, 219–234, 1999.

23. A. Mucherino, C. Lavor, The Branch and Prune Algorithm for the Molecular Distance

Geometry Problem with Inexact Distances, World Academy of Science, Engineering and
Technology (WASET), Proceedings of the “International Conference on Bioinformatics
and Biomedicine” (ICBB09), Venice, Italy, October 2009.

24. A. Mucherino, L. Liberti, C. Lavor, MD-jeep: an Implementation of a Branch & Prune
Algorithm for Distance Geometry Problems, Lectures Notes in Computer Science, Pro-
ceedings of the Third International Congress on Mathematical Software (ICMS10), Kobe,
Japan, September 2010.

25. A. Mucherino, C. Lavor, and N. Maculan, The Molecular Distance Geometry Problem

Applied to Protein Conformations, Proceedings of the 8th Cologne-Twente Workshop on
Graphs and Combinatorial Optimization (CTW09), S. Cafieri, A. Mucherino, G. Nan-
nicini, F. Tarissan, L. Liberti (Eds.), 337–340, Paris, 2009.

26. A. Mucherino, L. Liberti, C. Lavor, and N. Maculan, Comparisons between an Exact and a

MetaHeuristic Algorithm for the Molecular Distance Geometry Problem, ACM Conference
Proceedings, Genetic and Evolutionary Computation Conference (GECCO09), Montréal,
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